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Chapter 9.1: Distributions

C∞c (E) = compactly supported smooth functions with support inside E.

If U is open in Rn we define:

(i) A sequence {φj} in C∞c (U) converges in C∞c to φ {φj} ⊂ C∞c (K) for

some compact set K ⊂ U and φj → φ in the topology of C∞c (K), that is,

∂αφj → ∂αφ uniformly for all α.

(ii) If X is a locally convex topological vector space and T : C∞c (U) → X is

a linear map, then T is continuous if for each compact K ⊂ U , T restricted

to C∞c (K) is continuous, that is Tφj → Tφ whenever φj → φ in C∞c (K) and

K ⊂ U is compact.



(iii) A linear map T : C∞c (U) → C∞c (U ′) is continuous if for each compact

K ⊂ U there is a compact K ′ ⊂ U ′ such that T (C∞c (K)) ⊂ C∞c (K ′) and T is

continuous from C∞c (K) to C∞c (K ′).

(iv) A distribution on U is a continuous linear functional on C∞c (U). The

space of all distributions on U is denoted by D′(U), and we set D′ = D′(Rn).

We impose the weak* topology on D′(U), that is, the topology of pointwise

convergence on C∞c (U).

D is Schwarz’s notation for C∞c .



Examples of Distributions:

• Every f ∈ L1
loc, i.e., every function f on U that is integrable on every compact

set.

• Every Radon measure µ on U defines a distribution by φ→
∫
φdµ. .

• If xo ∈ U and α is a multi-index, the map φ→ ∂αφ(x0) is a distribution. This

does not arise from a function; it arises from a measure precisely when α = 0,

in which case it is the point mass at x0.



Notation: If F ∈ D′(U) and and φ ∈ C∞c (U), the value of F at φ, is denoted

by 〈F, φ〉. This is linear in each variable; this conflicts with our earlier notation

for inner products, but will cause no serious confusion.

Sometimes it is convenient to pretend that a distribution is a function when

it really is not, and to write
∫
F (x)φ(x)dx instead of 〈F, φ〉. This is the case

especially when the explicit presence of the variable x is notationally helpful.

Notation: We shall use a tilde to denote the reflection of function in the origin:

φ̃(x) = φ(−x).

Notation: We denote the point mass at the origin, by δ:

〈δ, φ〉 = φ0).



The following is an important corollary of Theorem 8.14:

Prop 9.1: Suppose that f ∈ L1(Rn) and
∫
f = 1, and for t > 0 let ft(x) =

t−nf (x/t). Then ft → aδ in D′ as t→ 0.

Proof. If φ ∈ C∞c then by Theorem 8.14 we have

〈ft, φ〉 =

∫
fyφ = ft ∗ φ̃(0)→ aφ̃(0) = aφ(O) = a〈δ, φ〉. �



If does not make sense to say two distributions agree at a point.

We say two distributions on U agree on an open subset V ⊂ U if they agree on

all functions in C∞c (V ).

Prop 9.2: Let {Vα} be a collection of open subsets of U and let V = ∪Vα. If

F,G ∈ D′(U) agree on every Vα then they agree on V .

Proof. If φ ∈ C∞c (V ), then it has compact support, so this support is contain

in a finite union Vα1 ∪ · · · ∪ Vαm. Pick ψ1, . . . , ψm ∈ C∞c so that
∑
ψm = 1 on

supp(φ). (This is the C∞ analogue of Proposition 4.41). Then

〈F, φ〉 =
∑
〈F, ψjφ〉 =

∑
〈G,ψjφ〉 = 〈G, φ〉. �

According to Proposition 9.2, there is a maximal open subset V of U on which

F agrees with the zero distribution. The complement in U of V is called the

support of F .



There is a general procedure for extending various linear operations from func-

tions distributions.

Suppose that U and V are open sets in Rn, and T is a linear map from some

subspace X ⊂ L1
loc(U) into L1

loc(V ).

Suppose that there is another linear map T ′ : Cc∞(V )→ Cc∞(U) such that∫
(Tf )φ =

∫
f (T ′φ), f ∈ X , φ ∈ C∞c (V ).

Then T can be extended to a map from D′(U)→ D′(V ) by

〈TF, φ〉 = 〈F, T ′φ〉, F ∈ D′(U), φ ∈ C∞c (U).



Examples:

i. (Differentiation): Let Tf = ∂αf , defined on C |α|(U). If φ ∈ C∞c (U),

integration by parts gives∫
(∂αf )φ = (−1)|α|

∫
f (∂αφ).

(there are no boundary terms since φ has compact support.) Hence T ′ is the

restriction of (−1)|α|T to C∞c (U). We define the derivative of a distribution

F ∈ D′(U) by

〈∂αF, φ〉 = (−1)|α|〈F, ∂αφ〉

In particular, we can define derivatives of any locally integrable functions or any

finite measure.



ii. (Multiplication by smooth functions): Given ψ ∈ C∞(U), define

Tf = ψf and let T ′ be the restriction of T to C∞c (U). The for a distribution

F ∈ D′(U) we define ψF by

〈ψF, φ〉〈F, ψφ〉.



iii. (Translation): Given y ∈ Rn let V = U+ = {x + y : x ∈ U} and let

T = τy. Since ∫
f (x− y)φ(x)dx =

∫
f (x)φ(x + y)dx

we have that T ′ is the restriction of τ−y to C∞c (U + y). For a distribution

F ∈ D′(U), we define the translated distribution τyF by

〈τyF, φ〉 = 〈F, τ−yφ〉.



iv. (Composition with linear maps): Given an invertible linear trans-

formation S on Rn let V = S−1(U) and let Tf = f ◦ S. Then

T ′φ =
φ ◦ S−1

| det(S)|
.

τyF by

〈F ◦ S, φ〉 = 〈F, φ ◦ S−1〉/| det(S)|.



v. (Convolution, First Method): Given ψ ∈ C∞c (U), let

V = {x : x− y ∈ U for y ∈ supp(ψ)}.
(V is open but may be empty.) If f ∈ L1

loc(U), the integral

f ∗ ψ(x) =

∫
f (x− y)ψ(y)dy =

∫
f (y)ψ0xy)dy =

∫
f (τyψ̃)

is well defined for all x ∈ V . The convolution of F ∗ ψ is the function defined

on V by

F ∗ ψ(x) = 〈F, τxψ̃〉.
This is a continuous function of x (actually C∞; see below).

If ψ ∈ C∞c we have

δ ∗ ψ = 〈δ, τxψ̃〉 = τxψ̃(0) = ψ(x).

Thus δ is the multiplicative identity for convolution.



vi. (Convolution, Second Method): Let ψ, ψ̃, V be as above. If f ∈
L1
loc(U) and φ ∈ C∞c (V ) then∫

(f ∗ ψ)φ =

∫∫
f (y)ψ(x− y)φ(y)dydx =

∫
f (φ ∗ ψ̃).

Hence convolution with ψ, Tf = f∗ψ maps L1
loc(U) to L1

loc(V ). Let T ′φ = φ∗ψ̃.

For a distribution F ∈ D′(U) we can define convolution with ψ as a distribution

in D′(V ) by

〈F ∗ ψ, φ〉 = 〈F, φ ∗ ψ̃〉.
This is a continuous function of x (actually C∞; see below).

We will show the definitions of convolution in (v) and (vi) agree.



Prop 9.3: Suppose U ⊂ Rn is open andψ ∈ C∞c . Let

V = {x : x− y ∈ U for y ∈ supp(ψ)}.
For F ∈ D′(U) and x ∈ V let

F ∗ ψ(x) = 〈F, τxψ〉.
Then

(a) F ∗ ψ ∈ C∞(V ).

(b) ∂α(F ∗ ψ) = (∂αF ) ∗ ψ = F ∗ (∂αψ).

(c) For any φ ∈ C∞c (V ),
∫

(F ∗ ψ)φ = 〈F, φ ∗ ψ̃〉.



Proof. Let {e1, . . . en} be the standard basis of Rn. Since V is open, if x ∈ V ,

then there is t0 > 0 so that x + tej ∈ V for |t| < t0. Then
1

t
(τx+tejψ̃ − τxψ)→ τx∂̃jψ,

in C∞c (U) as t→ 0.

It follows that ∂j(F ∗ ψ) exists and equals F ∗ ∂jψ(x). By induction we get

F ∗ ψ ∈ C∞(V ) and ∂α(F ∗ ψ) = F ∗ (∂αψ). This proves (a).



Moreover, since

∂αψ̃ = (−1)|α|∂̃αψ and ∂ατx = τx∂
α,

we have

(∂αF )∗ψ(x) = 〈∂αF, τxψ̃〉 = (−1)|α|〈F, ∂ατxψ̃〉 = 〈F, τx∂̃αψ〉 = F ∗(∂αψ)(x).

This proves (b).



If φ ∈ C∞c (V ), then

φ ∗ ψ̃(x)) =

∫
φ(y)ψ(y − x)dy =

∫
φ(y)τyψ̃(x)dy.

The integrand is continuous and supported in a compact subset of U , so it can

be approximated by Riemann sums. More precisely, approximate supp(φ) by a

union of cubes of side length 2−m centered at points ym1 , . . . , y
m
k(m) in supp(φ).

The Riemann sums

Sm = 2−nm
∑

φ(ymj )τymj ψ̃,

are supported in a common compact subset of U and converge uniform to φ ∗ ψ̃
as m→∞.



Likewise

∂αSm = 2−nm
∑

φ(ymj )τymj ∂
αψ̃,

converges to

φ ∗ ∂αψ̃ = ∂α ∗ φ ∗ ψ̃),

so Sm → φ ∗ ψ̃ in C∞c (U). Hence

〈F, φ ∗ ψ̃〉 = lim
m→∞
〈F, Sm〉

= lim
m→∞

2−nm
∑

φ(ymj )〈F, τymj ψ̃〉

=

∫
φ(y)〈F, τyψ̃〉

=

∫
φ(y)F ∗ ψ(y)dy �



Lemma 9.4: Suppose that φ, ψ ∈ C∞c and
∫
ψ = 1 and let ψt = t−nψ(x/t).

(a) Given any neighborhood U of supp(φ), we have supp(φ ∗ ψt) ⊂ U for t

sufficiently small.

(b) φ ∗ ψt → ψ in C∞c as t→ 0.

Proof. If supp(ψ) ⊂ B(0, R) then supp(φ ∗ (ψt) is contained in a tR neighbor-

hood of supp(φ), which is in U for t small. . Moreover,

∂α(φ ∗ ψt) = (∂αφ) ∗ ψt → ∂αφ

uniformly as t→ 0 By Theorem 8.14. �



Prop. 9.5: For any open U ⊂ Rn, C∞c (U) is dense in D′(U).

Proof. Suppose F ∈ D′(U). We shall first approximate F by distributions

supported in compact subsets of U , then approximate the latter by functions in

C∞c (U).

Let {Vj} be an increasing sequence of precompact open subsets of U whose

union is U , as in Proposition 4.39. For each j, by the C∞ Urysohn lemma we

can pick ζj ∈ C∞c (U) such that ζj = 1 on Vj. Given φC∞c (U), for j sufficiently

large we have supp(φ) ⊂ Vj and hence

〈F, φ〉 = 〈F, ζjφ〉 = 〈ζjF, φ〉.
Therefore ζjF → F as j →∞.



Since supp(φ) is compact, ζjF can be regarded as a distribution on Rn Let ψ, ψt

be as in Lemma 9.4. If ψ̃(x) = psi(−x) then
∫
ψ̃ = 1, so given φ ∈ C∞c we have

φ ∗ ψ̃t → φ in C∞c by Lemma 9.4. By Proposition 9.3 we have (ζjF ) ∗ψt ∈ C∞

and

〈(ζjF ) ∗ ψt, φ〉 = 〈ζjF, φ ∗ ψ̃t〉 → 〈ζjF, φ〉,
so (ζjF ) ∗ ψt → ζjF in D′. In other words, every neighborhood of F in D′(U)

contains the C∞ functions (ζjF ) ∗ ψt for j large and t small.



Finally, note that supp(ζj) ⊂ Vk for some k. If supp(φ)∩Vk = ∅, then for small

enough t we have supp(φ ∗ ψ̃) ∩ Vk = ∅ (Lemma 9.4 again) and hence

〈(ζjF ) ∗ ψt, φ〉 = 〈F, ζj(φ ∗ ψ̃t)〉 = .

In other words,

supp((ζjF ) ∗ ψt) ⊂ Vj ⊂ U

so we are done. �



Example: derivatives of step functions.

If H = χ(0,∞), then

〈H ′, φ〉 = −〈H,φ′〉 = −
∫

RH · φ′dx = −
∫ ∞
0

H · φ′dx = φ(0)〈δ, φ〉

so H ′ = δ as distributions.



Example: divergent integral.

Let f (x) = χ(0,∞) · 1x.

This is locally integrable on U = (0,∞) so defines a distribution there. It does

not define a distribution on R since
∫
fφ diverges unless φ(0) = 0.

However, there is a distribution on R that agrees with f on U .

Note that L(x)(log x)χ0,∞) defines a distribution on R, so L′ is a well defined

distribution.



Let Lε = (log x)χ(ε,∞). By the dominated convergence theorem∫
Lφ = lim

ε→0

∫
Lεφ

for φ ∈ S . Thus Lε → L as distributions and hence L′ε → L′ as distributions.

But

〈L′ε, φ〉 = −〈Lε, φ′〉 = −
∫
Lεφ

′ = −
∫ ∞
ε

log(x)φ′(x)dx =

∫ ∞
ε

φ(x)

x
dx+φ(ε)ε.

As ε→ 0 this converges to 〈L′, φ〉 even though the two terms diverge.



Example: This function from calculus has different mixed partials.

f (x, y) =
xy(x2 − y2)
x2 + y2

,

∂x∂yf (0, 0) 6= ∂y∂xf (0, 0).

However mixed partials define the same function everywhere except at origin,

so mixed partials in sense of distributions are the same. This is always true for

distributions since it is true for C∞c .



Chapter 9.2: Compactly Supported, Tempered and Periodic Dis-

tributions

Distribution = D′ = dual of C∞c (U).

Compactly supported distribution = E ′ = dual of C∞(U).

Tempered distribution = S ′ = dual of S , Schwarz class

Periodic distributions = D′(Tn) = dual of C∞(Tn).



C∞(U) is a Fréchet space with seminorms

‖f‖[m,α] = sup
Vm

|∂αf (x))|,

where {Vm} is an increasing sequence of precompact open subsets of U whose

union is U .

Prop 9.7: C∞c (U) is dense in C∞(U).

Proof. For each m use the C∞ Urysohn lemma to pick ψm ∈ C∞c (U) with

ψm = 1 on Vm. If φ ∈ C∞(U) then

‖φ− ψkφ‖[m,α] = 0

for k ≥ m, so φkφ→ φ in C∞(U). �



Theorem 9.7: E ′(U) is the dual space of C∞(U). More precisely: If F ∈
E ′(U), then F extends uniquely to a continuous linear functional on C∞(U),

and if G is a continuous linear functional on C∞(U), then G restricted to

C∞c (U) ∈ E ′(U).

Proof. If F ∈ E ′(U), choose ψ ∈ C∞c (U) with ψ = 1 on supp(F ), and define

the linear functional G on C∞(U) by

〈Gφ〉 = 〈F, ψφ〉.
Since F is continuous on C∞c (supp(ψ)), and the topology of the latter is defined

by the norms φ→ ‖∂αφ‖u, by Proposition 5.15 there are N ∈ N and 0 < C <

∞ so that

|〈Gφ〉| ≤ C
∑
|α|≤N

sup
x∈supp(ψ

)|∂αφ(x)| ≤ C ′
∑
|α|≤N

‖φ‖[m,α].

Thus G is continuous on C∞(U). That G is the unique extension follows from

the previous lemma (C∞c (U) is dense in C∞(U)).



On the other hand, if G is a continuous linear functional on C∞(U), then by

Proposition 5.15 there exist C,m,N such that

|〈Gφ〉| ≤ C
∑
|α|≤N

‖φ‖[m,α].

Since ‖φ‖[m,α] ≤ ‖∂αφ‖u, this implies G is continuous of C∞c (K) for each

compact K in U . Thus G restricted to C∞c (U) is continuous and hence in

D′(U).

Moreover, if supp(φ) is disjoint from Vm then 〈G, φ〉 = 0 so supp(G) is in Vm

and so G is compactly supported. �



The operations of differentiation, multiplication by Coo functions, translation,

and composition by linear maps discussed in 9.1 all preserve the class E ′.

Convolution, is slightly more complicated.

First, if F ∈ E ′ and φ ∈ C∞c then F ∗ φ ∈ C∞c since Proposition 8.6d remains

valid.

Second, if f ∈ E ′ and φ ∈ C∞, then F ∗ φ can be defined as a C∞ function or

as a distribution just as before:

F ∗ ψ(x) = 〈F, τnψ〉,
〈F ∗ ψ, φ(x)〉 = 〈F, φ ∗ ψ̃〉,

for φ ∈ C∞c .



Finally, a further dualization allows us to define convolutions of arbitrary dis-

tributions with compactly supported distributions. If F ∈ D′ and G ∈ E ′, we

can define F ∗G ∈ D′ and G ∗ F ∈ D′ as follows:

〈F ∗G, φ〉 = 〈F, G̃ ∗ φ〉
〈F ∗G, φ〉 = 〈G, F̃ ∗ φ〉

The proof that F ∗G andG∗F are indeed distributions and that F ∗G = G∗F
are Exercises 20 and 21.



We have not yet extended the Fourier transform to distributions.

Fact: If φ ∈ C∞c is not zero then φ̂ 6∈ C∞c , in fact, its support is the entire

space. Stronger versions of this are called the uncertainty principle.

Proof. Suppose φ̂ is zero on a neighborhood of ξ0. By replacing φ by ]phie−2πiξ·x

we may assume ξ0 = 0. Since φ has compact support we may expand e−2πiξ·x

in a power series and integrate term-by-term

φ̂(ξ) =

∞∑
k=1

1

k!

∫
(−2πiξ · x)kφ(x)dx

=
∑
α

1

α!
ξα
∫

(−2πix)αφ(x)dx

This uses the multinomial theorem (Exercise 8.2.a)

(x1 + · · · + xn)k =
∑
|α|=k

k!

α!
xα.



But ∫
(−2πx)αφ(x)dx = ∂αφ̂(0) = 0

since φ̂ vanishes on a neighborhood of zero. Hence φ̂ is everywhere zero and so

φ is too. �



There are many more quantitative versions.

The Uncertainty Principle: A Mathematical Survey by Gerald B. Folland and

Alladi Sitaram

Theorem: if f ∈ S, x0, ξ0 ∈ Rn then

‖f‖2 ≤ 4π{(xx0)f (x)‖2 · ‖(ξ − ξ0)f (ξ)‖2.

Theorem (Amrien and Berthier): if f ∈ S, and E,F ⊂ Rn have finite

measure then

‖f‖L2(Rn) ≤ C(E,F )
(
‖f‖L2(Rn\E)‖f̂‖L2(Rn\F )

)
Conclusion (Benedicks) : f and f̂ can’t both be supported on finite measure

sets.

Hardy’s Uncertainty Principle: Suppose f is a measurable function on

R such that

|f (x)| ≤ Ae−απx
2

|f̂ (x)| ≤ Be−βπx
2



If αβ > 1 then f is the zero function.



Theorem (Benedicts): If f ∈ L1(Rn) let

A = {x : |f (x)| > 0}, = {x : |f̂ (x)| > 0}.
If m(A) <∞ and m(B) <∞ then f = 0 a.e.,

Proof. By dilating we may assume m(A) < (2π)n and m(B) <∞. Let φ = χB

and

φ̃ =
∑
k∈Zn

τkφ.

This is positive measurable and 1-periodic. Let K = [0, 1]n. Then∫
K

φ̃ =

∫
Rn
φ = m(B) <∞

so for almost every ξ, we have ξ + k ∈ B for only finitely many k ∈ Zn.

Fix ξ0 ∈ Rn and define

f̃ξ0(x) =
∑
k∈Zn

e−2πiξ0·(x−k)f (x− k).



Then

(i) f̃ξ0 ∈ L1(Tn)

(ii) f̃ξ0 has Fourier coefficients

(fξ0)
∧(k) = (2π)−nf̂ (ξ0 + k),

(iii) m({x : f̃ξ0(x) > 0}) < (2π)n

By (ii) and our earlier remarks, f̃ξ0 is a trigonometric polynomial for a.e. ξ0.

But by (iii) this trig polynomial vanishes on a set of positive measure, so is the

zero function. Thus for a.e. ξ0, f̂ (ξ + k) = 0 for all k. This implies f̂ = 0 a.e.

and hence f = 0 a.e.. �



Michael Benedicks, 1949–present



Even though the Fourier transform does not map C∞c into itself, it does not S
into itself.

Prop 9.9: Suppose ψ ∈ C∞c , ψ(0) = 1 and let ψε(x) = ψ(εx). Then for any

φ ∈ S, ψεφ→ φ in S as ε→ 0. In particular, C∞c is dense in D.

Proof. First consider the semi-norms with no derivatives. Given any N and

η > 0 we can choose a compact K so that

(1 + |x|)N |φ(x)| < η

off K. Since ψ(εx)→ 1 uniformly on K we get

sup
K

(1 + |x|)N |φ(x)− ψε(x)φ(x)| → 0

so ‖φ− ψεφ‖N → 0.



For semi-norms involving derivatives, use the product rule:

(1 + |x|)N∂α(ψεφ− φ) = (1 + |x|)N(ψε∂αφ− ∂αφ) + Eε(x),

where Eε is a sum of terms involving derivatives of ψε. Since

∂βψε(x)| = ε|β||∂βψ(εx)| ≤ Cβ · ε|β|,
we have ‖Eε‖u ≤ Cε→ 0. Thus ‖ψεφ− φ‖(N,α) → 0. �



Defn: A tempered distribution is a continuous linear functional on S .

These are denoted S ′.

If F ∈ S ′ then it defines a distribution on C∞c since convergence in C∞c implies

convergence in S . Thus tempered distributions are a subset of distributions:

the ones that extend continuously from C∞c to S .

Roughly speaking a distribution is tempered if it does not grow too quickly at

∞.



Compactly supported distributions are tempered.

If f ∈ L1
loc and

∫
(1 + |x|)N |f (x)|dx < ∞ for some N > −∞, then f is

tempered.

Example 1: eiax is bounded, hence tempered by (ii).

Example 2: ebx is not tempered: choose ψ ∈ C∞c so that
∫
ψ = 1. Then

ψj = e−bxψ(x− j)→ in S , but∫
φje

bxdx =

∫
ψdx = 1 6→ 0.

Example 3: f (x) = ex cos(ex) is tempered, because it is the derivative of the

bounded function sin(ex). Indeed,

|
∫
fφ| = |

∫
φ′(x) sin(ex)dx| ≤ C‖φ‖(2,1).
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Differentiation, translation and composition with linear transformations all work

the same for tempered distributions as for distributions.

Multiplication by smooth functions is slightly different.

For F → ψF to map a tempered distribution to a tempered distribution, we

need ψ and its derivatives to have at most polynomial growth

|∂αψ(x)| ≤ Cα(1 + |x|)N(α)

Such functions are called slowly increasing.

Polynomials are examples. So is (1 + |x|2)s, s ∈ R.



Prop. 9.10: If F ∈ S ′ and ψ ∈ S then F ∗ ψ is a slowly increasing C∞

function, and for any φ ∈ S,∫
(F ∗ ψ)φ = 〈F, φ ∗ ψ̃〉.

Proof. That F ∗′ ψ ∈ C∞ is proven as in Proposition 9.3.

By Proposition 5.15, the continuity of F implies that there exist m,N,C such

that

|〈F, φ〉| ≤ C
∑
|α|≤N

‖φ‖(,α),

and hence by (8.12),

|F ∗ ψ| ≤ C
∑
|α|≤N

(1 + |y|)m|∂αψ(x− y)|

≤ C(1 + |x|)m
∑
|α|≤N

sup
y

(1 + |x− y|)m|∂αψ(x− y)|

≤ C(1 + |x|)m
∑
|α|≤N

‖ψ‖(mα).



The same reasoning applies with ψ replaced by ∂βψ, so F ∗ψ is slowly increasing.

Next, by Proposition 9.3 we know that the equation∫
(F ∗ ψ)φ = 〈F, φ ∗ φ̃〉

holds when φ, ψ ∈ C∞c .

By Proposition 9.9, if φ, ψ ∈ S , we can find sequences {φj} and {ψj} in C∞c
that converge to φ, ψ in S . Then

φj ∗ ψ̃j → φ ∗ ψ̃
in S by the proof of Prop 8.11, so

〈F, φj ∗ ψ̃j〉 → ∠F, φ ∗ ψ̃〉.



On the other hand, the preceding estimates show that

|F ∗ ψj(x)| ≤ C(1 + |x|)m,
with C and m independent of j, and likewise

|φj(x)| ≤ C(1 + |x|)−m−m−1.
Thus ∫

(F ∗ ψj)φj →
∫

(F ∗ ψ)φ,

by the dominated convergence theorem. �



The main reason for considering tempered distributions, is the Fourier transform.

Recall the Fourier transform maps S continuously into itself, and that for f, g ∈
S ⊂ L1,∫

f̂ (y)g(y)dy =

∫∫
f (x)g(y)e−2πix·ydxdy =

∫
f (x)ĝ(x)dx.

We can extend the Fourier transform to a continuous linear map from S ′ to

itself by defining

〈F̂ , φ〉 = 〈F, φ̂〉.



This definition agrees with the one in Chapter 8 when f ∈ l1 + L2. The basic

properties of the Fourier transform in Theorem 8.22 continue to hold in S ′:
(τyf )∧ = e−2πξ·yF̂ , τηF̂ = (e2πiη·xF )∧,

∂αF̂ = [(2πix)αF ]∧ (∂αF )∧ = (2πiξ)αF̂

(f ◦ T )∧ = | detT |−1f̂ ◦ (T ∗)−1, T ∈ GL(n,R),

(F ∗ ψ)∧ = ψ̂ · F̂ ,
Verifications are left to the reader.



Inverse transform given by

〈F∨, φ〉 = 〈F, φ∨〉.
Fourier inversion:

〈(F̂ )∨, φ〉 = 〈F̂ , (φ∨)∧〉 = 〈F̂ , φ〉.
Thus the Fourier transform is an isomorphism on S ′.



There is an alternative way to define Fourier transform of a compactly sup-

ported distribution F . Since φ(x) = exp(2πiξ · x) is C∞, 〈F, φ〉 should also be

F̂ . The two possibilities agree:

Prop 9.11: If F ∈ E ′, then F̂ is a slowly increasing C∞ function, and it is

given by

F̂ (ξ) = 〈F,E−ξ〉, where Eξ = exp(2πiξ · x).

Proof. Let g(ξ) = 〈F,E−ξ〉. Consideration of difference quotients of g, as in the

proof of Proposition 9.3, shows that g ∈ C∞ with derivatives given

∂αg = 〈F, ∂αξ E−ξ〉 = (−2πi)|α|〈F, xαE−ξ〉.

Moreover, by Theorem 9.8 and Proposition 5.15, there exist m,N,C such that

∂αg(ξ)| ≤ C
∑
|β|≤N

sup
|x|≤m

|∂β[xαE−ξ(x)]| ≤ C ′(1 + m)α|(1 + |ξ|)N ,

so g is slowly increasing.



It remains to show that g = F̂ , and by Proposition 9.9 it suffices to show that∫
gφ = 〈F, φ̂〉,

for any φC∞c . In this case gφ ∈ C∞c so
∫
gφ can be approximated by Riemann

sums as in the proof of Proposition 9.3, say∫
gφ ≈

∑
g(ξj))φ(ξj)∆ξj.

The corresponding sums ∑
φ(ξj)e

−2πiξj·x

and their derivatives in x converge uniformly, for x in any compact set, to φ(x)

and its derivatives. Therefore, since F is a continuous functional on C∞∫
gφ = lim

∑
〈F,E−ξ〉φ(ξj)∆ξj

= lim〈F,
∑

φ(xj)E−ξ∆ξj〉
= 〈F, φ̂〉.

�



The Fourier transform of the point mass at 0 is the constant function 1:

〈δE−ξ = E−ξ(0) = 1.

More generally,

Prop. 9.12: The Fourier transform of the linear combinations of δ its deriva-

tives are precisely the polynomials.

(xα)∧ = [(−x)α]∨ = (2πi)−|α|∂αδ,

Êy = (E −−y)∨ = τyδ.∫
1 · e2πξ·xdξ = δ(x).



Every distribution is a linear combination of derivatives of continuous functions.

Prop 9.14:

a. If F ∈ E ′, there exist N ∈ N, constants Cα for |α| ≤ n and fαC0(R) so

that that F =
∑
|α|≤N cα∂

αf .

b. If F ∈ D′(U) and V is a precompact open set in U , then there are N, cα, fα

as above so F =
∑
|α|≤N cα∂

αf in V .

Proof. By Proposition 9.11, if F ∈ E ′ then F̂ is slowly increasing, so

g(ξ) = (1 + |ξ|2)−M F̂ (ξ),

is in l1 if M is large enough. Let f = ĝ. Then f ∈ C0 and

F̂ = (1 + |ξ|2)M f̂ .

Thus

F = (I − 1

4π2

n∑
1

∂2j )
Mf.

This proves (a). For (b), choose ψ ∈ C∞c (U) such that ψ = 1 on V and apply

(a) to ψF . �



I am omitting Folland’s remarks on periodic distributions. read about this in

the textbook.



Chapter 9.3: Sobolev Spaces

Sobolev spaces measure smoothness properties of functions and distributions is

in terms of L2 norms.

• L2 is Hilbert space,

• the Fourier transform converts differentiation into multiplication by the co-

ordinate functions and, is an isometry on L2.

Let Hk be the space of all functions f ∈ L2(Rn) whose distribution derivatives

∂α are L2 functions for |α| ≤ k. Make this into a Hilbert space with the inner

product

〈f, g〉 =
∑
|α|≤k

(∂αf )(∂αg).



However, it is more convenient to use an equivalent inner product defined in

terms of the Fourier transform. Theorem 8.22e and the Plancherel theorem

imply that f ∈ Hk iff

ξkf̂ ∈ L2

for |α| ≤ k.

A simple modification of the argument in the proof of Proposition 8.3 shows

that there exist C,C2 > 0 such that

C1(1 + |ξ|2)k ≤
∑
|α|≤k

|ξα|2C2(1 + |ξ|2)k.

If follows that f ∈ Hk iff (1 + |ξ|2)k/2 ∈ L2. The norms∑
|α|≤k

‖∂αf‖22

1/2

, ‖(1 + |ξ|2)k/2f̂‖2

are equivalent.

The second norm makes sense for any k ∈ R, and we can use it to extend the

definition of Hs to all real s.



For any s ∈ R,

ξ → (1 + |ξ|2)s/2

is C∞ and slowly increasing (Exercise 30), so

Λsf = [(1 + |ξ|2)s/2f̂ ]∨

is a continuous linear operator on S ′. In fact, it is an isomorphism since Λ−1s =

Λ)−s.

Defn: If s ∈ R define the Sobolev space Hs to be

Hs = {f ∈ S ′ : Λsf ∈ L2},
with the inner product and norm

〈f, g〉(s) =

∫
(Λsf )(Λsg) =

∫
f̂ (ξ)(1 + |ξ|2)sĝ(ξ).

‖f‖(s) = ‖Λsf‖2 =

[∫
f̂ (ξ)(1 + |ξ|2)sdξ

]1/2
.



(i) The Fourier transform in a unitary isomorphism from Hs to L2(Rn, µs) where

dµs = (1 + |ξ|2)sdξ. So Hs is a Hilbert space.

(ii) S is dense in Hs for all s ∈ R.

(iii) If t < s, Hs is dense in Ht in the topology of Ht and ‖ · ‖(t) ≤ ‖ · ‖(t).

(iv) Λt is a unitary isomorphism from Hs to Hs−t for all s, t ∈ R.

(v) H0 = L2 and ‖ · ‖(0) ≤ ‖ · ‖L2.

(vi) ∂α is a bounded linear map from Hs to Hs−|α| for all s, α because |ξα| ≤
(1 + |ξ|2)|α|/2.



For s ≥ 0 elements of Hs are functions. This need not be true for s < 0. For

example the point mass δ ∈ Hs(Rn) iff s < −n/2. (Recall δ̂ is the constant

function 1.)



Prop 9.16: If s ∈ R, the duality between S and S ′ induces a unitary isomor-

phism from H−s to (Hs)
∗. More precisely, if f ∈ H−s the functional

φ→ 〈f, φ〉,
on S extends to a continuous linear functional on Hs with operator norm equal

to ‖f‖(s) and every element of (Hs)
∗ arises in this way.

Proof. If f ∈ H−s and φ ∈ S,

〈f, φ〉 = 〈f∨, φ̂〉 =

∫
f∨(ξ)φ̂(ξ)dξ,

since f∨(ξ) = f̂ (−ξ) is a tempered function. By the Schwarz inequality,

|〈f, φ〉| ≤
[∫
|f∨(ξ)|2(1 + |ξ|2)−sdξ

]1/2 [∫
|φ̂(ξ)|2(1 + |ξ|2)sdξ

]1/2
= ‖f‖(−s) · ‖φ‖(s).

Thus the functional φ→ 〈f, φ〉 extends continuously to Hs with norm at most

‖f‖(−s).



In fact, the norm is equal to this since if g ∈ S ′ is the distribution whose Fourier

transform equals

ĝ(ξ) = (1 + |ξ|2)−sf̂ (ξ),

then g ∈ Hs and

〈f, g〉 =

∫
|f̂ (ξ)|2(1 + |ξ|2)sdξ = ‖f‖2(−s) = ‖f‖(−s)‖f‖(s).

Finally, if G ∈ (Hs)
∗ then G ◦ F−1 is a bounded linear functional on L2(µs)

where dµs = (1 + |ξ|2)sdξ, so there is a g ∈ L2(µs) so that

G(φ) =

∫
φ̂(ξ)g(ξ)(1 + ξ|2)2dξ.

But then G(φ) = 〈f, ]phi〉 where

f∨(ξ) = (1 + |ξ|2)sg(ξ),

and f ∈ H−s since

‖f‖2(−s) =

∫
|f̂ (ξ)|2(1 + |ξ|2)sdξ =

∫
|g(ξ)|2(1 + |ξ|2)sdξ.

�



Elements of Hs that are functions are define a.e.

To ask if such a function is Ck means that it agrees a.e. with a Ck function.

Define

Dk
0 = {f ∈ Ck(Rn) : ∂αf ∈ C0 for |α| ≤ k}.

This is a Banach space with the norm∑
|α|≤k

‖∂αf‖u.

The Sobolev Embedding Theorem: Suppose s > k + 1
2n.

(a) If f ∈ Hs, then (∂αf )∧ ∈ L1 and ‖(∂αf )∧‖1 ≤ C‖f‖(s), where C depends

only n k − s.
(b) Hs ⊂ Ck

0 and the inclusion map is continuous.



Proof. By the Schwarz inequality

(2π)|α|
∫
|(∂αf )∧|dξ =

∫
|ξαf̂ (ξ)|dξ

≤
∫
|(1 + |ξ|2)k/2f̂ (ξ)|dξ

≤
[∫
|(1 + |ξ|2)sf̂ (ξ)|2dξ

]1/2 [∫
|(1 + |ξ|2)k−sdξ

]1/2
≤ ‖f‖(s) · C.

This proves (a). Part (b) follows from the Fourier inversion formula and the

Riemann-Lebesgue lemma. �



Cor 9.18: If f ∈ Hs for all s, then f ∈ C∞.

Example: Let fλ(x) = xλφ(x) where φ ∈ C∞c and φ equals 1 on a neighbor-

hood of 0. Then ∂αf is C∞ except at 0 and

|∂αfλ| ≤ Cα,λ|x|λ−|α|.
This is in L1 iff λ−|α| > −n in which case the pointwise derivative ∂αf is also

the distributional derivative.

Moreover, ∂αfλ ∈ L2 iff λ − |α| > −n/2 so f ∈ Hk iff λ > k − n/2 whereas

fλ ∈ Ck
0 iff λ > k.



Lemma 9.19: For all ξ, η ∈ Rn and s ∈ R,

(1 + |ξ|2)s(1 + |η|2)−s ≤ 2|s|(1 + |ξ − η|2)s(1 + |η|2)s.

Proof. Since |ξ| ≤ |ξ − η| + |η|, we have

|ξ|2 ≤ 2(|ξ − η|2 + |η|2),
and

1 + |ξ|2 ≤ 2(1 + |ξ − η|2)(1 + |η|2).
If s ≥ 0 raise both sides to the powers. If s < 0, interchange η and ξ and

replace s by −s to get

(1 + |η|2)−s ≤ 2−s(1 + |ξ|2)−s(1 + |ξ − η|2)−s.
�



Theorem 9.20: Suppose that φ ∈ C0(Rn) and that φ̂ is a function that

satisfies ∫
(1 + |ξ|2)a/2|φ̂(ξ)|dξ = C <∞,

for some a > 0. The the map Mφ(f ) = φf is a bounded operator on Hs for

|s| ≤ a.

Proof. Since Λs is a unitary map from Hs to H0 = L2, it suffices to show that

ΛsMφΛ−s is a bounded operator on L2. But

(ΛsMφΛ−sf )∧(ξ) = (1 + |ξ|2)s/2[φ̂ ∗ (Λ−sf )∧](ξ) =

∫
K(ξ, η)f̂ (η)dη,

where

K(ξ, η) = 1 + |ξ|2)s/2(1 + |η|2)−s/2φ̂(ξ − η).

By Lemma 9.19

|K(ξ, η)| ≤ 2|s|/2(1 + |ξ − η|2)|s|/2|φ̂(ξ − η)|

so if |s| ≤ a then
∫
|K(ξ, η|dξ and

∫
|K(ξ, η|dξ are bounded by 2a/2C. Bound-

edness of ΛsMφΛ−s follows from the Plancherel theorem and Theorem 6.18. �



Theorem 6.18: Suppose∫
K(x, y)dµ(x) ≤ C,

∫
K(y, x)dν(x) ≤ C

for a.e. x and y. If 1 ≤ p ≤ ∞ and f ∈ Lp(dν) then

Tf (x) =

∫
K(x, y)f (y)dν(y)

converges absolutely for a.e. x and Tf ∈ Lp(dµ) with ‖Tf‖p ≤ C‖f‖p.

Cor 6.18: If φ ∈ S then Mφ is a bounded operator on every Hs, s ∈ R.



Rellich’s Theorem: Suppose that {fk} is a sequence of distributions in Hs,

that are all supported in a fixed compact set K and satisfy supk ‖fk‖(s) < ∞.

Then there is a subsequence {fkj} that converges in Ht, for all t < s.

Proof. First we observe that by Proposition 9.11, f̂k is a slowly increasing C∞

function. Pick φ ∈ C∞c such that φ = 1 on a neighborhood of K. Then

fk = φfk, so f̂k = φ̂ ∗ f̂k where the convolution is defined pointwise by an

absolutely convergent integral. By Lemma 9.19 and the Schwarz inequality,

(1 + |ξ|2)s/2|f̂k(ξ)| ≤ 2|s|/2
∫
|φ̂(ξ − η)|(1 + |ξ − η|2)|s|/2|f̂k(η)|(1 + |η|2)s/2dη

≤ 2|s|/2‖φ‖(s)‖fk‖(s)
≤ C <∞



Likewise, since

∂j(φ̂ ∗ f̂k) = (∂jφ̂) ∗ f̂k
we see that (1 + |ξ|2)s/2|∂jf̂k(ξ)| is bounded by a constant independent of ξ, j

and k. In particular, the fk’s and their first derivatives are uniformly bounded

on compact sets, so by the mean value theorem and the Arzelá-Ascoli theorem

there is a subsequence {f̂kj} that converges uniformly on compact sets.



We claim that this subsequence is Cauchy in Ht for t < s. For any R > 0 we

can write

‖fki − fkj‖
2
(s) =

∫
(1 + |ξ|2)t|f̂ki − f̂kj|

2dξ,

as the sum of integrals over the regions {|ξ| ≤ R} and {|ξ| > R}. On the first

region we have

(1 + |ξ|2)t ≤ (1 + R2)max(t,0)

and for |ξ| > R we use

(1 + |ξ|2)t ≤ (1 + R2)t−s(1 + |ξ|2)s.
These give

‖fki − fkj‖
2
(t) ≤ ctN(1 + R2)max(t,0) sup

|xi|≤R
|f̂ki − f̂kj|

2(ξ)

+(1 + R2)t−s‖fki − fkj‖
2
(s)

For any ε > 0 the second term will be less than ε/2 if R is large enough since

t− s < 0. Fixing such an R we then take i, j sufficiently large to make the first

term < ε/2. �



Sobolev spaces can also be defined on proper open subsets U ⊂ Rn. The

localized Sobolev space H loc
s (U) is the set of all distributions f ∈ D′(U)

such that for every precompact open set V ⊂ U there exists g ∈ Hs so that

f = g on V .

Prop 9.23: A distribution f ∈ D′(U) is in H loc
s (U) iff φf ∈ Hs, for every

φ ∈ C∞c (U).

Proof. If f ∈ H loc
s (U) and φ ∈ C∞c (U), then f agrees with some g ∈ Hs on a

neighborhood of supp(φ); hence φf = φg ∈ Hs by Corollary 9.21.

For the converse, given a precompact open ⊂ U , we can choose φC∞c (U) with

φ = 1 on a neighborhood of V by the C∞ Urysohn lemma. Then φf ıHs and

φf = f on V . �



Application of Sobolev spaces to PDE:

Consider a constant-coefficient differential operator

P (D) =
∑
|α|≤m

cαD
α.

Assume cα 6= 0 for some |α| = m.

The principle symbol Pm is the polynomial corresponding to the degree m

terms of P (D):

Pm(ξ) =
∑
|α|=m

cαξ
α.

Assume cα 6= 0 for some |α| = m.

P (D) is called elliptic if Pm(ξ) 6= 0 for all non-zero ξ ∈ Rn. The Laplacian

∆ is elliptic on Rn but the heat operator ∂t−∆ and wave operator ∂2t −∆ are

not.



Lemma 9.24: Suppose P (D) is of order m.T hen P (D) is elliptic iff there are

0 < C,R <∞ so that |P (ξ)| ≥ C|ξ|m when |ξ| ≥ R.

Proof. If P (D) is elliptic let C1 > 0 be the minimum value of the symbol Pm

on the unit sphere |ξ| = 1. Since Pm is homogeneous of degree m this implies

|Pm(ξ)| ≥ C1|ξ|m for all ξ.

Moreover, P − Pm is of order m− 1, so

|P (ξ)− Pm(ξ)| ≤ C2|ξ|m−1,
for some C2 <∞. Thus

|P (ξ)| ≥ |Pm(ξ)| − |P (ξ)− Pm(ξ)| ≥ 1

2
C2|ξ|m,

for |ξ| ≥ 2C2/C1.

Conversely, if P (D) is not elliptic, say P (ξ0) = 0, then |P (ξ)| ≤ C|ξ|m−1 for

all scalar multiples of ξ0. �



Lemma 9.25: If P (D) is elliptic of order m, u ∈ Hs and P (D)u ∈ H2, then

u ∈ Hs+m.

Proof. By hypothesis

(1 + |ξ|2)s/2û ∈ L2, (1 + |ξ|2)s/2Pû ∈ L2.

By the previous lemma (Lemma 9.24) for some R ≥ 1,

(1 + |ξ|2)m/2 ≤ 2m|ξ|m ≤ c−12m|P (ξ)|
for |ξ| ≥ R and

(1 + |ξ|2)m/2 ≤ (1 + R2)m/2

for |ξ| ≤ R. Thus

(1 + |ξ|2)(s+m)/2|û| ≤ C ′(1 + |ξ|2)s/2(|Pû| + |û|) ∈ L2.

Hence u ∈ Hs+m. �



9.26 The Elliptic Regularity Theorem: Suppose L is a constant coeffi-

cient elliptic differential operator of order m, Ω ⊂ Rn is open, and u ∈ D′(Ω).

If Lu ∈ H loc
s (Ω) for some s ∈ R, then u ∈ H loc

s+m(Ω). If Lu is C∞ on Ω, so is u.

Proof. We only need to prove the first claim.

By Prop 9.23 it suffices to show that uφ ∈ Hs+m for every φ ∈ C∞c (Ω). Let

V ⊂ U be a precompact open set containing supp(φ) and choose ψ ∈ C∞c (Ω)

with ψ = 1 on V .

Then ψu ∈ E ′ so by Prop 9.11 it follows that ψu ∈ Hσ for some σ. By

decreasing σ we may assume s + m− σ is a positive integer.

Set ψ0 = ψ and ψk = φ and recursively choose ψ1, . . . , ψk−1 ∈ C∞c so that

ψj = 1 on a neighborhood of supp(φ) and so that supp(ψj) is contained in the

set where ψj−1 = 1.



We claim that ψju ∈ Hσ+j. When j = k this gives

φu = ψku =∈ Hσ+k = Hs+m.

Thus it suffices to prove the claim by induction on j.

Note that for any ζ ∈ C∞c , the operator (a commutator)

[L, ζ ]f = L(ζf )− ζLf,

is a differential operator of order m − 1; by the product rule, the order m

derivatives of f cancel out. The coefficients of [L, ζ ] are linear combinations of

derivatives of ζ and hence they vanish where ζ is constant.

Thus if f ∈ Ht and |α| ≤ m− 1, we have ∂αf ∈ Ht−(m−1) and thus [L, ζ ]f ∈
Ht−(m−1) by Theorem 9.20 (multiplication by functions in C∞c is a bounded

operator).

To begin the induction, note that for j = 0 we have ψ0u ∈ Hσ by our choice of

σ.



In general, assume ψju ∈ Hσ+j. Then since

ψj+1u == ψj+1ψju

and

s = σ + k −m ≥ σ + (j + 1)−m
we have

L(ψj+1u) = ψj+1Lu + [L, ψj+1]u

= ψj+1Lu + [L, ψj+1]ψju

∈ Hs + Hσ+j−(m−1)

= Hσ+j+1−m).

Lemma 9.25 with P (D) = L implies ψj+1u ∈ Hσ+j+1. �



Example (Weyl’s lemma) : Every distributional solution of ∆u = 0 is C∞

Thus harmonic functions are C∞. So are solutions of ∆u = φ where φ is C∞.

Example (Cauchy-Riemann: If L = ∂1 + i∂2 on R2 then

P (L) = ξ1 + iξ2,

|P (ξ)| ≥ (|ξ1|2 + |ξ2|2)1/2 = |ξ|,
Thus every distributional solution of Lu = 0 is C∞. Thus holomorphic functions

are C∞.


