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Definition of ODE

Let D ⊂ R
n be a domain, i.e., an open connected set.

(i) A time-dependent vector field on D is a pair consisting of a domain V ⊂

D × R together with a Borel-measurable map F : V → R
n.

(ii) The time-dependent vector field F is said to be autonomous if V = D×R

and for each x ∈ D, F (x, ·) is constant. That is to say, there is a Borel

measurable map ξ : D → R
n such that F (x, t) = ξ(x) for all x ∈ D and all

t ∈ R.



Let F be a time-dependent vector field on a domain V ⊂ D × R. An integral

curve through x ∈ D with initial time s is an open set I(x,s) ⊂ R containing s,

together with an absolutely continuous curve γ(x,s) : I(x,s) → D, such that

(i) γ(x,s)(s) = x,

(ii) (γ(x,s)(t), t) ∈ V for all t ∈ I(x,s), and

(iii)
dγ(x,s)(t)

dt = F (γ(x,s)(t), t) for almost every t ∈ I(x,s).



Cauchy-Peano Existence Theorem for First Order ODE

Theorem 2.1 : Let D ⊂ R
n and let V ⊂ D×R be domains. If F : V → R

n

is a continuous time-dependent vector field then for each (x, s) ∈ V there exists

an integral curve γx,s : Ix,s → D of F passing through x at the initial time s.

Continuity of the time-dependent vector field F is too weak to imply uniqueness

of the integral curve. Consider F (x, t) = 3x2/3, for which the curve

γ
〈c〉
0,0 : I0,0 = R ∋ t 7→ (t− c)3χ[c,∞)(t) ∈ R

is an integral curve through 0, with initial time 0 (i.e., γ
〈c〉
0,0(0) = 0) whenever

c ≥ 0.



Proof of Theorem 2.1: Fix (x, s) ∈ V and δ > 0 such that Dδ(s) :=

Bδ(x)× Iδ(s) ⊂ V , where Iδ(s) = (s− δ, s + δ).

We claim there exist ε > 0 and absolutely continuous γj : Iε(s) → D, j =

1, 2, ...,, such that

(0.1)∣∣γ′j(t)− F (γj(t), t)
∣∣ ≤ 1/j and |γj(τ1)− γj(τ2)| ≤ |τ1 − τ2| sup

Dδ

(s)|F |

for all τ1, τ2 ∈ Iδ(s) and almost all t ∈ Iδ(s).

To define γj let N > 0 be an integer (which will soon be taken very large), let

to := s, let tm := s +mε/N , m ∈ Z ∩ (−N,N), and define

• γj(s) = x,

• for m ≥ 0 and t ∈ (tm, tm+1], γj(t) := γj(tm) + (t− tm)F (γj(tm), tm), and

• form < 0 and t ∈ (tm, tm+1], γj(t) := γj(tm+1)+(t−tm+1)F (γj(tm+1), tm+1).



To describe it in words, the curve γj is piecewise linear, and the directions of the

two line segments coming out of the corners of the image of γj are parallel to

the value of the vector field F at the corner in question (and at the appropriate

time) or else at one of the two neighboring corners.



The curves γj, if well-defined, are clearly continuous. The issue of well-definedness

is that of making sure the curves do not escape the domain V , and this con-

finement to V is guaranteed, for instance, if ε supDδ(s) |F | < δ. We therefore

assume ε > 0 is so small that the latter estimate holds. As a consequence,

(0.2)

|γ′j(t)−F (γj(t), t)| ≤ |F (γj(tm), tm)−F (γj(t), t)|+|F (γj(tm+1), tm+1)−F (γj(t), t)|

for tm < t < tm+1. Since Dδ(s) is compact, F is uniformly continuous on

Dδ(s). Therefore, by taking N sufficiently large we can make the right hand

side of (0.2) as small as we like.



Next, if tm < τ1, τ2 ≤ tm+1 then

|γj(τ1)− γj(τ2)| ≤ |τ1 − τ2| sup
Dδ(s)

|F |,

which is uniformly bounded. On the other hand, if m ≥ 0 and τ1 < tm < τ2 ≤

tm+1 then, using the fact that γj(tm) = γj(tm−1)+(tm−tm−1)F (γj(tm−1), tm−1),

|γj(τ1)− γj(τ2)| = |(tm − τ1)F (γj(tm−1), tm−1) + (τ2 − tm)F (γj(tm), t)m)|

≤ (|(tm − τ1| + |τ2 − tm|) sup
Dδ(s)

|F | = |τ1 − τ2| sup
Dδ(s)

|F |,

and a similar calculation works for m < 0. Thus (0.1) is proved.



By the second estimate in (0.1) the sequence {γj} is equicontinuous. SinceDδ(x)

is also compact, the theorem of Ascoli-Arzela yields a subsequence γjℓ converging

uniformly to γ : Iε(s) → Bδ(s). The first estimate in (0.1) implies that g =

lim
ℓ
γ′jℓ exists uniformly and equals F (γ(·), ·). The equality g = F (γ(·), ·) implies

that g is continuous.

It remains to show that γ is differentiable and satisfies the differential equation.

Toward this end, observe that

γj(t) = x +

∫ t

s

(
F (γj(τ ), τ ) +

(
γ′j(τ )− F (γj(τ ), τ )

))
dτ.

By the first estimate in (0.1), we may pass to the limit as j → ∞, obtaining

γ(t) = x +

∫ t

s

F (γ(τ ), τ )dτ.

Thus γ(s) = x, γ is differentiable, and γ′(t) = F (γ(t), t), as desired.



Contraction mappings

Defn: Let A ⊂ X be a subset of a metric space. A mapping S : A → A is

said to be a contraction mapping if there exists some r ∈ (0, 1) such that

d(Sx, Sy) ≤ r · d(x, y)

for all x, y ∈ X .

Prop 3.2: Let X be a complete metric space and let A ⊂ X be a closed

subset. Let S : A → A be a contraction mapping. Then S has a unique fixed

point.



The Existence and Uniqueness Theorem for First Order ODE

Defn: Let f : U → R
n be a function defined on a domain U ⊂ R

m. We say

that f is locally Lipschitz if for each p ∈ U and each ε ∈ (0, dist(p, U c) there

exists a constant K = Kε,p such that

|f (x)− f (y)| ≤ K|x− y|

for all x, y ∈ B(p, ε) := {z ∈ R
m ; |z − p| < ε}.

Let D ⊂ R
n and V ⊂ D × R be domains. For each t ∈ R, we write

Vt = {x ∈ D ; (x, t) ∈ V }.

(It may happen that Vt = Ø for some t.)



Defn: Let D ⊂ R
n and V ⊂ D × R be domains, let F : V → R

n be a

time-dependent vector field. We say that F is uniformly locally Lipschitz if

for each t ∈ R the function Ft : Vt → R
n is locally Lipschitz and moreover

the Lipschitz constant can be taken locally uniform with respect to t. In other

words, for each (x, t) ∈ V there is a neighborhood U ⊂ V containing (x, t) and

a constant K > 0 such that |Fs(x1)− Fs(x2)| ≤ K|x1 − x2| for all x1, x2 ∈ D

such that (x1, s), (x2, s) ∈ U .



Theorem 4.4: Let D ⊂ R
n and V ⊂ D×R be domains and let F : V → R

n

be a continuous and locally uniformly Lipschitz time-dependent vector field.

For each (x, s) ∈ V there exists an integral curve γ(x,s) : I(x,s) → D for F .

Moreover, the set of integral curves possesses the following uniqueness property:

if γ(x,s) : I(x,s) → D and γ̃(x,s) : Ĩ(x,s) → D are two integral curves through x at

time s, then γ(x,s)(t) = γ̃(x,s)(t) for all t ∈ I(x,s) ∩ Ĩ(x,s).



Proof: Let (xo, to) ∈ V and choose ε > 0 such that F is continuous in

B(xo, ε)× (−ε, ε) and Lipschitz in the first variable with Lipschitz constant K,

i.e.,

|F (x, t)− F (y, t)| ≤ K|x− y|

for all (x, t), (y, t) ∈ B(xo, ε) × (−ε, ε). By continuity there exists a constant

M > 0 such that

|F (x, t)| ≤M

for all (x, t) ∈ B(xo, ε)× (−ε, ε).



Choose positive constants α and β such that

(i) with Iα := {t ∈ R ; |t− to| ≤ α} and Bβ := {x ∈ R
n ; |x− xo| ≤ β},

Bβ × Iα ⊂ B(xo, ε)× (−ε, ε),

(ii) αM < β, and

(iii) αK < 1.



Let A denote the set of continuous maps φ : Iα → R
n such that

|φ(t)− xo| ≤ β for all t ∈ Iα.

Equip A with the norm

||φ||∞ := inf{C > 0 ; |φ(t)| < C a.e. t ∈ Iα} = sup
Iα

|φ|.

Since uniform limits of continuous functions are continuous, A is a closed

bounded subset of the Banach (and hence complete metric) space L∞(Iα). Thus

A is itself a complete metric space with respect to the metric

d(φ, φ̃) := ||φ− φ̃||∞.



Consider the operator T defined by

Tφ(t) := xo +

∫ t

to

F (φ(s), s)ds.

Observe first that if φ ∈ A then clearly Tφ is continuous and defined on all of

Iα. Moreover, for t ∈ Iα one has

|Tφ(t)− xo| ≤M |t− to| ≤Mα < β,

where the last inequality follows from (ii). Thus Tφ ∈ A , which is to say,

T : A → A .

Next, observe that if φ1, φ2 ∈ A then

|Tφ1(t)− Tφ2(t)| =

∣∣∣∣
∫ t

to

(F (φ1(s), s)− F (φ2(s), s)) ds

∣∣∣∣

≤

∫ t

to

K |φ1(s)− φ2(s)| ds

≤ Kα sup
Iα

|φ1 − φ2| .

It follows from (iii) that for some r ∈ (0, 1),

||Tφ1 − Tφ2||∞ ≤ r||φ1 − φ2||∞.



Thus T : A → A is a contraction mapping. Therefore by Proposition 3.2 T

has a unique fixed point φ∗ ∈ A . �



Being a fixed point of T , φ∗ satisfies the equation

(0.3) φ∗(t) = xo +

∫ t

to

F (φ∗(s), s)ds,

and therefore
φ∗(t + h)− φ∗(t)

h
=

1

h

∫ t+h

t

F (φ∗(s), s)ds
h→0
−→F (φ∗(t), t).

Since φ∗ ∈ A , the latter limit is continuous, and thus the fixed point φ∗ of T is

continuously differentiable, and satisfies the equation

φ′∗(t) = F (φ∗(t), t).

Since φ∗(to) = xo, we see that γ(xo,to)(t) := φ∗(t) is an integral curve of F

through xo at time to.



Conversely, any integral curve of F satisfies the equation (0.3), and is therefore

a fixed point of T . Since contraction mappings have a unique fixed point, any

two integral curves must agree on Iα. By carrying out the same proof in small

intervals centered at all points of the intersection of the open set I(x,s)∩ Ĩ(x,s), we

obtain the uniqueness statement claimed in the theorem. The proof is therefore

complete. �



Maximal Integral Curves, Fundamental Domains, and Flows

Our next goal is to ‘glue together’ the integral curves of a time-dependent vector

fields. The first task is to maximally extend integral curves.

Let D ⊂ R
n and V ⊂ D×R be domains, and let F : V → R

n be a continuous,

locally uniformly Lipschitz time-dependent vector field. Fix an initial condition

(x, s) ∈ V . By Theorem 4.4, F has an integral curve through x with initial

time s.

Prop: With the notation above, there exists a unique integral curve γ(x,s) :

I(x,s) → D for F passing through x with initial time s such that if φ : I → D

is another integral curve for F through (x, s) then I ⊂ I(x,s).



Proof With respect to inclusion of domains, the set I(x,s) of all integral curves

for F passing through x with initial time s is partially ordered. Moreover, given

two such integral curves φi : Ii → D, i = 1, 2, Theorem 4.4 implies that the

function

φ(t) :=

{
φ1(t) , t ∈ I1
φ2(t) , t ∈ I2

is well-defined, and therefore φ : I1 ∪ I2 → D is also an integral curve for F

passing through x with initial time s. It follows that I(x,s) is a directed set. We

have to show that it has a maximal element, which is then of course unique.



To this end, let {φi : Ii → D}i∈I be a maximal linearly ordered subset of I(x,s).

Then the set I :=
⋃
i∈I Ii is open, and the curve φ : I → D defined by

φ(t) = φi(t), t ∈ Ii

is well-defined by the uniqueness part of Theorem 4.4, and therefore in I(x,s).

Thus I(x,s) has a unique maximal element in I(x,s).



Defn: The unique maximal element of the set I(x,s) defined in the proof of the

previous proposition is called the maximal integral curve for F through (x, s).

We shall denote the maximal integral curve for F through (x, s) by

Γ(x,s) : I(x,s) → D.

One can also consider the unions of the graphs of the maximal integral curves.

Defn: The set

UF := {(x, s, t) ; (x, s) ∈ V, t ∈ I(x,s)} ⊂ V × R

is called the fundamental domain of the time-dependent vector field F , and the

map

ΦF : UF → D

defined by ΦF (x, s, t) := Γ(x,s)(t) is called the time-dependent flow of F .

Defn: The map Φts : D → D

(0.4) Φts(x) := Γ(x,s)(t) = ΦF (x, s, t)

is called the time-t map for the initial time s.



The uniqueness part of Theorem 4.4 implies a symmetry appearing in the com-

position law for the maps (0.4), stated in the following result.

Prop: For each s ∈ R one has

Φss(x) = x for all x ∈ Vs.

Moreover, if (x, s, t) ∈ UF and (Φts(x), t, r) ∈ UF , we have the pseudo-group

law

Φrt ◦ Φ
t
s(x) = Φrs(x).



Suspension:

Autonomous vector fields are special cases of time-dependent vector fields. In

this section, we note that in a sense the converse is also true. To this end, let

D ⊂ R
n and V ⊂ D×R be domains and let F : V → R

n be a time-dependent

vector field. Define ξF : V → R
n × R by the formula

ξF (x, s) := (F (x, s), 1)

The vector field ξF is then autonomous, and its flow is given by the time-t maps

ΦtξF (x, s) = (Φs+ts (x), s + t).

It is therefore possible to extract the flow of F from that of ξF . If one can find

the latter flow, this is of course possible. In fact, if F is continuous and locally

uniformly Lipschitz on V then ξF is locally Lipschitz on V , so Theorem 4.4

applies to ξF .

In view of the suspension construction, it suffices to focus attention on au-

tonomous time-dependent vector fields, which we shall simply call vector fields

from here on.



Autonomous Vector Fields

From the point of view of classical mechanics, the general setting of time-

dependent vector fields corresponds to physical systems in which the laws of

physics change with time. Such situations can happen, but in nature we mostly

find them when the particular physical system we are studying is not closed,

i.e., it is part of a larger physical system.

By definition, the vector field representing a closed physical system is autonomous.

That is to say, for each x ∈ D

t 7→ F (x, t)

is constant. In this case, we choose the convention of always taking initial value

problems to start at time s = 0.

The fundamental domain and the flow are defined only slightly differently, so as

to eliminate the initial time. Let us make the definitions precise.



Defn: Let ξ : D → R
n be a vector field on a domain D ⊂ R

n.

(i) The maximal integral curve for ξ through x ∈ D is the maximal integral

curve

Γx : Ix → D

where Γx := Γ(x,0) and Ix := I(x,0).

(ii) The fundamental domain of ξ is the domain

U
0
ξ := {(x, t) ; t ∈ Ix} ⊂ D × R.

(iii) The flow of ξ is the map Φξ : U
0
ξ → D defined by

Φξ(x, t) = Γx(t).

(iv) The time-t map is the map Φtξ defined by

Φtξ(x) = Φξ(x, t).



Note that U 0
ξ always contains D × {0}. Note as well that the time-t maps

define the pseudo-group law

(0.5) Φtξ ◦ Φ
s
ξ = Φt+sξ .

The link between the autonomous and time-dependent scenarios is the identity

Φts = Φt−sξ .



Regularity of solutions

The flow of a vector field is constructed by gluing together integral curves. In

this process, the regularity of the time-t maps and of the flows is far from clear.

As it turns out, the behavior of the flow is remarkably good.

Gronwall’s Inequality Let f, g : [a, b) → [0,∞) be continuous functions,

and assume there is a constant A ≥ 0 such that

f (t) ≤ A +

∫ t

a

f (s)g(s)ds.

Then

f (t) ≤ A exp

(∫ t

a

g(s)ds

)
for all t ∈ [a, b).



Proof: Assume first that A > 0. The function h(t) := A +
∫ t
a f (s)g(s)ds is

positive and satisfies h′(t) = f (t)g(t) ≤ h(t)g(t). Hence d
dt log h(t) ≤ f (t), so

log h(t) ≤
∫ t
a f (s)ds + log h(a) = log

(
h(a) exp

(∫ t
a f (s)ds

))
. Since h(a) = A

we have

f (t) ≤ h(t) ≤ A exp

(∫ t

a

f (s)ds

)
.

If A = 0 then of course f (t) ≤
∫ t
a f (s)g(s)ds ≤ ε+

∫ t
a f (s)g(s)ds, and by what

was just proved f (t) ≤ ε exp
(∫ t

a f (s)ds
)
for every positive ε. It follows that

f ≤ 0, as needed. �



Defn: Let D ⊂ R
n be an open set, let k ∈ N and let α ∈ (0, 1]. A function

f : D → R is said said to be C
k,α
ℓoc — one writes f ∈ C k,α(D)— if f ∈ C k(D)

and for every x ∈ D and every ε ∈ (0, dist(x,Dc)) there is a positive constant

K = K(x, ε) such that every kth order partial derivative gI := ∂kf

∂xi1···∂xin
of f

(i.e., I = (i1, ..., in) ∈ N
n is a multiindex of order |I| := i1 + · · · + in = k)

satisfies

|gI(x1)− gI(x2)| ≤ K|x1 − x2|
α for all x1, x2 ∈ Dε(x).

In particular, C
0,1
ℓoc (D) is the set of locally Lipschitz functions on D.

For a map F = (f 1, ..., fm) : D → R ⊂ R
m, F ∈ C

k,α
ℓoc (D,R) if f

1, ..., fm ∈

C
k,α
ℓoc (D), i.e., F is C

k,α
ℓoc if and only if each component f j of F is C

k,α
ℓoc .



Smooth dependence on Initial Conditions

Theorem: Let D ⊂ R
n be a domain and let ξ : D → R

n be a C
k,1
ℓoc vector

field. Denote by Φξ : U
o
ξ → D the flow of ξ. Then

a. for any open set U ⊂⊂ D and each t ∈ R such that the time-t map Φtξ is

defined on U , Φtξ ∈ C
k,1
ℓoc (U),

b. for each x ∈ D the integral curve γx : Ix ∋ t 7→ Φtξ(x) is in C k+1(Ix), and

c. the flow Φξ : U
o
ξ → D is C k,1.

Proof: We begin with the case k = 0. In this case the fact that γx ∈ C 1(Ix)

is a part of Theorem 4.4, so we need only show that Φξ is locally Lipschitz. We

begin by showing that Φtξ is locally Lipschitz on its domain of definition. By the

pseudogroup law it suffices to assume that t ∈ [−ε, ε] for some sufficiently small

ε. Let x ∈ D and let ε > 0 be so small that Φtξ(y) ∈ D if y ∈ Bε(x) and t ∈

[−ε, ε]. For any x1, x2 ∈ Bε(x) consider the function f (t) := ||Φtξ(x1)−Φtξ(x2)||.



Then

f (t) =

∣∣∣∣
∣∣∣∣
∫ t

0

(
ξ(Φsξ(x1))− ξ(Φsξ(x2))

)
+ x1 − x2

∣∣∣∣
∣∣∣∣ ≤ ||x1−x2||+K

∫ t

0

f (s)ds,

where K is the local Lipschitz constant of ξ on Bε(x). By Gronwall’s Inequality

(0.6) ||Φtξ(x1)− Φtξ(x2)|| ≤ eK|t|||x1 − x2|| ≤ eεK||x1 − x2||,

which proves a.



We already know from Theorem 4.4 that the integral curve γx is C 1, i.e., that

b holds. Finally, if t1, t2 ∈ Iε(t) := (t − ε, t + ε) and U ⊂⊂ D is such that

(t− ε, t + ε)× U ⊂ U o
ξ then

||Φt1ξ (x1)− Φt2ξ (x2)|| ≤ ||Φt1ξ (x1)− Φt2ξ (x1)|| + ||Φt2ξ (x1)− Φt2ξ (x2)||

≤

(
sup

(τ,x)∈Iε(t)×D

||ξ(Φτξ(x))||

)
|t1 − t2| + ||Φt2ξ (x1)− Φt2ξ (x2)||

≤

(
sup

(τ,x)∈Iε(t)×D

||ξ(Φτξ(x))||

)
|t1 − t2| + eKε||x1 − x2||

where the second inequality follows from the Mean Value Theorem and the third

inequality is (0.6). Thus c holds, and the case k = 0 is proved.



Let us now turn to the case k = 1, i.e., assume ξ ∈ C
1,1
ℓoc (D). For fixed x ∈ D

consider the linear time-dependent vector field Fx(y, t) := dξ(Φtξ(x))y. Let us

write Ψ(x, t)y := Φt0(y), where Φ
t
o is the time-dependent flow of Fx(y, t). By the

uniqueness part of Theorem 4.4Ψ(x, t) depends linearly on y, which is to say,

Ψ(x, t) lies in the space Hom(Rn,Rn) of linear maps of Rn to itself. Moreover,

Ψ(x, t) is invertible because Φ0
t ◦ Φt0 = Φtt = Id. We can therefore think of

dξ(Φtξ(x)) as a vector field on the linear space Hom(Rn,Rn).



By its definition, the curve t 7→ Ψ(x, t) ∈ Hom(Rn,Rn) satisfies the differential

equation
d

dt
Ψ(x, t) = dξ(Φtξ(x))Ψ(x, t)

with the initial condition Ψ(x, 0) = I . We claim that the map (x, t) 7→ Ψ(x, t)

is continuous. Indeed, since ξ ∈ C
1,1
ℓoc (D), dξ is locally Lipschitz, and by the

first part of the proof we have already seen that Φξ is Lipschitz. Therefore

||Ψ(x, t)|| =

∣∣∣∣
∣∣∣∣Id +

∫ t

0

dξ(Φsξ(x))Ψ(x, s)ds

∣∣∣∣
∣∣∣∣ ≤ 1+

∫ t

0

||dξ(Φsξ(x))||·||Ψ(x, s)||ds

and Gronwall’s Inequality yields ||Ψ(x, t)|| ≤ exp
(∫ t

0 ||dξ(Φ
s
ξ(x))||ds

)
. In par-

ticular, ||Ψ(x, t)|| is locally uniformly bounded in x and t.



Now, if x1, x2 are sufficiently close to x then, since Ψ(x1, 0) = Ψ(x2, 0) = Id,

Ψ(x1, t)− Ψ(x2, t)

=

∫ t

0

(
dξ(Φsξ(x1))Ψ(x1, s)− dξ(Φsξ(x2))Ψ(x2, s)

)
ds

=

∫ t

0

(
(dξ(Φsξ(x1))− dξ(Φsξ(x2)))Ψ(x1, s) + dξ(Φsξ(x2))(Ψ(x1, s)− Ψ(x2, s))

)
ds,

and hence, since we observed that dξ ◦Φtξ is locally Lipschitz uniformly in t and

we’ve just shown that ||Ψ(x, t)|| is locally uniformly bounded in x and t,

||Ψ(x1, t)− Ψ(x2, t)|| ≤ A||x1 − x2|| +K

∫ t

0

||Ψ(x1, s)− Ψ(x2, s)||ds.



Thus by Gronwall’s Inequality again,

||Ψ(x1, t)− Ψ(x2, t)|| ≤ A||x1 − x2||e
Kt.

Moreover, another application of the Mean Value Theorem gives

||Ψ(x1, t1)− Ψ(x2, t2)|| ≤ ||Ψ(x1, t1)− Ψ(x1, t2)|| + ||Ψ(x1, t2)− Ψ(x2, t2)||

≤

(
sup

t1≤t≤t2,x
dξ(Φtξ(x))Ψ(x, t)

)
|t1 − t2| + A||x1 − x2||e

Kε

which shows that Ψ is Lipschitz.



Finally, observe that the map Ψ̂ : (x, t) 7→ dΦtξ(x) satisfies Ψ̂(x, 0) = dΦ0
ξ(x) =

Id and
d

dt
Ψ̂(x, t) =

d

dt
dΦtξ(x)y =

d

dt

d

ds

∣∣∣∣
s=0

Φtξ(x + sy) =
d

ds

∣∣∣∣
s=0

ξ(Φtξ(x + sy))

= dξ(Φtξ(x))dΦ
t
ξ(x)y = dξ(Φtξ(x))Ψ̂(x, t)y

for all y ∈ R
n. By the uniqueness part of Theorem 4.4 Ψ̂ = Ψ. Thus we have

shown that the flow Φξ is C 1,1 when ξ is C 1,1. Moreover,

d2

dt2
Φtξ(x) =

d

dt
ξ ◦ Φtξ(x) = dξ(Φtξ(x))ξ(Φ

t
ξ(x))

which shows that the flow Φξ is then C 2 in t. This completes the proof of the

case k = 1.



Now suppose the result has been proved up to k − 1, i.e., we have shown that,

for any vector field η, if η ∈ C
k−1,1
ℓoc (D) then ψη is C

k−1,1
ℓoc in x and C k in t. We

have already computed that

d

dt
dΦtξ(x) = dξ(Φtξ(x))dΦ

t
ξ(x) and

d2

dt2
Φtξ(x) = dξ(Φtξ(x))ξ(Φ

t
ξ(x)).

As one can verify by repeated application of the chain rule, the right hand sides

of both equations are C
k−1,1
ℓoc . Therefore, by our induction hypothesis, so are

the solutions. Hence we see that Φξ is C
k,1
ℓoc in x and C k+1 in t. The proof is

therefore complete. �



Cor 8.4 If ξ : D → R
n is a C∞ vector field then Φξ : U

o
ξ → D is C∞.

If D ⊂ R
n and ξ : D → R

n is a real-analytic vector field, it is not immediately

clear from Theorem 8.3 that Φξ is real-analytic. Nevertheless this is indeed the

case.

Theorem 8.5: If ξ : D → C
n is a real-analytic vector field then the flow

Φξ : U
o
ξ → D is real-analytic.

We shall omit the proof.



1. Dependence on Parameters

Theorem 9.1: Let P be a compact topological spaces and let ξp be a locally

Lipschitz vector field for each p ∈ P . Assume, moreover, that the map

P ×D ∋ (p, x) 7→ ξp(x) ∈ R
n

is continuous. Then the flow Φξp of ξp depends continuously on p, in the sense

that for each relatively compact open set U ⊂⊂ D and each ε > 0 such that

U o
ξp
contains D × (−ε, ε) for all p ∈ P the map

P × U × (−ε, ε) ∋ (p, x, t) 7→ Φtξp(x) ∈ D

is continuous.



Proof: We know that the map fx,p(t) := t 7→ Φtξp(x) is the unique solution of

the equation

fx,p(t) = x +

∫ t

0

fx,p(s)ds.

This integral equation suggests an approximation scheme, and in fact this ap-

proximation scheme was in some sense used to prove Theorem 4.4

We assume first that t > 0. Let us fix po ∈ P and xo ∈ X . For p and x

sufficiently close to po and xo respectively, define

fo(t, x, p) := x + tξpo(xo)

and, inductively,

fj+1(t, x, p) := x +

∫ t

0

ξ(fj(s, x, p))ds, j ≥ o.



Fix ε > 0. Clearly the functions fj depend continuously on t, x and p, and

moreover there exist δ > 0 and a sufficiently ’small open neighborhood Npo of

po in P such that if ||x− xo|| < δ and p ∈ Npo then

||f1(t, x, p)− fo(t, x, p)|| =

∣∣∣∣
∣∣∣∣
∫ t

0

(ξp(fo(t, x, p))− ξpo(xo))ds

∣∣∣∣
∣∣∣∣ ≤ |t|ε.

Now fix k ≥ 1 and, by way of induction, assume we have proved that

||fk(t, x, p)− fk−1(t, x, p)|| ≤
εtkKk−1

k!
,

where K is the local Lipschitz constant for ξ in the neighborhood Bδ(xo). Then

||fk+1(t, x, p)− fk(t, x, p)|| ≤

∫ t

o

||ξ(fk(s, x, p))− ξ(fk−1(s, x, p))||ds

≤

∫ t

0

K||fk(s, x, p)− fk−1(s, x, p)||ds

≤
εKk

k!

∫ t

0

skds =
εtk+1Kk

(k + 1)!
.



Thus, setting f−1 = 0, we see that

fN(t, x, p) :=

N∑

k=0

(fk(t, x, p)− fk−1(t, x, p))

which depends continuously on t, x and p, converges uniformly to some function

f (t, x, p) so long as

ε
∑

k≥1

tkKk−1

k!
=

ε

K
(eKt − 1) < δ − t||ξpo(xo)||.

Indeed, if this is the case then

||fN(t, x, p)− x|| ≤
ε

K
(eKt − 1) + t||ξpo(xo)||,

which is required to force fk(t, x, p) to remain inside the ball Bδ(xo). Therefore

we see that if t is bounded above by a sufficiently small constant then the limit

f (t, x, p) exists uniformly in t, x and p. Therefore this limit is a continuous

function of t, x and p.



If t < 0 then the same result is obtained from the above proof by replacing t

with −t everywhere.

Finally, note that the limit, being uniform, satisfies

f (t, x, p) = x +

∫ t

0

ξp(f (s, x, p))ds.

By Theorem 4.4 f (t, x, p) = Φtξp(x), and the proof is complete. �



Cor 9.2: Let P ⊂ R
m be a domain and let {ξp ; p ∈ P} be a family of C

k,1
ℓoc

vector fields such that the map

P ×D ∋ (p, x) 7→ ξp(x) ∈ R
n

is C k. Then the map

P ×D × R ∋ (p, x, t) 7→ Φtξp(x) ∈ D,

wherever it is defined, is C k.

Proof: Consider the vector field ξ̃ on D× P defined by ξ̃(x, p) := (ξp(x), 0).

By hypothesis this vector field in C
k,1
ℓoc , and hence by Theorem 8.3 its flow

Φξ̃ : U o
ξ̃

→ D × P is C
k,1
ℓoc . But this flow is uniquely determined by the

differential equation, and one can check directly that the map

D × P ∋ (x, p) 7→ (Φtξp(x), p)

solves the equation. Therefore Φt
ξ̃
(x, p) ≡ (Φtξp(x), p), and in particular, (x, p) 7→

Φξp(x) is C
k,1
ℓoc . The proof is complete. �



Complete Vector Fields:

The pseudo-group law (0.5) is not a group law only because integral curves are

not defined for a long enough time, i.e., even if t and s both lie in the domains

of their respective integral curves, t + s may not. The situation in which this

failure does not happen is therefore particularly important, and we study it in

more detail now.

Defn: A vector field ξ : D → R
n is said to be complete (sometimes also called

completely integrable) if the’ domain of every maximal integral curve is R.



Prop 10.1: Let ξ : D → R
n be a C

k,1
ℓoc vector field defined on a domain

D ⊂ R
n. Then the following are equivalent.

(i) ξ is complete.

(ii) There exists a positive number ε such that for each x ∈ D, Ix ⊃ (−ε, ε).

(iii) For each t ∈ R, the map Φtξ is a C
k,1
ℓoc -diffeomorphism ofD: Φtξ ∈ Diffk(D)∩

C
k,1
ℓoc (D).

(iv) For some t ∈ R− {0}, Φtξ ∈ Diffk(D) ∩ C
k,1
ℓoc (D).

(v) The set of maps {Φtξ}t∈R is a 1-parameter subgroup of Diffk(D)∩C
k,1
ℓoc (D).

(vi) The fundamental domain of ξ is D × R.

The proof is left to the reader as an exercise.



Approximation

In this section we study a technique, initiated by Euler, for the approximation

of integral curves and more generally flows. We confine ourselves to autonomous

vector fields for the time being.

Defn: Let ξ : D → R
n be a vector field on a domain D ⊂ R

n and let I ⊂ R

be an open interval containing 0. An algorithm for ξ is a map H : D× I → D

such that, with Ht(x) := H(x, t),

(i)H0 = Id,

(ii)H(x, ·) is C 1 and its derivative is continuous in D × I , and

(iii) ∂H
∂t

∣∣
t=0

= ξ.



Theorem 11.2: Let H be an algorithm for a Lipschitz vector field ξ. If

(t, x) ∈ U 0
ξ then for all N >> 0, H

(N)
t/N (x) is defined, and converges to Φtξ(x).

Conversely, if H
(N)
t/N (x) is defined and converges for t ∈ [0, T ] then (T, x) ∈ U 0

ξ

and

lim
N→∞

H
(N)
t/N (x) = Φtξ(x).

In both statements, the converges is locally uniform on D × I .



Proof: We begin by showing that the convergence holds locally. To this end,

let xo ∈ D. Then

(1.1) Ht(x) = x +O(t) and Φtξ(x)−Ht(x) = o(t).

IfH
(j)
t/j(x) is well-defined for x in a small neighborhood of xo, for j = 1, 2, ..., N−

1, then the semi-group law for time-t maps and the first estimate in (1.1) shows

that

H
(N)
t/N (x)− x = H

(N)
t/N (x)−H

(N−1)
t/N (x) +H

(N−1)
t/N (x)−H

(N−2)
t/N (x)

+... +Ht/N(x)− x

= NO(t/N) = O(t),

which is small independently of N , for t sufficiently small.



Thus for x sufficiently close to xo and t sufficiently small, H
(N)
t/N (x) remains close

to xo for all N . In other words, with

xj = H
(j)
t/j(x),

||xj − xo|| < ε for x sufficiently close to xo and t sufficiently small. From the

semi-group law for Φtξ, we also have

Φtξ(x)−H
(N)
t/N (x) = (Φ

t/N
ξ )(N)(x)−H

(N)
t/N (x)

= (Φ
t/N
ξ )(N−1)(Φ

t/N
ξ (x))− (Φ

t/N
ξ )(N−1)(Ht/N(x))

+

N∑

j=2

(Φ
t/N
ξ )(N−j)(Φ

t/N
ξ (xj))− (Φ

t/N
ξ )(N−j)(Ht/N(xj)),



Now, the hypotheses on ξ imply the estimate (0.6), as was shown in the beginning

of the proof of Theorem 8.3. Repeated application of (0.6) yields the estimate

||Φtξ(x)−H
(N)
t/N (x)|| ≤

N∑

k=1

eK|t|(N−k)/N ||Φ
t/N
ξ (xN−k−1)−Ht/N(xN−k−1)||

≤ NeK|t|o(t/N),

and the last quantity converges, as N → ∞, to 0 uniformly on a small ball

centered at xo and for all sufficiently small t. The final estimate uses the second

estimate of (1.1).



Having handled the case of short times, we now proceed to longer times. To this

end, suppose first that Φtξ(x) is defined for all t ∈ [0, T ]. By what we have just

done, if k is sufficiently large then

Φ
t/k
ξ (y) = lim

k→∞
H

(k)
t/k(y)

holds uniformly for t ∈ [0, T ] and y in a bounded neighborhood of the curve

{Φtξ(x) ; t ∈ [0, T ]}. Thus

Φtξ(x) = (Φ
t/k
ξ )(k)(x) = lim

N→∞
(H

(N)
t/(kN))

(k)(x) = lim
N→∞

H
(Nk)
t/(kN)(x) = lim

N→∞
H

(N)
t/N (x).



Conversely, suppose t 7→ H
(N)
t/N (x) converges to a curve c : [o, T ] → D. Let

S = {t ∈ [0, T ] ; Φtξ(x) is defined and equal to c(t)}.

Clearly 0 ∈ S, and from the local result S is relatively open. Let {tk} ⊂ S and

suppose tk → t. Then Φ
tk
ξ (x) → c(t) so by Theorem 4.4 Φtξ(x) is defined, and

by continuity, Φtξ(x) = c(t). Thus S is closed, and hence S = [0, T ].

Finally, observe that by existence and uniqueness, Φ−t
ξ = Φt−ξ, so the above

proof applies to negative times as well. �
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