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Chapter 10: Normal Families



Section 10.1: Normality and Equicontinuity



Normality is about compactness of analytic maps: given a certain family, can

we extract a convergent subsequence?

Compactness for families of functions is often given by Arzela-Ascoli theorem.

Normality theorems give conditions under which Arzela-Ascoli applies.



Definition 10.1: A collection, or family, F of continuous functions on a region

Ω ⊂ C is said to be normal on Ω provided every sequence {fn} ⊂ F contains

a subsequence which converges uniformly on compact subsets of Ω.

• The family F1 = {fc(z) = z + c : |c| < 1} is normal in C but not countable.

• The family F2 = {zn : n = 0, 1, . . . } is normal in D but the only limit

function, the zero function, is not in F2.

• The sequence zn converges uniformly on each compact subset of D, but does

not converge uniformly on D.

• The family F3 = {gn}, where gn ≡ 1 if n is even and gn ≡ 0 if n is odd, is

normal but the sequence {gn} does not converge.



Lemma 10.2 Suppose Ω is a region and suppose Ω = ∪∞j=1∆j where ∆j ⊂ Ω

are closed disks. A family of continuous functions F is normal on Ω if

and only if for each j, every sequence in F contains a subsequence which

converges uniformly on ∆j.



Proof. The only if part follows by definition.

Suppose that for each j, every sequence in F contains a subsequence which

converges uniformly on ∆j. Suppose {fn} ⊂ F . Then there is a subsequence

{f (1)
n } ⊂ {fn} such that {f (1)

n } converges uniformly on ∆1.

Likewise there is a sequence {f (2)
n } ⊂ {f (1)

n } which converges uniformly on ∆2,

and indeed there is a sequence {f (k)
n } ⊂ {f (k−1)

n } which converges uniformly on

∆k.

Then the “diagonal” sequence

{f (k)
k }

converges uniformly on each ∆j, since it is a subsequence of {f (k)
n } for each k.

A compact set K ⊂ Ω can be covered by finitely many ∆j, so the diagonal

sequence converges uniformly on K. �



Define a metric on the space C(Ω) of continuous functions on a region Ω as

follows. Write Ω = ∪∞j=1∆j, where each ∆j is a closed disk with ∆j ⊂ Ω. If

f, g ∈ C(Ω), set

ρj(f, g) = sup
z∈∆j

|f (z)− g(z)|
1 + |f (z)− g(z)|

, ρ(f, g) =

∞∑
j=1

2−jρj(f, g).



Then ρ is a metric:

(1) If ρ(f, g) = 0, then f = g on each ∆j and hence f = g on Ω.

(2) ρ(f, g) = ρ(g, f ) for f, g ∈ C(Ω),

(3) ρ(f, g) ≤ ρ(f, h) + ρ(h, g) for f, g, h ∈ C(Ω).

The triangle inequality follows from the observations that x
1+x = 1 − 1

1+x is

increasing for x ≥ 0 and if a and b are non-negative numbers then
a + b

1 + a + b
≤ a

1 + a
+

b

1 + b
.



Proposition 10.3: A sequence {fn} ⊂ C(Ω) converges uniformly on com-

pact subsets of Ω to f ∈ C(Ω) if and only if

lim
n
ρ(fn, f ) = 0.

• In other words, the space C(Ω) with the topology of uniform convergence on

compact subsets is a metric space.

• Compactness and sequential compactness are the same for metric spaces.

• A family is normal if and only if its closure is compact in this topology.



Proof. If ρ(fn, f )→ 0, then ρj(fn, f )→ 0 for each j. This implies fn converges

uniformly to f on ∆j for each j, because a/(1 + a) < b is the same as a <

b/(1− b), for a > 0 and 0 < b < 1.

Since each compact set K ⊂ Ω can be covered by finitely many ∆j, the sequence

fn converges uniformly on K. Conversely if fn converges to f uniformly on each

∆j, then given ε > 0, choose nj so that for z ∈ ∆j

|fn(z)− f (z)| < ε

2
, whenever n ≥ nj,

for j = 1, 2, 3, . . . .



Choose m so that ∞∑
j=m

2−j <
ε

2
.

Then for n ≥ max{n1, . . . nm−1}

ρ(fn, f ) ≤
m−1∑
j=1

2−j
ε

2
+

∞∑
j=m

2−j < ε. �



Definition 10.4: A family of functions F defined on a set E ⊂ C is

(1) equicontinuous at w ∈ E if for each ε > 0 there exist a δ > 0 so that

if z ∈ E and |z − w| < δ, then |f (z)− f (w)| < ε for all f ∈ F .

(2) equicontinuous on E if it is equicontinuous at each w ∈ E.

(3) uniformly equicontinuous on E if for each ε > 0 there exists a δ > 0

so that if z, w ∈ E with |z−w| < δ then |f (z)− f (w)| < ε for all f ∈ F .



Theorem 10.5, Arzela-Ascoli Theorem: A family F of continuous

functions is normal on a region Ω ⊂ C if and only if

(1) F is equicontinuous on Ω, and

(2) there is a z0 ∈ Ω so that the collection {f (z0) : f ∈ F} is a bounded

subset of C.

This result is proven usually proven in MAT 532 (in Chapter 4 of Folland’s

book). If you have not had this class, refer to the proof in Marshall’s textbook.



We could similarly consider families of continuous functions with values in a

complete metric space. The Arzela-Ascoli theorem holds in this context with

the same proof, replacing |f (z)− f (w)| with the metric distance between f (z)

and f (w).

For example we could consider continuous functions with values in the Riemann

sphere using the chordal distance between any two points on the sphere.



Equivalently, we can consider functions with values in the extended plane C∗ =

C ∪ {∞} with the chordal metric

χ(α, β) =


2|α−β|√

1+|α|2
√

1+|β|2
if α, β ∈ C

2√
1+|α|2

if β =∞.

Then to say that a function f is “continuous” at z0 with f (z0) =∞ means that

for all R <∞ there is a δ > 0 so that |f (z)| > R for all z with |z − z0| < δ.



Definition 10.6: A family F of continuous functions is said to be locally

bounded on Ω if for each w ∈ Ω there is a δ > 0 and M < ∞ so that if

|z − w| < δ then |f (z)| ≤M for all f ∈ F .

Theorem 10.7: The following are equivalent for a family F of analytic

functions on a region Ω.

(1) F is normal on Ω.

(2) F is locally bounded on Ω.

(3) F ′ = {f ′ : f ∈ F} is locally bounded on Ω and there is a z0 ∈ Ω so that

{f (z0) : f ∈ F} is a bounded subset of C.



Proof. Suppose F is normal. If w ∈ Ω then |f (z) − f (w)| < 1 for z in a

sufficiently small ball centered at w, for all f ∈ F , because F is equicontinuous

at w. Thus F is locally bounded.

Now suppose F is locally bounded on Ω. If |f | ≤M on a closed disk B(z1, r) ⊂
Ω centered at z1 with radius r > 0, then by Cauchy’s estimate |f ′(z)| ≤ 4M/r2

on B(z1, r/2). It follows that F ′ is locally bounded, and (3) holds.

Finally, if (3) holds and z1 ∈ Ω, then |f ′(z)| ≤ L < ∞ for z in a disk ∆

centered at z1. Integrating f ′ along a line segment from z1 to z ∈ ∆, we have

|f (z)− f (z1)| ≤ L|z − z1| for all f ∈ F . So F is equicontinuous at z1. By the

Arzela-Ascoli theorem, F is normal. �



Lemma 10.8: If {fn} is a sequence of meromorphic functions which

converges uniformly on compact subsets of a region Ω ⊂ C in the chordal

metric then the limit function is either meromorphic on Ω or identically

equal to ∞.



Proof. Note that

χ(α, β) = χ(
1

α
,

1

β
). (1.7)

If {fn} is a sequence of meromorphic functions which converges uniformly on

compact subsets of Ω in the χ metric then the limit function f is continuous as

a map into the extended plane C∗.

If |f (z0)| < ∞ then f is bounded in a neighborhood of z0, and hence fn

converges to f uniformly in the Euclidean metric in a neighborhood of z0. By

Weierstrass’s theorem, f is analytic in a neighborhood of z0.



If f (z0) = ∞, then 1/fn is bounded in a neighborhood of z0, for n sufficiently

large, and hence extends to be analytic by Riemann’s removable singularity

theorem. By (1.7) and Weierstrass’s theorem, 1/f is analytic in a neighborhood

of z0. By the identity theorem, if 1/f is not identically 0 in a neighborhood of

z0, then the zero of 1/f at z0 is isolated and hence f has an isolated pole at z0.

The set of non-isolated zeros of 1/f is then both open and closed in Ω. Because

Ω is connected, either f is identically equal to ∞ or f is analytic except for

isolated poles. This proves Lemma 1.8. �



Definition 10.9: If f is meromorphic on a region Ω ⊂ C then

f#(z) = lim
w→z

χ(f (z), f (w))

|z − w|
is called the spherical derivative of f .

If z is not a pole of f then

f#(z) =
2|f ′(z)|

1 + |f (z)|2
.

By (10.7), (1/f )# = f# so that f#(z) is finite and continuous at each z ∈ Ω.



The spherical distance d(p∗, q∗) between p∗, q∗ ∈ S2 is the arc-length of the

shortest curve on the sphere containing p∗ and q∗. The quantity f# is called

the spherical derivative because

f#(z) = lim
w→z

d(f (z)∗, f (w)∗)

|z − w|
,

where f (z)∗ denotes the stereographic projection of f (z).



Theorem 10.10, Marty’s Theorem: A family F of meromorphic func-

tions on a region Ω ⊂ C is normal in the chordal metric if and only if

F# = {f# : f ∈ F} is locally bounded.



Proof. SupposeF is normal in the chordal metric on Ω and suppose the spherical

derivatives are not bounded in any neighborhood of z0.

Then there is a sequence fn ∈ F and zn → z0 so that f#
n (zn)→∞. Taking a

subsequence, we may suppose that fn converges uniformly on compact subsets

of Ω in the chordal metric to a meromorphic function f , or to∞, by normality

and Lemma 10.8



If f (z0) 6= ∞ then f is bounded in the Euclidean metric in a neighborhood

Nz0 of z0. Because fn converges to f in the chordal metric, fn must also be

bounded in Nz0 and thus fn converges to f in the Euclidean metric on Nz0. By

Weierstrass’s theorem, f ′n converges to f ′ uniformly on compact subsets of Nz0

and thus f#
n converges uniformly on compact subsets of Nz0 to f#.

This contradicts the unboundedness of f#
n (zn). If f (z0) =∞, then we can apply

this same argument to 1/f and 1/fn using (1.7).



Conversely suppose the spherical derivatives are bounded by M in a disk ∆

centered at z0. If z, w ∈ ∆, let zj = z + (j/n)(w − z), 0 ≤ j ≤ n.

Then for n large,

χ(f (z), f (w)) ≤
n∑
j=1

χ(f (zj), f (zj−1)) ≈
n∑
j=1

f#(zj)|zj − zj−1| ≤M |z − w|.

Thus F is equicontinuous, with the chordal metric, on ∆. By the version of the

Arzela-Ascoli theorem with the chordal metric, F is normal on ∆, and by the

chordal version of Lemma 10.2, normal on Ω. �



Section 8.2: Hurwitz’s Theorem



Theorem 8.8, Hurwitz: Suppose {gn}∞n=1 is a sequence of analytic func-

tions on a region Ω and suppose gn(z) 6= 0 for all z ∈ Ω and all n. If gn

converges uniformly to g on compact subsets of Ω, then either g is identi-

cally zero in Ω or g is never equal to 0 in Ω.

Proof. The limit function g is analytic on Ω by Weierstrass’s theorem. In par-

ticular, if g is not identically zero, then the zeros of g are isolated in Ω.

Moreover, again by Weierstrass’s theorem, g′n converges to g′ uniformly on com-

pact subsets of Ω. If ∆ ⊂ Ω is a closed disk with g 6= 0 on ∂∆, then g′n/gn

converges to g′/g uniformly on ∂∆.

By the argument principle, for n sufficiently large, the number of zeros of gn in

∆ is the same as the number of zeros of g in ∆. Because gn is never zero, the

theorem follows. �



Corollary 8.9, Hurwitz’s Theorem: If {gn}∞1 is a sequence of one-to-

one and analytic functions on a region Ω and if gn converges to g uniformly

on compact subsets of Ω then either g is one-to-one and analytic on Ω or

g is constant.

Proof. Fix w ∈ Ω and apply Theorem 8.8 to g − g(w) on Ω \ {w}. �



Section 10.1: Riemann Mapping Theorem



Theorem 10.11, Riemann Mapping Theorem Suppose Ω ⊂ C is

simply-connected and Ω 6= C. Then there exists a one-to-one analytic map

f of Ω onto D = {z : |z| < 1}. If z0 ∈ Ω then there is a unique such map

with f (z0) = 0 and f ′(z0) > 0.

Idea of proof:

• Show there is a conformal map of Ω into D so that f (z0) = 0 and f ′(z0) > 0.

• Among all such maps, choose one maximizing f ′(z0). (uses normality)

• Prove this map is 1-1 and onto D.



Proof. Fix z0 ∈ Ω. Set

F = {f : f is one-to-one, analytic, |f | < 1 on Ω, f (z0) = 0, f ′(z0) > 0}.

If Ω is bounded, there is a linear map taking Ω to D with f (z0) = 0 and

f ′(z0) > 0. (shrink Ω to diameter < 1/2, then translate and rotated as needed).



If Ω is unbounded, translate it so it does not contain zero. The
√
z is defined

on Ω, and if D ⊂ Ω is a disk, then W =
√
D is an open set in the image, and

−W is an open set in the complement. Choosing a ∈ W and δ = dist(a, ∂W ),

we then have |1/(z + a)| < 1/δ on W . Thus Ω can be conformally mapped to

a bounded domain.

We are now back in the previous case.



By Theorem 10.7, F is normal. Let {fn} ⊂ F such that

lim
n→∞

f ′n(z0) = M = sup{f ′(z0) : f ∈ F}. (10.8)

Replacing fn with a subsequence, we may suppose that fn converges uniformly

on compact subsets of Ω.

By Weierstrass’s theorem, the limit function f is analytic and {f ′n} converges

to f ′. Thus f ′(z0) = M . In particular f is not constant, and M <∞.

By Hurwitz’s Theorem (Corollary 8.9), f is one-to-one. Also f (z0) = lim fn(z0) =

0, so that f ∈ F .



Next we show that f must map Ω onto D.

Suppose there is a point ζ0 ∈ D such that f 6= ζ0 on Ω. Then

g1(z) =
f (z)− ζ0

1− ζ0f (z)
≡ T1 ◦ f (z)

is a non-vanishing function on the simply-connected region Ω and hence it has

an analytic square root which is, again, one-to-one.

Set g2(z) =
√
g1(z) and

g(z) =
g2(z)− g2(z0)

1− g2(z0)g2(z)
≡ T2 ◦ g2(z).



Then λg(z) ∈ F , where λ = |g′(z0)|/g′(z0). Because T1, T2 are LFTs of D→ D,

ϕ = T−1
1 ◦ S ◦ T−1

2 ,

where S(z) = z2, is a two-to-one analytic map (counting multiplicity) of D onto

D with ϕ(0) = 0, and

f (z) = ϕ ◦ g(z).

By Schwarz’s lemma (or direct computation) |ϕ′(0)| < 1, so that

f ′(z0) = |f ′(z0)| = |ϕ′(0)||g′(z0)| < |g′(z0)| = λg′(z0),

contradicting the maximality of f ′(z0), and hence f maps D onto D.



To prove uniqueness, suppose f, g are two conformal maps D→ Ω with f (0) =

g(0) = z0 and f ′(0)g′(0) > 0.

Then h = g−1 ◦ f is a 1-1, onto analytic map from D to itself with h(0) = 0

and h′(0) = 1. By the Schwarz lemma, h is the identity so f = g. �



Georg Friedrich Bernhard Riemann

Stated RMT in 1851

https://mathshistory.st-andrews.ac.uk/Biographies/Riemann/


William Fogg Osgood

First proof of RMT, Trans. AMS, vol. 1, 1900

Harvard 1866, Math Faculty 1890-1933, Chair 1918-22

https://mathshistory.st-andrews.ac.uk/Biographies/Osgood/


The proof of Osgood represented, in my opinion, the “coming of age” of

mathematics in America. Until then, numerous American mathematicians

had gone to Europe for their doctorates, or for other advanced study, as

indeed did Osgood. But the mathematical productivity in this country in

quality lagged behind that of Europe, and no American before 1900 had

reached the heights that Osgood then reached.

J.L. Walsh, “History of the Riemann mapping theorem”, Amer. Math. Monthly,

1973.

https://mathshistory.st-andrews.ac.uk/Biographies/Walsh_Joseph/
https://www.math.stonybrook.edu/~bishop/classes/math401.F09/Walsh.pdf






The compactness proof of Riemann’s theorem seems non-constructive, but it

does describe an algorithm (Koebe’s method):

(1) Find a linear map f : Ω→ Ω0 ⊂ D with z0 mapping to 0.

(2) Assuming Ωn has been defined, find point w on ∂Ωn closest to 0.

(3) Choose LFTs τ, σ : D→ D so that τ (w) = 0 and σ(
√
τ (f (z0))) = 0.

(4) Let Ωn+1 = σ(
√
τ (Ωn)).

(5) Repeat steps until point w is within specified distance of unit circle.



On the top left is a subdomain of the disk whose boundary is parameterized by

γ(t) = eit13(3+sin(t))). This is a polygon with 100 vertices defined by the points

t = k/100, k = 1, . . . , 100. The next 11 figures show the first 11 iterations of

Koebe’s method. The next figure show more iterations.



This shows the first 80 iterations of Koebe’s method for the same domain.



Definition: We say that a region Ω is symmetric about R provided z ∈ Ω

if and only if z ∈ Ω. If Ω is symmetric about R and if f is analytic on Ω then

f (z) is analytic on Ω.



Proposition 8.14: If f is a conformal map of a simply-connected symmet-

ric region Ω onto D such that f (x0) = 0 and f ′(x0) > 0 for some x0 ∈ R∩Ω

then f (z) = f (z).

Proof. Apply the uniqueness conclusion in the Riemann mapping theorem to

the functions f and f (z). �



8.15 Theorem, Schwarz Reflection Principle : Suppose Ω is a region

which is symmetric about R. Set Ω+ = Ω ∩ H and Ω− = Ω ∩ (C \ H). If v

is harmonic on Ω+, continuous on Ω+ ∪ (Ω ∩ R) and equal to 0 on Ω ∩ R
then the function defined by

V (z) =

 v(z) for z ∈ Ω \ Ω−

−v(z) for z ∈ Ω−

is harmonic on Ω. If also v(z) = Im f(z) where f is analytic on H∩Ω then

the function

g(z) =


f (z) for z ∈ Ω+

f (z) for z ∈ Ω−

extends to be analytic in Ω.



Proof. The extended function V is continuous on Ω.

To prove the first claim, we need only prove that V has the mean-value property

for small circles centered on Ω ∩ R. But for x0 ∈ R ∩ Ω, V (x0 + reit) =

−V (x0 + re−it) so that the mean-value over a circle centered at x0 contained in

Ω is zero, the value of V at x0. Thus V is harmonic in Ω.

Suppose now that v = Im f where f is analytic on H∩Ω. If D is a disk contained

in Ω and centered on R, then V = Im h for some analytic function h on D.

It is uniquely defined by requiring that h = f on Ω+ ∩ D. Since f (z) = f (z)

h(z) = h(z) on D, and so h = g on D ∩ Ω \ R. Thus h provides the unique

analytic extension of g to all of D, and g extends to be analytic on Ω. �



Corollary 8.16: If the function f in the Schwarz reflection principle is

also one-to-one in Ω+ with Im f > 0 on Ω+, then its extension g is also

one-to-one on Ω.

Proof. By definition g is one-to-one on Ω− with Im g < 0 on Ω−. So if g(z1) =

g(z2) then z1, z2 ∈ R. Since g is open, it maps a small disk centered at zj,

j = 1, 2, onto a neighborhood of g(z1) = g(z2).

If z1 6= z2 then there are two points ζ1, ζ2 ∈ Ω+ near z1, z2 (respectively) with

g(ζ1) = g(ζ2), contradicting the assumption that f is one-to-one on Ω+. �



Theorem 8.19, Schwarz-Christoffel: Suppose Ω is a bounded simply-

connected region whose positively oriented boundary ∂Ω is a polygon with

vertices v1, ..., vn. Suppose the tangent direction on ∂Ω increases by παj at

vj, −1 < αj < 1. Then there exists x1 < x2 < · · · < xn and constants c1, c2

so that

f (z) = c1

∫
γz

n∏
j=1

(ζ − xj)−αjdζ + c2

is a conformal map of H onto Ω, where the integral is along any curve γz

in H from i to z.



Elwin Bruno Christtoffel Hermann Amandus Schwarz

https://mathshistory.st-andrews.ac.uk/Biographies/Christoffel/
https://mathshistory.st-andrews.ac.uk/Biographies/Schwarz/


• The exponents {αj} are known from the target polygon, but the {xj} are not.

• The points are the preimages of the vertices under the conformal map.

• Finding these points numerically is challenging: there are several heuristics

that work in practice, but are not proven to work, e.g., SC-Toolbox program by

T. Driscoll.

• A provably correct algorithm is given in the paper Conformal mapping in

linear time and explained in the recorded lecture Fast conformal mapping via

computational and hyperbolic geometry.

https://tobydriscoll.net/project/sc-toolbox/
https://www.math.stonybrook.edu/~bishop/papers/time.pdf
https://www.math.stonybrook.edu/~bishop/papers/time.pdf
https://mediacentral.ucl.ac.uk/Play/69538
https://mediacentral.ucl.ac.uk/Play/69538


Section 10.1: Zalcman, Montel and Picard



Theorem 10.12, Zalcman’s Lemma A family F of meromorphic func-

tions on a region Ω is not normal in the chordal metric if and only if there

exists a sequence {zn} converging to z∞ ∈ Ω, a sequence of positive numbers

ρn converging to 0, and a sequence {fn} ⊂ F such that

gn(ζ) = fn(zn + ρnζ) (10.9)

converges uniformly in the chordal metric on compact subsets of C to a

nonconstant function g which is meromorphic in all of C. Moreover, if F
is not normal then {zn} and {ρn} can be chosen so that

g#(ζ) ≤ g#(0) = 1, (10.10)

for all ζ ∈ C.

Larry Zalcman.

https://www.math.stonybrook.edu/~bishop/classes/math536.S24/Zalcman.pdf


For example the family F = {zn} is not normal on 2D = {z : |z| < 2}.

Set zn = 1 and ρn = 1/n. Then for ζ ∈ C

fn(zn + ρnζ) = (1 +
ζ

n
)n → eζ,

as n→∞, because

n log(1 + ζ/n)

ζ
=

log(1 + ζ/n)− 0

ζ/n

is the difference quotient for the derivative of log(1 + z) at z = 0.



Proof. One direction of Zalcman’s Lemma is easy.

If F is normal then any sequence {fn} contains a convergent subsequence, which

we can relabel as {fn}, and call the limit function f . If zn → z∞ ∈ Ω and

ρn → 0, then

gn(ζ) = fn(zn + ρnζ)→ f (z∞),

for each ζ ∈ C, as n→∞ since the family {fn} is uniformly equicontinuous in

a neighborhood of z∞. Thus the limit of gn is constant.



Conversely, suppose F is not normal. By Marty’s theorem, there exists wn →
w∞ ∈ Ω and fn ∈ F such that the spherical derivatives satisfy

f#
n (wn)→∞.

WLOG we may suppose w∞ = 0 and {|z| ≤ r} ⊂ Ω. Then

Mn = max
|z|≤r

(r − |z|)f#
n (z) = (r − |zn|)f#

n (zn),

for some |zn| < r, since f#
n is continuous.



Also, Mn →∞, since wn → 0. Then

gn(ζ) = fn(zn + ζ/f#
n (zn)),

is defined on {|ζ| ≤Mn} because

|zn + ζ/f#
n (zn)| ≤ |zn| + Mn/f

#
n (zn) = |zn| + r − |zn| = r.



Fix ζ ∈ C. Then for |ζ| < Mn,

g#
n (ζ) =

f#
n (zn + ζ/f#

n (zn))

f#
n (zn)

=
(
f#
n (zn + ζ/f#

n (zn))
)( 1

f#
n (zn)

)

≤

(
Mn

r − |zn + ζ/f#
n (zn)|

)(
r − |zn|
Mn

)
≤ r − |zn|

r − |zn| − |ζ|/f#
n (zn)

≤ 1

1− |ζ|/((r − |zn|)f#
n (zn))

=
1

1− |ζ|/Mn
→ 1,

as n→∞, since Mn →∞.



By Marty’s Theorem 10.10, the family {gn} contains a convergent subsequence

in the chordal metric.

Relabeling the subsequence, (10.9) holds with ρn = 1/f#
n (zn):

gn(ζ) = fn(zn + ρnζ) (10.9)

By calculation on previous slide, the limit function g satisfies the inequality

and equality in (10.10)

g#(ζ) ≤ g#(0) = 1, (10.10)

and is meromorphic by Lemma 1.8.

Because g#(0) = 1, g is nonconstant. Because {zn} is contained in a compact

subset of Ω, we can arrange that zn → z∞ ∈ Ω by taking subsequences. �



Theorem 10.13, Montel’s Theorem: A family F of meromorphic func-

tions on a region Ω that omits three distinct fixed values a, b, c ∈ C∗ is

normal in the chordal metric.



Proof. Normality is local by the chordal version of Lemma 10.2, so we may

assume Ω = D. An LFT and its inverse are uniformly continuous in the chordal

metric.

So we may suppose a = 0, b = 1 and c =∞ by composing with an appropriate

LFT. Without loss of generality, we may assume that F is the family of all

analytic functions on D which omit the values 0 and 1.



Consider functions that omit zero and the 2k-th roots of unity:

Fm = {f analytic on D : f 6= 0 and f 6= e2πik2−m, k = 1, . . . , 2m}.

Then

F = F0 ⊃ F1 ⊃ F2 ⊃ . . . .

If f ∈ Fm then f is analytic and f 6= 0, so that we can define f
1
2 so as to be

analytic. Moreover f
1
2 ∈ Fm+1.



If F is not normal then there exists a sequence {fn} ⊂ F with no convergent

subsequence. Moreover, {f
1
2
n} is then a sequence in F1 with no convergent

subsequence.

By induction, each Fm is not normal. Thus for each m we can construct a limit

function hm as in Zalcman’s lemma. The functions hm are entire by Exercise 3

and nonconstant since h#
m(0) = 1.



By (10.10) and Marty’s theorem {hm} is a normal family. If h is a limit of a

subsequence, uniformly on compact subsets of C in the chordal metric, then h

is entire by Exercise 3 and nonconstant since h#(0) = 1.

By Hurwitz’s theorem, h omits the 2m roots of 1 for each m. These points are

dense in the unit circle. Since h(C) is connected and open, either h(C) ⊂ D or

h(C) ⊂ C \ D. Thus either h or 1/h is bounded.

By Liouville’s theorem, h must be constant, which contradicts h#(0) = 1, and

hence F is normal. �



Theorem 10.14, Picard’s Great Theorem If f is meromorphic in Ω =

{z : 0 < |z − z0| < δ}, and if f omits three (distinct) values in C∗, then f

extends to be meromorphic in Ω ∪ {z0}.

• An equivalent formulation of Picard’s great theorem is that an analytic func-

tion omits at most one complex number in every neighborhood of an essential

singularity.

• f (z) = e1/z does omit the values 0 and∞ in every neighborhood of the essen-

tial singularity 0, so that Picard’s theorem is the strongest possible statement.

• The weaker statement that a non-constant entire function can omit at most

one complex number is usually called Picard’s little theorem.

See Emile Picard

https://mathshistory.st-andrews.ac.uk/Biographies/Picard_Emile/


Proof. As before, we may assume a = 0, b = 1, c =∞, and z0 = 0. Let εn → 0.

If f omits 0 and 1 in a punctured neighborhood of 0, then by Montel’s theorem

the family {f (εnz)} is normal in the chordal metric on compact subsets of

C \ {0}.

Relabelling a subsequence, we may suppose f (εnz) converges uniformly on com-

pact subsets of C \ {0} to a function g analytic on C \ {0} or to g ≡ ∞ by

Lemma 10.8 and Hurwitz’s theorem.

Lemma 10.8: If {fn} is a sequence of meromorphic functions which con-

verges uniformly on compact subsets of Ω ⊂ C in the chordal metric, then

the limit function is either meromorphic on Ω or identically equal to ∞.



If g is analytic, then |g(z)| ≤ M < ∞ on |z| = 1 and hence |f | ≤ M + 1 on

|z| = εn for n ≥ n0. But then by the maximum principle, |f | ≤ M + 1 on

εn+1 < |z| < εn for n ≥ n0.

Thus |f | ≤M+1 on 0 < |z| < εn0, so that by Riemann’s theorem on removable

singularities f is analytic in a neighborhood of 0.

If g ≡ ∞, we can apply a similar argument to 1/f (εnz) to conclude that 1/f is

analytic at 0 and hence f is meromorphic in a neighborhood of 0. �



Theorem: There is a holomorphic covering map from D to C \ {0, 1}



Proof. Let

Ω = {z = x + iy : y > 0, 0 < x < 1, |z − 1

2
| > 1

2
} ⊂ H.

This is simply connected and hence can be conformally mapped to H with

0, 1,∞ each fixed. We can then use Schwarz reflection to extend the map across

the sides of Ω. Every such reflection of Ω stays in H maps to either the lower or

upper half-planes. Continuing this forever gives a covering map from a simply

connected subdomain U of H to W . Since U is simply connected and not the

whole plane (it is a subset of H) it is conformally equivalent to D and hence a

covering q : D→ W exists. �



Picard’s little theorem, 2nd proof: If f is a non-constant entire func-

tion, then E = C \ f (C) contains at most one point.

Proof. If E contains two points {a, b}, then using the theory of covering surfaces

(from Top/Geo core course) the covering map p : D → C \ {a, b}, f can be

lifted to a holomorphic map f : C → D. By Liouville’s theorem, the lift is

constant and hence so must f . �



Zalcman’s Lemma has been used in many situations with the heuristic “Bloch’s

Principle” that if P is a property of meromorphic functions then

{f meromorphic on Ω : f has P}
is normal on Ω if and only if no non-constant meromorphic function on C has

P . For example, P could be “omits three values”.

For a precise statement, see Bloch’s principle by W. Bergweiler.

See André Bloch. He did much of his work in psychiatric hospital, where he

was committed after murdering his brother, aunt and uncle, stabbing them at

a family dinner in 1917.

The Bloch space is also named for him. These are holomorphic maps D → C
that are Lipschitz from the hyperbolic to the Euclidean metric.

https://arxiv.org/pdf/math/0511048.pdf
https://mathshistory.st-andrews.ac.uk/Biographies/Bloch/
https://en.wikipedia.org/wiki/Bloch_space


Normal families can be used to prove results like:

Theorem 10.15, Koebe: There is a K > 0 so that if f is analytic and

one-to-one on D with f (0) = 0 and f ′(0) = 1, then f (D) ⊃ {z : |z| < K}.



Normal families can be used to prove results like:

Theorem 10.15, Koebe: There is a K > 0 so that if f is analytic and

one-to-one on D with f (0) = 0 and f ′(0) = 1, then f (D) ⊃ {z : |z| < K}.

Theorem 10.16, Landau: There is a constant L > 0 so that if f is

analytic on D with f ′(0) = 1 then f (D) contains a disk of radius L.

Theorem 1.17, Bloch: There is a constant B > 0 so that if f is analytic

on D with f ′(0) = 1 then there is a region Ω ⊂ D such that f is one-to-one

and analytic on Ω and f (Ω) is a disk of radius B.

In Koebe’s theorem the optimal value is 1/4.

The other two optimal constants are unknown, although in both cases there are

upper and lower bounds that are only about 10% apart, and conjectures for the

optimal values have been made.



Let fn denote f composed with itself n times.

Given an analtyic map f : C → C, the Fatou set is the union of open disks

D so that {fn} is a normal family on D.

The Julia set is the complement of the Fatou set.

Pierre Fatou Gaston Julia

https://mathshistory.st-andrews.ac.uk/Biographies/Fatou/
https://mathshistory.st-andrews.ac.uk/Biographies/Julia/
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The Mandelbort set

= set of parameters c so that Julia set of z2 + c is connected.

= set of parameters c so that oribit of 0 is bounded.



Benoit Mandelbrot (1924-2010)

https://mathshistory.st-andrews.ac.uk/Biographies/Mandelbrot/


J ((ez − 1)/2), courtesy of Arnaud Chéritat



Given a discrete group of linear fractional transformations acting on the plane,

the ordinary set is the union of disk where group is a normal family.

The complement is called the limit set.

These sets are closely related to hyperbolic 3-manifolds.



A limit set of dimension 2. The geometrically inifinite case.








