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Chapter 8.1: Preliminaries

In this chapter we work in Rn, n = dimension.

m = Lebesgue measure on Rn, Lp(E) = Lp(E, dm).

If U ⊂ Rn is open, Ck(U) = functions with k continuous partial derivatives.

C∞(U) = ∩∞k=1C
k(U).

Cc(E) = continuous functions with compact support contained in E.

Lp = Lp(Rn), Ck = Ck(R), C∞c = C∞c (R), ...

x · y =
∑n

k=1 xkyk, |x| =
√
x · x.



∂j = ∂
∂xj

.

If α = (α1, . . . , αn) ∈ Nn,

|α| =
n∑
1

αk

α! =

n∏
1

αk!

∂α =

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn
.

xα =

n∏
k=1

x
αk
k .



Taylor series:

f (x)
∑
|α|≤k

(∂αf (x0)
(a− x0)α

α!
+ Rk(x), lim

x→x0

|R(k(x)|
|x− x0|k

= 0.

Product Rule:

∂α(fg) =
∑
β+γ=α

α!

β!
γ!)∂βf )(∂γg).



C∞ functions of compact support:

ψ(x) =

{
exp((|x|2 − 1)−1) if |x| < 1

0 if |x| ≥ 1

Schwarz space, S: C∞ functions which, together with there derivatives,

tend to zero at ∞ faster than any power. A TVS given by the finiteness of the

seminorms:

‖f‖N,α = sup
x∈Rn

(1 + |x|N)|∂αf (x)| <∞.

Example: exp(−|x|2)xα,



Laurent Moise Schwartz (1915–2002)

https://mathshistory.st-andrews.ac.uk/Biographies/Schwartz/


Prop 8.2: S is a Fréchet space with the topology defined by the norms ‖·‖(N,α).

Proof. Only nontrivial part is completeness. If {fk} is Cauchy, then ‖fj −
fk‖(M,α) → 0 for every norm. Thus every ∂αf converges to some continuous

function gα. Let ej be the jth unit coordinate vector. Then

fk(x + tej)− fk(x) =

∫ t

0

∂jfk(x + sej)ds

As k →∞ we have fk → g0 and (∂αfk)→ gα, so by uniform convergence,

g0(x + tej)− g0(x) =

∫ t

0

gej(x + sej)ds



By the Fundamental theorem of Calculus we must have gej = ∂jg0. Then use

induction of |α| to prove gα = ∂αg0 for all α. Then

‖fk − g0‖(N,α) = sup(1 + |x|N)|∂α(fk − g0)|
= sup(1 + |x|N)|∂αfk − gα|
= sup(1 + |x|N)|∂αfk − lim

j
∂αfj|

≤ sup
j≥k

sup(1 + |x|N)|∂αfk − ∂αfj|

≤ sup
j≥k
‖fk − fj‖(N,α)

and the last line tends to 0 as k ↗∞ because {fk} was Cauchy. �



Prop. 8.3: If f ∈ C∞ then f ∈ S iff xβ∂αf is bounded for all α, β iff ∂α(xβf )

is bounded for all α, β.

Proof. Let N = |β|. Then

sup |xβ∂αf | ≤ (1 + xN)|∂αf |‖f‖(N,α),

so f ∈ S then |xα∂αf | is bounded.



Conversely, |x|N and
∑M

k=1 |xk|N are both homogeneous of order N (f (λx) =

λNf (x)) and both are bounded and bounded below on the (compact) unit sphere

in RN so

|x|N ≤ C

M∑
k=1

|xk|N

for some C <∞. Thus (using x0 = 1)

‖f‖(N,α) = sup(1 + |x|N)|∂αf |

≤ sup(1 +

N∑
k=1

|xk|N)|∂αf |

≤ sup
∑
|β|≤N

|xk|β|∂αf |.

Second equivalence follows using product rule: ∂α(xβf ) is a linear combination

of terms of form xγ∂δf , each of which is bounded iff f ∈ S. �



Defn: if f is a function on Rn and y ∈ Rn, the translation operator

τyf (x) = f (x− y).

τy is an isometry onLp and with respect to the uniform norm.

Defn: a function f is called uniformly continuous if ‖τyf −f‖u → 0 as y → 0.

Lemma 8.4: If f ∈ Cc then then f is uniformly continuous.

Proof. Given ε > 0 , for each x ∈ supp(f ) there exists δx > 0 such that

|y| < δ)x ⇒ |f (x− y)− f (x)| < ε

2
.

Since supp(f ) is compact, it is covered by a finite collection of balls Bj =

B(xj, δxj). In fact, {z : dist(z, supp(f )) ≤ 1} is also compact, so assume that

is covered by the balls Bj.



Set δ = inf δxj . Then if |y| < δ, and x ∈ Bj,

|f (x− y)− f (x)| ≤ |f (x− y)− f (xj)| + |f (xj)− f (x)|

Since x ∈ Bj, we have |x− xj| ≤ δj so setting y = x− xj we have x = xj − y
with |y| < δxj and hence

|f (xj)− f (x)| = |f (xj)− f (xj − y)| < ε.

To bound |f (x−y)−f (xj)| we use the fact that x ∈ Bj implies |x−xj| ≤ δxj/2

and |y| < δxj to write

x− y = xj − (xj − x + y) = xj − z
where |z| ≤ δxj , so

|f (xj)− f (x− y)| ≤ |f (xj)− f (xj − z)| ≤ ε.



This gives the estimate if x ∈ Bj for some j. Otherwise, x is outside the support

of f and f (x) = 0. If dist(x, supp(f )) > 1, and |y| < 1, then

|f (x)− f (x− y)| = |0− 0| = 0,

so we are done. �



Prop 8.5: If 1 ≤ p <∞, translation is continuous in the Lp norm.

Proof. We want to show that if f ∈ Lp

lim
y→z
‖τyf − τzf‖p → 0.

Since τy+z = τyτz, by replacing f by τzf it suffices to assume that z = 0.

If g ∈ Cc and |y| ≤ 1, supp(τyg) ⊂ K, for some compact K. By Lemma 8.4,∫
|τyg − g|pdm ≤ ‖τyg − g‖pum(K)→ 0

If f ∈ Lp, by Proposition 7.9 there exists g ∈ Cc with ‖g − f‖p < ε/3, so

‖τyf − f‖p ≤ ‖τy(f − g)‖p + ‖τyg − g‖p + ‖g − f‖p ≤
2

3
ε + ‖τyg − g‖p

and we already showed the last term is small if |y| is small enough. �

Proposition 8.5 is false for p =∞: f = χ[0,∞).



Defn: a function f on Rn is periodic if f (x+ k) = f (x) for all x ∈ Rn and all

k ∈ Z.

Every periodic function is thus completely determined by its values on the unit

cube Q = [−1
2,

1
2)n.

Periodic functions may be regarded as functions on the torus Tn = Rn/Zn.



Chapter 8.2: Convolutions

Defn: The convolution of f and g is

f ∗ g(x) =

∫
f (x− y)f (y)dy,

for all x for which the integral exists

Fact: if f is measurable on Rn then K(x, y) = f (x − y) is measurable on

Rn × Rn (Exercise 5).

Prop. 8.6: Assuming all the integrals exist,

a. f ∗ g = g ∗ f ,

b. (f ∗ g) ∗ h = f ∗ (g ∗ h),

c. For z ∈ Rn, τz(f ∗ g) = (τzf ) ∗ g = f ∗ (τzg),

d. If A = closure of {x+y : x ∈ supp(f ), y ∈ supp(y)} then supp(f ∗g) ⊂ A.



Proof. Proof of a: Use Fubini’s theorem and set z = x− y

f ∗ g(x) =

∫
f (x− y)g(y)dy =

∫
f (z)gf (x− z)dy = g ∗ f (x).

Proof of b: Use Fubini again,

(f ∗ g) ∗ h(x) =

∫ ∫
f (y)g(x− z − y)h(z)dydz

=

∫ ∫
f (y)g(x− y − z)h(z)dzdy

= f ∗ (g ∗ h)(x).



Proof of c:

τz(f ∗ g)(x) =

∫
f (x− z − y)g(y)dy

=

∫
τzf (x− y)g(y)dy

=

∫
τzf (x− y)g(y)dy

= (τzf∗)g(x).

and by (a)

τz(f ∗ g)(x) = τz(g ∗ f )(x) = (τzg) ∗ f (x) = f ∗ (τzg)(x).

Proof of d: if x 6∈ A and y ∈ supp(g) then x− y 6∈ supp(f ). So for all y one

of the two terms in f (x− y)g(y) is zero. Thus f ∗ g(x) = 0. �



Young’s inequality: If f ∈ L1 and g ∈ Lp, 1 ≤ p ≤ ∞, then f ∗ g exists

for a.e. x, f ∗ g ∈ Lp and ‖f ∗ g‖p ≤ ‖f‖1 · ‖g‖p.

Proof. One can use Minkowski’s inequality for integrals:

‖f ∗ g‖p = ‖
∫
f (y)g(· − y)dy‖p

≤
∫
|f (y)|‖τyg‖p

= ‖f‖1 · ‖τyg‖p.
�

Also can think of this as a Banach space valued integral.



William Henry Young (1863–1942)

https://mathshistory.st-andrews.ac.uk/Biographies/Young/


Grace Chisholm Young (1868–1944)

https://mathshistory.st-andrews.ac.uk/Biographies/Chisholm-Young/


Prop. 8.8: If p and q are conjugate exponents, f ∈ Lp , and g ∈ Lq, then

a. f ∗ g(x ) exists for every x,

b. ‖f ∗ g‖u ≤ ‖f‖p · ‖g‖q,
c. f ∗ g is uniformly continuous,

d. If 1 < p, q <∞ then f ∗ g ∈ C0(Rn).

Proof. Proof of a and b: Holder’s inequality.

Proof of c: If 1 ≤ p <∞,

‖τy(f ∗ g)− f ∗ g‖u = ‖τyf − f ) ∗ g‖∞ = ‖τyf − f‖p‖g‖q,
which tends to zero as y → 0.

Proof of d:

Choose sequences {fn}, {gn} of compact support converging to f, g in Lp, Lq

respectively. Then fn ∗ gn ∈ Cc by Prop 8.6.d and

‖f ∗ g − fn ∗ gn‖u ≤ ‖f − fn‖p · ‖gn‖q‖f‖p · ‖gn − g‖q → 0.

This proves d since C0 is closure of Cc in uniformly topology. �



Defn: weak-Lp is space of functions so that

[f ]p =

(
sup
α>0

αpm({x : |f (x)| > α})
)1/p

.

For the sake of completeness we state also the following.

Prop 8.9: Suppose 1 ≤ p, q, r ≤ ∞ and 1
p + 1

q = 1
r + 1.

a. (Young’s Inequality, General Form) If f ∈ Lp, g ∈ Lq then f ∗ g ∈ Lr and

and ‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

b. Suppose also that p > 1, q > 1, and r < ∞. If f ∈ Lp and g ∈ weak-Lq,

then f ∗ g ∈ Lr and ‖f ∗ g‖r ≤ Cpq‖f‖p[g]q. where Cpq is independent of f, g.

c. Suppose that p = 1 and r = q > 1. If f ∈ L1 and g ∈ weak-Lq, then f ∗ g
is in weak-Lq and [f ∗ g]q ≤ C‖f‖1.

Proof. See Folland.



f ∗ g is at least as smooth as f or g is.

∂α(f ∗ g) = ∂α
∫
f (x− y)g(y)dy =

∫
∂αf (x− y)g(y)dy = (∂αf ) ∗ g

How do we justify interchanging differentiation and integration?

Prop. 8.10: If f ∈ L1, and g ∈ Ck, and ∂αg is bounded for |α| ≤ k then

f ∗ g ∈ Ck and ∂α(f ∗ g) = f ∗ (∂αg).

Proof: Immediate from Theorem 2.27.



Prop 8.11: If f, g ∈ S then f ∗ g ∈ S.

Proof. First, f ∗ g ∈ C0 by Proposition 8.10. Since

1 + |x| ≤ 1 + |x− y| + |y| ≤ (1 + |x− y|)(1 + |y|)
we have

(1 + |x|)N |∂α(f ∗ g)(x)| ≤
∫

(1 + |x− y|)N |∂αf (x− y)|(1 + |y|)N |g(y)dy

≤ ‖f‖(N,α) · ‖g‖(N+n+1,α) ·
∫

(1 + |y|)−n−1dy

< ∞. �



Convolutions of functions on the torus Tn are defined just as for functions on

Rn.

All of the preceding results remain valid, with the same proofs.

Notation:

if φ is any function on Rn and t > 0, we set

φt(x) = t−nφ(x/t).

This has same L1 norm as φ but is more “concentrated” around zero if t is small;

more “dispersed” if t is large.



Theorem 8.14: Suppose π ∈ L1 and
∫
φdx = a.

a. If f ∈ Lp, 1 ≤ p <∞, then f ∗ φ→ af in the Lp norm as t→ 0.

b. If f is bounded and uniformly continuous, then f ∗ φ→ af uniformly.

c. If f ∈ L∞ and f is continuous on an open set, then f ∗ φt → af uniformly

on compact subsets of U .

Proof of a: Setting y = tz, we have

f ∗ φ(x)− af (x) =

∫
[f (x− y)− f (x)]φt(y)dy

=

∫
[f (x− tz)− f (x)]φ(z)dz =

∫
[τtzf (x)− f (x)]φ(z)dz

so by Minkowski’s inequality for integrals

‖fφt − af‖p ≤
∫
‖τtzf − f‖p|φ(z)|dz.

Now ‖τtzf − f‖p is bounded by 2‖f‖p and tends to zero as t → ∞ for each z

by Prop. 8.5. Thus (a) follows by the dominated convergence theorem.



Proof of b: The proof of (b) is exactly the same, with Lp norm replaced by the

uniform norm. The estimate for ‖τtzf − af‖u is obvious, and ‖τtzf − f‖u → 0

by uniform continuity.

Proof of c: Given ε > 0 let us choose a compact E ⊂ Rn such that∫
Ec |φ|dm < ε. Also, let K be a compact subset of U . If t is sufficiently

small, then, we will have x − tz ∈ U for all x ∈ Ki and z ∈ E, so from the

compactness of K it follows as in Lemma 8.4 that

sup
x∈K,z∈E

|f (x− tz)− f (x)| < ε,

for small t. But then

sup
x∈K
|f ∗ φt(x)− af (x)| ≤ sup

x∈K

∫
E

+

∫
Ec

[f (x− tz)− f (x)]

phi(z)|dz

≤ ε

∫
|φ| + 2‖f‖∞ε



If we impose slightly stronger conditions on φ, we can also show that f ∗ φt
converges to af pointwise almost everywhere for f ∈ Lp.

The device in the following proof of breaking up an integral into pieces corre-

sponding to the dyadic intervals [2k, 2k+1] and estimating each piece separately

is a standard trick of the trade in Fourier analysis.

Defn: Lebesgue set of f is

Lf = {x : lim
t→0

1

m(B(x, r))

∫
B(x,r)

|f (y)− f (x)|dy = 0}.

Theorem 8.15: Suppose φ(x)| ≤ C(1+|x|)−n−ε for some C <∞, ε > 0 (this

implies φ ∈ L1) and
∫
φ = a. If f ∈ Lp, 1 ≤ p ≤ ∞ then f ∗φt(x)→ af (x) for

every x in the Lebesgue set of f ; in particular at almost every x, and everywhere

f is continuous.



Proof. If x ∈ Lf , then for any δ > 0 there is a η > 0 so that∫
|y|<r
|f (x− y)− f (x)|dy ≤ δrn

for r ≤ η. We claim

I1 =

∫
|y|<η
|f (x− y)− f (x)| · |φt(y)|dy ≤ Aδ,

and

I2 =

∫
|y|≥η
|f (x− y)− f (x)| · |φt(y)|dy → 0

If we can prove these claims, then

lim sup
t→0

|f ∗ φt(x)− af (x)| ≤ Aδ,

for any δ > 0, so

lim sup
t→0

|f ∗ φt(x)− af (x)| = 0.



Proof of Claim 1: Let K be the integer so that 2K ≤ η/t < 2K+1, if η/t ≥ 1

and K = 0 if η/t < 1.

Cut the ball {|y| < η} into annuli

Ak = {2−kη ≤ |y| ≤ 21−kη}
and a ball

B = {2|y| ≤ 2−Kη}.
On Ak we have

φt(y)| ≤ Ct−n|y
t
|−n−ε ≤ CT−n(

2−kη

t
)−n−ε,

and on the ball B we have

|φt(y)| ≤ Ct−n.



Then

I1 ≤
K∑
k=1

Ct−n[2−Kη/t]−n−ε
∫
Ak

|f (x− y)− f (y)|dy

+Ct−n
∫
B

|f (x− y)− f (y)|dy.

Thus

I1 ≤ Cδ

K∑
k=1

(21−kη)nt−n(2−kη/t]−n−ε + Cδt−n(2−Kη)n

≤ 2nCδ(η/t)−ε
K∑
k=1

2kε + Cδ(2−Kη/t)n

≤ 2nCδ(η/t)−ε
2(K+1)ε − 2ε

2ε − 1
+ Cδ(2−Kη/t)n

≤ 2nCδCε + Cδ.



Proof of Claim 2: Let p′ be the conjugate exponent to p and let χ be the

characteristic function of {|y| ≥ η}. By Hölder’s inequality

I2 ≤
∫
|y|≥η
|f (x− y)| + |f (x)| · |φt(y)|dy

≤ ‖f‖p‖χφt‖p′ + |f (x)|‖χφt‖1,

so it suffices to show for q = 1 and q = p′ that

|χφt‖q → 0,

as t→ 0

If q =∞ this is easy

‖χφt‖∞ ≤ Ct−n(1 + (η/t)|−n−ε = Ctε|t + η|−n−ε ≤ Cη−n−εtε.



If q <∞,

‖χφt‖qq =

∫
|y|≥η

t−nq|φ(y/t)|qdy

= tn(1−q)
∫
|y|≥η/t

|φ(z)|qdz

≤ tn(1−q)
∫ ∞
η/t

rn−1−(n+ε)qdr

≤ C2t
n(1−q)[η/t]n−(n+ε)q

≤ C3t
εq → 0 �



If a = 1 in the previous result, we call ]phit an approximate identity, as it

furnishes an approximation to the identity operator on Lp by convolution oper-

ators.

This construction is useful for approximating Lp functions by functions having

specified regularity properties. For example,

Prop. 8.17: C∞c (and hence also S) is dense in Lp 1 ≤ p <∞ and in C0.

Proof. Given f ∈ Lp andε > 0, there exists g ∈ Cc with ‖f − g‖p < ε by

Proposition 7.9. Let φ be a function in C∞c such that
∫
φdx = 1. Then

g ∗ φt ∈ C∞c and ‖g − g ∗ φt‖p is small.

The same argument works for the uniform norm. �



The C∞ Urysohn Lemma: If K ⊂ Rn is compact and U is an open set

containing K, there exists f ∈ C∞c such that 0 ≤ f ≤ 1, f = 1 on K , and

supp(f ) ⊂ U .

Proof. Let δ be the distance from K to U c, which is positive since K is compact.

Let V = {x : ρ(x,K) < δ/3}. Choose a nonnegative φ ∈ C∞c so that
∫
φdx =

1 and φ(x) = 0 if |x| > δ/3. Set f = χV ∗ φ. Then f ∈ C∞c , 0 ≤ f ≤ 1, f = 1

on K and supp(f ) ⊂ {x : ρ(x, V ) ≤ 2δ/3} ⊂ U . �



Chapter 8.3: The Fourier transform

Defn: a unitary character of a group G is a homomorphism G → T. For

G = R a character satisfies

f (x + y) = f (x) · f (y).

In harmonic analysis on groups we often try to write general functions as sums

of characters.

Theorem 8.19: If φRnT is a measurable function and φ(x + y) = φ(x)φ(y),

then φ(x) = exp(ixζ̇) for some ζRn. A similar result holds for functions on Tn.



Proof. First consider n = 1. Let a ∈ R be such that
∫ a

0 φ(t)dt 6= 0; there is

such an a or Lebesgue differentiation implies φ = 0.

Set A = (
∫ a

0 φ(t)dt)−1. Then

φ(x) = A

∫ a

0

φ(x)φ(t)dt = A

∫ a

0

φ(x + t)dt = A

∫ x+a

x

φ(x + t)dt.

Thus φ is continuous (even Lipschitz since its derivative is bounded). Moreover

φ(x) = A(φ(x + a)− φ(x)) = A(φ(a)− φ(1))φ(x) = Bφ(x).

Thus (e−Bxφ(x))′ = 0 so this function is constant C, soφ(x) = CeBx. Since φ

takes values in T and φ(0) = 1, we have C = 1 and B is imaginary.



If {ej} is the standard basis for Rn then the argument above shows

ψt(t) = φ(tej) exp(x · 2πiξj)
so

φ(x) = φ(
∑

xjej) =
∏

φ(xjej) =
∏

exp(xj · 2πiξj) = exp(x · 2πξ).

�

For Tn we must also have ξ ∈ Zn.



The idea now is to decompose more or less arbitrary functions terms of the

exponentials. In the case of Tn this works out very simply for L2 functions.

Theorem 8.20: Let Eκ(x) = exp(2πiκ · x). Then {Eκ} is an orthonormal

basis of L2(Tn).

Proof. Verification of orthonormality is an easy exercise in calculus; by Fubini’s

theorem it boils down to the fact that
∫ 1

0 exp(2πiκt)dt equals 1 if κ = 0 and

equals 0 otherwise.

Next, Eκ · Eλ = Eκ+λ so the set of finite linear combinations is an algebra.

It separates points so contains all continuous functions by Stone-Weierstrass,

hence is dense in L2. Hence the linear span is complete and so these functions

form a basis. �



Defn: for f ∈ L2(T) its Fourier Transform is

f̂ (κ = 〈f, Eκ〉 =

∫
Tn
f (x) exp(−2πiκ · x)dx

and ∑
κ∈Zn

f̂ (κ)Eκ,

is the Fourier Series of f .

The Fourier transform is an isometry from L2(Tn) to `2(Zn) and the Fourier

series converges in the L2 norm.

We mentioned earlier in the course that the Fourier series of a continuous func-

tion need not converge pointwise to the function.
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Jean Baptiste Joseph Fourier (1768–1830)

https://mathshistory.st-andrews.ac.uk/Biographies/Fourier/


The Hausdorff-Young Inequality: Suppose that 1 ≤ p ≤ 2 and q is the

conjugate exponent to p. If f ∈ Lp(Tn), then f̂ ∈ `q(Zn) and ‖f̂‖q ≤ ‖f‖p.

Proof. Since ‖f̂‖∞ ≤ ‖f‖1 ‖f̂‖2 ≤ ‖f‖2 this follows from the Riesz-Thorin

interpolation theorem. �

M. Riesz-Thorin interpolation theorem: If T is a linear map from

Lp1 + Lp2 to Lq1 + Lq2 so that

‖Tf‖q1 ≤M1‖f‖p2, ‖Tf‖q2 ≤M2‖f‖p2,

Then T is bounded from Lpt to Lqt where
1

pt
=

1− t
p1

+
t

p2
,

1

qt
=

1− t
q1

+
t

q2
, 0 ≤ t ≤ t

with norm M ≤M 1−t
1 M t

2.

Thus if T is bounded L2 → L2 and L1 → L∞, then it is bounded Lp → Lq for

1 ≤ p ≤ 2 and q = conjugate of p.



Olof Thorin (1912–2004)

https://kirj.ee/public/proceedings_pdf/2008/issue_1/proc-2008-1-2.pdf


Situation in Rn is more intricate since f ∈ L2 does not imply∫
f (x) exp(ix · ξ)dx

exists. Need to restrict to f ∈ L1.

Defn: for f ∈ L1 define the Fourier Transform of f as

Ff (ξ) = f̂ (ξ) =

∫ n

R
f (x) exp(−2πiξ · x)dx.

Clearly ‖f̂‖u ≤ q‖f‖1.



Theorem. 8.22: Suppose f, g ∈ L1(Rn).

a. (̂τyf )(ξ) = exp(−2πiξ ·y)f̂ (ξ) and τη(f̂ ) = ĥ where h = exp(2πiη ·x)f (x).

b. If T is an invertible linear transformation of Rn and S = (T∗)−1 is its

inverse transpose, then ̂(f ◦ T ) = | detT |−1f̂ ◦ S. In particular, if T is a

rotation, then ̂(f ◦ T ) = f̂ ◦ T . If Tx = x/t then then ̂(f ◦ T )(ξ) = tnf̂ (tξ).

and f̂t(ξ) = f̂ (tξ).

c. f̂ ∗ g. = f̂ ĝ.

d. If xαf ∈ L1 for |α| ≤ k then f̂ ∈ Ck and ∂αf̂ = [(−2πix)αf ]∧.

e. If f ∈ Ck, ∂αf ∈ L1 for |α| ≤ k and ∂α ∈ C0 for |α| ≤ k − 1, then

(∂αf )∧(ξ) = (2πξ)αf̂ (ξ).

f. (The Riemann-Lebesgue Lemma) F(L1) ⊂ C0.



Proof of a:

(τyf )∧(ξ) =

∫
f (x− y) exp(−2πiξ · x)dx

=

∫
f (x) exp(−2πiξ · (x + y))dx

= exp(−2πiξ · yf̂ (ξ).

Proof of b:

(f ◦ T )∧(ξ) =

∫
f (Tx) exp(−2πiξ · x)dx

= | detT |−1

∫
f (x) exp(−2πiξ · T−1x)dx

= | detT |−1

∫
f (x) exp(−2πiSξ · x)dx

= | detT |−1f̂ (Dξ).



Proof of c:

(f ∗ g)∧(ξ) =

∫ ∫
f (x− y)g(y) exp(−2πiξ · x)dydx

=

∫ ∫
f (x− y) exp(−2πiξ · (x− y))g(y) exp(−2πiξ · y)dydx

= f̂ (ξ)

∫
g(y) exp(−2πiξ · y)dy

= f̂ (ξ)ĝ(ξ).

Proof of d: By induction on |α|,

∂αf̂ (ξ) = ∂αξ

∫
f (x) exp(−2πiξ · x)dx

=

∫
f (x)(−2πx)α exp(−2πiξ · x)dx

= (−2πx)αf̂ (ξ).



Proof of e: Since f ∈ C0 we can use integration by parts:∫
f ′(x) exp(−2πiξ · x)dx = f (x) exp(−2πiξ · x)|∞−∞

−
∫
f (x)(−2πξ)α exp(−2πiξ · x)dx

= = 2πiξf̂ (ξ).

General case follows from induction on |α|.

Proof of f: If f ∈ C1 ∩ Cc then |ξ|f̂ (ξ0 is bounded, so f̂ ∈ C0. This set is

dense in L1 and C0 is closed in the uniform norm so FL1 ⊂ C0.



Corollary 8.23: F is a continuous map of S to itself.

Proof. f ∈ S implies xα∂βf ∈ L1 ∩ C0 for all α, β, so

(xα∂βf )∧ = (−1)α|(2πi)|β|−|α|∂α)ξβf‖u,
so ∂αxβf̂ is bounded for all α, β. Thus f̂ ∈ S.

‖(xα∂βf )∧‖u ≤ ‖xα∂βf‖1 ≤ C‖(1 + |x|)n+1xα∂βf‖u
so F is continuous as a map between TVSs. �



Prop. 8.24: If f (x) = e−πa|x|
2
, a > 0 them f̂ = a−n/1e−π|x|

2/a.

Proof. First we consider dimension n = 1. Since

(e−πax
2
)′ = −2πaxe−πzx

2
,

we have

(f̂ )′(ξ) = (−2πixf )∧

= (
i

a
f ′)∧

=
i

a
(2πiξf̂ (ξ)

= −2π

a
ξf̂ (ξ)

If follows that

f̂ (ξ) = Ce2πξ2/a,

for some constant C. To find C, set ξ = 0

f̂ (0) =

∫
e−πax

2
dx =

1√
a
.



This formula is Prop 2.53 and is proven with a famous trick using polar coordi-

nates (∫
R
e−ax

2
dx

)2

=

∫
R

∫
R
e−a(x2+y2)2

dxdy

=

∫ 2π

0

∫ ∞
0

re−ar
2
drdθ

=

∫ 2π

0

∫ ∞
0

re−ar
2
drdθ

= 2π · 1

2a
e−ar

2|∞0

=
π

a

The n > 1 dimensional case follows using Fubini’s theorem

f̂ (ξ) =

n∏
k=1

∫
exp(−πax2

k − 2πξkxk)dxk

=

n∏
k=1

[
a−1/2 exp(−πξ2

k/a)
]

= a−n/2 exp(−π|ξ|2k/a).



�



Lemma 8.25: If f, g ∈ L1, then
∫
f̂ · gdx =

∫
f · ĝdx.

Proof. Both integrals equal∫∫
f (x)g(ξ)e−2πiξ·xdxdxi.

�



The Fourier Inversion Theorem: If f ∈ L1 and f̂ ∈ L1 then f agrees

almost everywhere with a continuous function f0 and (f̂ )∨ = (f∨)∧ = f0.

Proof. Given t > 0 and x ∈ Rn, set

φ(ξ) = exp(2πiξcdotx− πt2|ξ|2)).

By Theorem 8.22a and Proposition 8.24,

φ̂(y) = t−n exp(−π|x− y|2/t2) = gt(x− y),

where g(x) = exp(−π|x|2), and the subscript t has the meaning in (8.13),

dilating in L1.

By Lemma 8.25,∫
e−πt

2xi|2e2πiξ·xf̂ (ξ)dξ =

∫
fφ̂ =

∫
f̂φ = f ∗ gt(x).

Since
∫
gdx = 1, by Theorem 8.14 we have f ∗ gtf in the L1 norm as t → 0.

On the other hand, since f̂ ∈ l1, the dominated convergence theorem yields

lim
t→0

∫
e−πt

2xi|2e2πiξ·xf̂ (ξ)dξ =

∫
e2πiξ·xf̂ (ξ)dξ = (f̂ )∨(x).



It follows that f = (f̂ )∨ a.e., and similarly (f∨)∧ = f a.e. Since (f̂ )∨ and

(f∨)∧ are Fourier transforms of L1 functions they are continuous and the proof

is complete. �



Cor 8.27: If f ∈ L1 and f̂ = 0 then f = 0 a.e.

Cor 8.28: If F is an isomorphism of S to itself.

Proof. We already know that F is continuous from S into itself. By the Fourier

inversion theorem, f → f∨ where f∨(x) = f̂ (−x) is a continuous inverse, so F
is an isomorphism. �



The Plancherel Theorem: If f ∈ L1 ∩ L2 then f̂ ∈ L2 and F restricted

to L1 ∩ L2 extends to a unitary isomorphism on l2.

Proof. Let X = {f ∈ L1 : f̂ ∈ L1}. Since f̂ ∈ L1 implies f is bounded, we

have X ⊂ L2. X is dense in L2 since it contains S and S is dense.

Given f, g ∈ X , let h = ĝ. By the inversion theorem,

ĥ(ξ) =

∫
e−2πiξ·xĝ(x)dx

=

∫
e2πiξ·xĝ(x)dx

= g(ξ)

Thus ∫
fḡ =

∫
fĥ =

∫
f̂h =

∫
f̂ ĝ,

so F preserves the inner product on L2. Thus it preserves norms (take g = f ).

Since F(x) = X by the inversion theorem, F extends to an unitary isomorphism

of L2



It remains only to show that this extension agrees with F on all of L1 ∩ L2.

But if f ∈ L1 ∩ L2 and g(x) = exp(−π|x|2), we have f ∗ gt ∈ L1 by Young’s

inequality and (f ∗ gt)∧ ∈ L1 because

(f ∗ gt)∧(ξ) = e−πt|ξ|
2
f̂ (ξ)

and f̂ is bounded. Hence f ∗ gt ∈ X . By Theorem 8.14 f ∗ gt → f in both

L1 and L2 norms. Thus (f ∗ gt)∧ → f̂ in both L2 and uniform norms. This

completes the proof. �



We have thus extended the domain of the Fourier transform from l1 to L1 +L2.

Just as on Tn, the Riesz- Thorin theorem yields the following result.

The Hausdorff-Young Inequality: Suppose that 1 ≤ p ≤ 2 and q is the

conjugate exponent to p. If f ∈ Lp(Rn), then f̂ ∈ Lq(Rn) and ‖f̂‖q ≤ ‖f‖p.

If ftf ∈ L1 the inversion formula says f can be written as a superposition of

the complex exponential functions

f (x) =

∫
f̂ (x)e2πξ·xdξ.

This is the Fourier integral representation of f .

This formula remains valid in spirit for L2, although the integral (as well as

the integral defining f̂ ) may not converge pointwise. The interpretation of the

inversion formula will be studied further in the next section.



Theorem 8.31: If f ∈ L1(Rn), the series∑
k∈Z

f (x− k)

converges pointwise almost everywhere and in L1 to a function Pf such that

‖Pf‖1 ≤ ‖f‖1. Moreover, for k ∈ Zn, (Pf )∧(k) = f̂ (k), i.e., the Fourier series

of the periodic function Pf equals the Fourier transform of f restricted to the

integer lattice.

Proof. Let Q = [−1
2,

1
2)n. Then Rn is disjoint union of integer translates of Q,

so ∫
Q

∑
k

|f (x− k)dx =
∑
k

∫
Q+k

|f (x)|dx

=

∫
Rn
|f (x)|dx.

Now apply Theorem 2.25 (if {fk} ∈ L1 and
∑
‖fk‖1 <∞ then

∑
fk converges

a.e. to f ∈ L1). This implies
∑
f (x−k) converges a.e. and in L1 to a function



Pf ∈ L1 such that ‖Pf‖1 ≤ ‖f‖1. Moreover,

(Pf )∧(k) =

∫
Q

∑
k

f (x− k)e−2πik·xdx

=
∑
k

∫
Q+k

f (x)e−2πik·(x+k)dx

=
∑
k

∫
Q+k

f (x)e−2πik·xdx

=

∫
Rn
f (x)e−2πik·xdx

= f̂ (k).

�



If we impose stronger conditions on f we get a better conclusion.

The Poisson Summation Formula: Suppose f ∈ C(Rn) satisfies |f (x)| <
C(1 + |x|)−n−ε and |̂f (x)| < C(1 + |x|)−n−ε for some C <∞ and ε > 0. Then∑

f

f (x + k) =
∑
k

f̂ (k)e2πik·x.

where both series converge absolutely and uniformly on Tn. In particular, taking

x = 0, ∑
f

f (k) =
∑
k

f̂ (k).

Proof. The absolute and uniform convergence of the series follows from the fact

that
∑

k(1 + k)−n−ε <∞, which can be seen by comparing the latter series to

the convergent integral
∫

(1+ |x|−n−εdx. Thus the function P ] =
∑

k f (x−k) is

continuous on Tn, hence bounded and in L2. so Theorem 8.31 implies that the

series
∑
f̂ (k)e2πik·x converges in L2 to Pf . Since it also converges uniformly,

its sum equals Pf pointwise. �



Poisson’s summation formula appears in Ramanujan’s notebooks and can be

used to prove some of his formulas, in particular it can be used to prove one of

the formulas in Ramanujan’s first letter to Hardy.



Siméon Denis Poisson (1781–1840)

https://mathshistory.st-andrews.ac.uk/Biographies/Poisson/


Method of images: In partial differential equations, the Poisson summation

formula provides a rigorous justification for the fundamental solution of the heat

equation with absorbing rectangular boundary by the method of images.

Statistical study of time-series: if f is a function of time, then looking

only at its values at equally spaced points of time is called ”sampling.” In ap-

plications, typically the function f is band-limited, meaning that there is some

cutoff frequency such that the Fourier transform is zero for frequencies exceed-

ing the cutoff. The summation information guarantees that no information is

lost by sampling, since f̂ can be reconstructed from these sampled values, then,

by Fourier inversion, so can f . This leads to the NyquistShannon sampling

theorem.

Ewald summation: Computationally, the Poisson summation formula is

useful since a slowly converging summation in real space is guaranteed to be

converted into a quickly converging equivalent summation in Fourier space.



Lattice points in a sphere: The Poisson summation formula may be used

to derive Landau’s asymptotic formula for the number of lattice points in a large

Euclidean sphere.

Number theory: Poisson summation can also be used to derive a variety

of functional equations including the functional equation for the Riemann zeta

function.

Sphere packings: Cohn and Elkies (2003) proved an upper bound on the

density of sphere packings using the Poisson summation formula, which subse-

quently led to a proof of optimal sphere packings in dimension 8 and 24.



Chapter 8.4: Summation of Fourier integrals and series

In last section we saw hop wf can be recovered from f̂ if f̂ ∈ L1.

• When is f̂ in L1? If f is smooth enough.

• How to recover f when f̂ 6∈ L1? Approximate by smooth functions and take

limit.

If f ∈ L1 then f̂ is bounded, so f̂ ∈ L1 if it decays fast enough at infinity, i.e,

|x|αf̂ is bounded for |α| large enough. This happens if ∂αf ∈ L∩C0.



Theorem 8.33: Suppose f is periodic and absolutely continuous on R and

f ′ ∈ Lp for some p > 1. Then f̂ ∈ `1(Z).

Proof. Since p > 1, set Cp =
∑∞

k=1 k
−p < ∞. Since Lp(T) ⊂ L2(T) for for

p > 2, we may assume that p ≤ 2. Integration by parts (Theorem 3.36) shows

that

(f ′)∧(k) = 2πikf̂ (k).

By Hölder and Hausdorff-Young, if q is the conjugate exponent to p,∑
k 6=0

|f̂ (k)| ≤

∑
k 6=0

(2π|k|)−p
1/p

·

∑
k 6=0

(2π|kf̂ (k)|q
1/q

=
(2Cp)

1/p

2π
‖(f ′)∧‖q

≤ (2Cp)
1/p

2π
‖f ′‖p

Adding |f (0)| to both sides, we see that ‖f̂‖1 <∞. �



To recover f from f̂ when f̂ 6∈ L1, we convolve f with a smooth approximation

of the identity φt. This convolution converges to f as t→ 0. When we take the

Fourier transform of the convolution, we get the product of t̂ and φ̂. Since φ is

smooth the latter decays quickly, so the product is in L1. So convolution can be

recovered from its Fourier transform.

Lemma 8.34: If f, g ∈ L2(Rn) then (f̂ · ĝ)∨ = f ∗ g.

Proof. f̂ · ĝ ∈ L1 by Plancherel’s theorem and Hölder’s inequality. Thus (f̂ · ĝ)∨

is defined.

Given x ∈ Rn let h(y) = g(x− y) Then

ĥ(ξ) = ĝ(ξ) exp(−2πiξ cotx).

Since F is unitary on L2 (preserves norms)

f ∗ g(x) =

∫
fh̄ =

∫
f̂ ĥ =

∫
f̂ (ξ)ĝ(ξ)e2πiξ·x = (f̂ · ĝ)∧. �



Theorem 8.35: Suppose that Φ ∈ L1 ∩ C0, Φ(O) = 1, and φ = Φ∨ ∈ L1.

Given f ∈ L1 + L2, for t > 0 set

f t(x) =

∫
f̂ (ξ)Φ(tξ)e2πiξ·xdxi.

a. If f ∈ Lp, 1 ≤ p <∞ then f t ∈ Lp and ‖f t − f‖p → 0 as t→ O.

b. If f is bounded and uniformly continuous, then so is f t, and f t → f

uniformly as t→ 0.

c. Suppose also that φ(x) ≤ C(1+ |x|)−n−ε for some C <∞ and ε > 0. Then

f t(x)→ f (x) for every x in the Lebesgue set of f .



Proof. We have f = f1 + f2 where f1 ∈ L1 and f2 ∈ L2. Since f̂1 ∈ L∞,

f̂2 ∈ L2 and Φ ∈ (L1 ∩ C0) ⊂ (L1 ∩ L2), the integral defining f t converges

absolutely for every x. Moreover, if φt(x) = t−nφ(x/t) we have

Φ(tξ) = (φ∧t (ξ)

by the inversion theorem and Theorem 8.22.b (Properties ofF). Also
∫
φ(x)dx =

Φ(0) = 1.

Since φ,Φ ∈ L1 we have f1 ∗φ ∈ L1 and f̂1 ·Φ ∈ L1, so by Theorem 8.22.c and

the inversion theorem ∫
f̂1(ξ)Φ(tξ)e2πiξ·xdξ = f1 ∗ φ(t).

Also, φ ∈ L2 by the Plancherel theorem, so by Lemma 8.34 (f̂ ĝ)∨ = f ∗ g),∫
f̂2(ξ)Φ(tξ)e2πiξ·xdξ = f2 ∗ φ(t).

Adding these, f t = f ∗φt, so the assertions follow from Theorems 8.14 and 8.15

(properties of approximations of the identity). �



Theorem 8.36: Suppose that Φ ∈ C(Rn) satisfies

Φ(ξ)| ≤ C

(1 + |‖)n+ε
, Φ∨(x)| ≤ C

(1 + |x|)n+ε
,

and Φ(0) = 1. Given f ∈ L1(Tn), for t > 0 set

f t(x) =
∑
k∈Zn

f̂ (k)Φ(tk)e2πiξ·x,

(which converges absolutely since
∑

k |Φ(tk)| <∞). Then

a. If f ∈ Lp(Tn), 1 ≤ p < ∞, then ‖f t − f‖p → 0 as t → 0 and if f is

continuous, then f t → f uniformly as t→ 0.

b. f t(x)→ f (x) at every Lebesgue point of f .



Proof of a: As before, let

φ = Φ∨, φ(t) = t−nφ(x/t).

Then (φt)
∧(ξ) = Φ(tξ) and φt satisfies the hypothesis of the Poisson summation

formula, so ∑
k∈Zn

φt(x− k) =
∑
k∈Zn

Φ(tk)e2πik·x.

Let us denote the common value of these sums by ψt(k). Then

(f ∗ ψt)∧(k) = f̂ (k)ψt(k) = f̂ (k)Φ(tk) = (f t)∧(k).

Hence f t = f ∗ ψt. Hence, by Young’s inequality and Theorem 8.31 we have

‖f t‖p ≤ ‖f‖p‖ψt‖1 ≤ ‖f‖p‖φt‖1 ≤ ‖f‖p‖φ‖1

so the operators f → f t are uniformly bounded on Lp, 1 ≤ p ≤ ∞.



Suppose f is a trig polynomial ( f is periodic and the Fourier transform has

finitely many non-zero entries) Since Φ is continuous and Φ(0) = 1 we have

f t → t uniformly and in Lp on Tn. But trig polynomials are dense in C(Tn) by

the Stone-Weierstrass theorem, so also dense in Lp for 1 ≤ p < ∞. Therefore

(a) follows from Prop 5.17 (if we have uniformly bounded operators {Tn} and

Tnx→ Tx on a dense set then Tn → T strongly).



Proof of b: Suppose x is in the Lebesgue set and, by translation, assume

x = 0. Set Q = [1
2,

1
2)n.

f t(0) = f ∗ ψt(0)

=

∫
Q

f (x)φt(−x)dx +
∑
k 6=0

∫
Q

f (x)φt(−x + k)dx.

Since

|φt(x)| ≤ Ct−n(1 + |x|/t)−n−ε ≤ tε|x|−n−ε,
for x ∈ Qand k 6= 0, we have

φt(−x + k) ≤ C2n+εtε|k|−n−ε,
and hence∑

k 6=0

∫
Q

|f (x)φt(−x + k)|dx ≤

C2n+ε · ‖f‖1 ·
∑
k 6=0

k−n−ε

 tε

which vanishes as t→ 0.



On the other hand, if we define g = fχQ ∈ L1(Rn), then 0 is in the Lebesgue

set of g (because 0 is in the interior of Q, and the condition that 0 be in the

Lebesgue set of g depends only on the behavior of g near 0), so by Theorem

8.15 (convergence of approximation of identity on Lebesgue set),

lim
t→0

∫
Q

f (x)φt(−x)dx = lim
t→0

g ∗ φt(O) = g(O) = f (O).



Example - Gauss kernel:

Φ(ξ) = e−π|ξ|
2
, φ(x) = Φ∨(x) = e−π|x|

2
.

This is connected to solution of the heat equation.

Example - Possion kernel: For n = 1,

Φ(ξ) = e−2π|ξ|,

φ(x) =

∫ 0

−∞
e2π(1+ix)ξdξ

=
1

2π

[
1

1 + ix
+

1

1− ix

]
=

1

π(1 + x2)
.

This is connected to solving Dirichlet problem in a half-plane.



Example - Able summation:

Φ(ξ) = e−2π|ξ|,

Make substitution r = e−2πt and write Arf instead of f t,

Arf (x) =
∑
k∈Z

r|k|f̂ (k)e−2πikx

= f̂ (0) +

∞∑
k=1

rk[f̂ (k)e2πikx + f̂ (−k)e−2πikx]

=

∞∑
k=0

f̂ (k)zk +

∞∑
k=1

f̂ (−k)zk.

Harmonic extension of f to unit disk and we are taking radial limits as r ↗ 1.

A series
∑

k ak is called Able summable if

lim
r↗1

rkak

exists. Is a method for giving a value to a divergent series.



Example - Cesàro summation: A series
∑
ak is Cesàro summable if

1

n

n∑
k=1

(

k∑
j=1

ak)

has a limit (average of partial sums). Can be rewritten as
n∑
k=1

(1− k

n
)ak,

has a limit as n↗∞.

In terms of Fourier series we take the “tent” function:

Φ(ξ) = max(1− |ξ|, 0)

φ(x) =

∫ 0

−1

(1 + ξ)e2πiξ·xdξ +

∫ 1

0

(1− ξ)e2πiξ·xdξ

=
e2πix + e−2πix − 2

(2πix)2

=

(
sin πx

πx

)2

.



If we take t = 1/(m + 1) and write σmf (x) for f 1/(m+1)(x) we get

σmf (x) =

m∑
k=−m

m + 1− |k|
m + 1

f̂ (k)e2πikx

= f̂ (0) +

m∑
k=1

m + 1− k
m + 1

(
f̂ (k)e2πikx + +f̂ (−k)e−2πikx

)
.



Chapter 8.5: Pointwise Convergence of Fourier Series

Suppose f ∈ L1(T) and define the partial sums

Smf (x) =

m∑
k=−m

f̂ (k)e2πikx.

When does Smf (x)→ f (x)?



Smf (x) =

m∑
k=−m

f̂ (k) = f ∗Dm(x),

where Dm is the Dirichlet kernel

Dm(x) =

m∑
k=−m

e2πikx = e−2πimx
2m∑
k=0

e2πikx

= e−2πimx22πi(2m+1)x − 1

e2πi − 1

=
sin(2m + 1)πx

sin πx

This is special case of Theorem 8.36 where

Φ = χ[−1,1], φ(x) = Φ∨(x) =
sin 2πx

πx
.

But φ 6∈ L1(R). Alternatively, ‖Dm‖1 ' logm→∞.

The partial sums need not converge to f for general continuous functions, but

the Able or Cesàro sums do. Partial sums converge if f is bounded variation.
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Lemma 8.41: Let φ and ψ be real-valued functions on [a, b],a, bJ. Suppose

that φ is monotone and right continuous on [a, b] and and ψ is continuous on

[a, b]. Then there exists η ∈ [a, b] such that∫ b

1

φ(x)ψ(x)dx = Φ(η) = φ(a)

∫ η

a

ψ(x)dx + φ(b)

∫ b

η

ψ(x)dx.

Proof. Adding a constant to φ changes both sides by the same amount, so we

may assume φ(a) = 0. We may also assume φ is increasing; otherwise replace

φ by −φ.

Since Φ is continuous, this is just the intermediate value theorem applied to Φ

since

Φ(a) ≥
∫ b

1

φ(x)ψ(x)dx ≥ Φ(a) ≥ Φ(a)

. �



Lemma 8.42: There is a constant C < ∞ such that for everym ≥ 0 and

every [a, b] ⊂ [−1
2,

1
2]

|
∫ b

a

Dm(x)dx| ≤ C.

Moreover, for all m ∫ 0

−1/2

Dm(x)dx =

∫ 1/2

0

Dm(x)dx =
1

2

Proof. We know

Dm(x) =
sin(2m + 1)πx

sinπx
,

so ∫ b

a

Dm(x)dx =

∫ b

a

sin(2m + 1)πx

sin πx
dx

=

∫ b

a

sin(2m + 1)πx

πx
dx

+

∫ b

a

sin(2m + 1)πx

[
[

1

sin πx
− 1

πx
dx

]
.



The second integrand is bounded, so the second integral is bounded (uniformly

in m). A change of variable makes the first integal into∫ (2m+1)πb

(2m+1)πa

sin(2m + 1)πy

πy
dy =

1

π
Si((2m + 1)πb))− Si((2m + 1)πb))

where Si(x) =
∫ x

0
1
y sin ydy. But this function is bounded and approaches a

finite limit as x→ ±∞. This is the first part of the lemma.

For the second part note that∫ 1/2

−1/2

Dm(x)dx = 1

since Dm is a sum of mean zero exponential terms except for one constant term.

Since Dm is even, each half-integral equals 1/2. �



Theorem 8.43: If f is bounded variation on T, that is, f is periodic on R
and of bounded variation on [−1/2, 1/2], then

lim
m→∞

Smf (x)
1

2
[f (x+) + f (x−)]

for every x. In particular, limSmf (x) = f (x) at every x at which f is continuous.

Proof. We begin by making some reductions. In examining the convergence

of Smf (x), we may assume that x = 0 (by replacing f with the translated

function τxf ), that f is real-valued (by considering the real and imaginary parts

separately), and that f is right continuous (since replacing f (t) by f (t+) affects

neither Smf nor f (O+) + f (O−).

In this case, by Theorem 3.27b, on the interval [−1/2, 1/2) we can write f as

the difference of two right continuous increasing functions g and h. If these

functions are extended to R by periodicity, they are again of bounded variation,

and it is enough to show that Smg(O)→ 1
2[g(0+) + g(O−)] and likewise for h.

In short, it suffices to consider the case where x = 0 and f is increasing and

right continuous on [−1/2, 1/2).



Since Dm is even, we have

Smf (0) = f ∗Dm(0) =

∫ 1/2

−1/2

(x)Dm(x)dx,

so by Lemma 8.42,

Smf (0)− 1

2
[f (0+) + f (0−)] =

∫ 1/2

0

[f (x)− f (0+)]Dm(x)dx+

We shall show that the first integral on the right tends to zero as m → ∞;

a similar argument shows that the second integral also tends to zero, thereby

completing the proof.



Given ε > 0, choose δ > 0 small enough so that f (δ)− f (0+) < ε/C where C

is as in Lemma 8.42. Then by Lemma 8.41, for some η ∈ [0, δ],

|
∫ δ

0

[f (x)− f (0+)]Dm(x)dx| = [f (δ)− f (0+)]|
∫ δ

η

Dm(x)dx|,

which is less than ε. On the other hand, by (8.40),∫ 1/2

δ

[f (x)− f (0+)]Dm(x)dx =

∫
χ[δ,1/2](x)

[f (x)− f (0+)]

sin πx
sin((2m + 1x)dx

This tends to zero by the Riemann-Lebesgue lemma. Thus

lim sup
m→∞

|
∫ 1/2

0

[f (x)− f (0+)]Dm(x)dx| < ε,

for every ε > 0, and we are done. �



Theorem 8.44: If f, g ∈ L1(T) and f = g on an opne interval I then

smf − Smg → 0 uniformly on compact subsets of I .

Proof. See Folland. �

Cor. 8.34: Suppose f ∈ L1(T) and I is an open interval of length ≤ 1.

a. If f agrees on I with a function f such that ĝ ∈ `1(Z) then Smf → f

uniformly on compact subsets of I .

b. If f is absolutely continuous on I and f ′ ∈ Lp(I) for some p > 1, then

Smf → f uniformly on compact subsets of I .

Proof. See Folland. �



Defn: f is Dini continuous at x if∫ 1

−1

f (x + t)− f (x)

t
<∞.

This contains all α-Hölder functions α > 0.

Theorem: If f is Dini continuous at x the Smf (x)→ f (x).



Chapter 8.6: Fourier Analysis of Measures

Defn: M(Rn) is space of complex Borel measures on Rn.

Defn: If µ, ν are Radon measures on Rn we define the product

d(µ× ν)(x, y) =
dµ

d|µ|
dν

d|ν|
d(|µ| × |ν|)(x, y)

Defn: If µ, ν are Borel measures, then their convolution is

µ ∗ ν(E) =

∫∫
χE(x + y)dµ(x)dν(y).

The unit delta-mass at the origin is the identity for this.



Prop 8.4:

a. Convolution of measures is commutative and associative.

b. For any bounded Borel measurable function h,∫
hd(µ ∗ ν) =

∫∫
h(x + y)dµ(x)dν(y).

c. ‖µ∗ ν‖ ≤ ‖µ‖ · ‖ν‖. d. If dm = fdm and dν = 9dm, then d(µ∗ ν) = (f ∗
g)dm. In other words, on L1, convolution of measures agrees with convolution

of functions.

Proof of a: Commutativity is obvious from Fubini’s theorem . To see ssocia-

tivity note that regardless of the order it is evaluted in, we get

λ ∗ µ ∗ ν(E) =

∫ ∫ ∫
χ(x + y + z)dλ(x)dµ(y)dν(z).

Proof of b: Left to reader (approximate h by simple function and use linearity

and approximation).



Proof of c: Take h = d|µ ∗ ν|/d(µ ∗ ν). Since |h| = 1,

‖µ ∗ ν‖ =

∫
hd(µ ∗ ν) ≤

∫∫
|f |d|µ|d|ν| = ‖µ‖ · ‖ν‖.

Proof of d: If dµ = fdm and dν = gdm then for any bounded measurable h∫
hd(µ ∗ ν) =

∫∫
h(x + y)f (x)g(y)dxdy

=

∫∫
h(x)f (x− y)g(y)dxdy

=

∫∫
h(x)(f ∗ g)(x)dxdy

whence d(µ ∗ ν) = (f ∗ g)dm.



We can also define convolutions of measures with functions in Lp(Rn).

Prop. 8.49 If f ∈ Lp, 1 ≤ p ≤ ∞, and µ ∈M(Rn), then

f ∗ µ(x) =

∫
f (x− y)dµ(y)

exists for a.e. x, and f ∗ µ ∈ Lp with

‖f ∗ µ‖p ≤ ‖f‖p · ‖µ‖.

Proof. If f and µ are nonnegative, then f ∗µ(x) exists (possibly being equal∞
for every x, and by Minkowski’s inequality for integrals,

‖f ∗ µ‖p ≤
∫
‖f (· − x‖pdµ ≤ ‖f‖p · ‖µ‖.

In particular, f ∗µ(x) <∞ for a.e. x. In the general case this argument applies

to |f | and µ and the result follows easily. �

This implies L1 is an ideal in M(Rn), not just a subalgebra.



Defn: Fourier transform of a measure is

µ̂(ξ) =

∫
e−2πiξ·xdµ(x).

µ̂ is a bounded continuous function and (µ ∗mu)∧ = µ̂ · ν̂.

Recall vague topology on M(Rn) is weak* topology relative to C0(Rn).

Prop. 8.50: Suppose {µn} and µ are in M(Rn). If supk ‖µk‖ ≤ C <∞ and

µ̂k → µ̂ pointwise, then µk → µ vaguely.

Proof. If f ∈ S then f∨ ∈ S so by the Fourier inversion theorem∫
fdµk =

∫∫
f∨(y)e−2πiy·xdydµk(x)

∫
f∨(y)µ̂k(y)dy.

Since f∨ ∈ L1 and ‖µk‖ ≤ C the dominated convergence theorem implies∫
fdµk →

∫
fdµ. But S is dense in C0 so by Prop 5.17 (boundedness and

convergence on dense set implies strong convergence),
∫
fdµk →

∫
fdµ for all

f ∈ C0. Thus µk → µ vaguely. �



Chapter 8.7: Applications to PDEs

The term differential operator means a linear partial differential operator with

smooth coefficients, that is, an operator L of the form

Lf (x) =
∑
|α|≤m

aα(x)∂αf (x),

where aα ∈ C∞.

If the a’s are constants, we call L a constant-coefficient operator.

In this case, if f ∈ S,

(Lf )∧(ξ) =
∑
|α|≤m

aα(2πξ)αf (̂x),

It is convenient to write L in a slightly different form. Set

bα(2πi)|α|aα,

Dα = (2πi)−|α|∂α,

L =
∑
|α|≤m

bαD
α,



(Lf )∧ =
∑
|α|≤m

bαξ
αf̂ .

Given a polynomial P =
∑
|α|≤m bαξ

α, we can define the operator

P (D) =
∑
|α|≤m

bαD
α.

The polynomial P is called the symbol of the operator P (D).

Formally, one can solve P (D)u = f by taking

u = (f̂/P )∨.

If 1/P is the Fourier transform of a function φ then u = f ∗ φ.

However, to make this work the Fourier transform needs to be defined on all

these objects. This requires an extension, given in the theory of distributions.



Laplacian:

∆ =

n∑
k=1

∂2

∂x + k2
= −4π2

m∑
1

D2
k = P (D)

where P (ξ) = −4π|ξ|2.

Theorem 8.51: A differential operator T satisfies L(f ◦ T ) = (Lf ) ◦ T for

all translations and rotations T iff there is a polynomial P in one variable such

that L = P (∆).

Proof. Clearly L is translation-invariant iff L has constant coefficients, in which

case L = Q(D) for some polynomial Q in n variables. Moreover, since Lf )∧ =

Qf̂ and the Fourier transform commutes with rotations, L commutes with ro-

tations iff Q is rotation-invariant. Let Q =
∑
Qj where Qj is homogeneous

of degree j; then it is easy to see that Q is rotation-invariant iff each Qj is

rotation-invariant. To prove this, use induction on j and the fact that

Qj(ξ) = lim
r→0

r−j
m∑
j

Qi(rξ).



But this means thatQj(ξ) depends only on |ξ|, soQj(ξ) = cj|ξ| by homogeneity.

Moreover, |ξ|j is a polynomial precisely when j is even, so cj = 0 for j odd.

Setting bk = (−4π2)−kc2k, we have Q(ξ) =
∑
bk(−4π2|ξ|2)k or L =

∑
bk∆

k.

�



Defn: Dirichlet problem: Given an open set Ω ⊂ Rn, and a function f on its

boundary ∂Ω, find a function u on Ω such that ∆u = 0 on Ω and u|∂Ω = f .

We can use Fourier transform to solve this on a half-space. Denote coordinates

on Rn+1 by x1, . . . , xn, t. The Laplacian on Rn+1 is ∆ + ∂2
t .

Let Ω = {(x1, . . . , xn, t) : t > 0}. Then

(∆ + ∂2
t )u = 0,

becomes

(−4π2|ξ|2)û = 0o.

The general solution is

û(ξ, t)c1(ξ)e−2πt|ξ| + c2(ξ)e2πt|ξ|

û(ξ, 0) = f̂ (ξ).

This converts to

u(x, t) = (f ∗ Pt)(x)



where

Pt(x) =
ct

(t2 + |x|2)−(n+1)/2
.



Theorem 8.53: Suppose f ∈ Lp(Rn), 1 ≤ p ≤ ∞. Then the function

u(x, t) = (f ∗ Pt)(x)

satisfies (∆ + ∂2
t )u = 0 on Rn × (0,∞) and

lim
t→0

u(x, t) = f,

for a.e. x, and for every x at which f is continuous. Moreover, limt→0 ‖u(·, t)−
f‖p → 0.

Proof. See Folland. �



The same idea can be applied to the heat equation

(∂t∆)u = 0

on the upper half-space. The unique solution is

û(ξ, t) = f̂ e−4π2t|ξ|2,

or

u(x, t) = f ∗Gt(x), Gt(x) = (4πt)−n/2e−x|2/4t.



The wave equation is given by

(∂2
t −∆)u = 0.

u(x, 0) = f (x), ∂tu(x, 0) = g(x).

Applying the Fourier transform we get

(∂2
t + 4π2|ξ|2)û(ξ, t) = 0

û(x, 0) = f̂ (x), ∂tû(x, 0) = ĝ(x).

This yields

û(ξ, t, ) = (cos 2πt|ξ|)f̂ (x) +
sin 2πt|ξ|

2π|ξ|
ĝ(x).

Since

cos 2πt|ξ| = ∂

∂t

[
sin 2πt|ξ|

2π|ξ|

]
,

we get

u(x, t) = f ∗ ∂Wt(x) + g ∗Wt(x),

where

Wt(x) =

[
sin 2πt|ξ|

2π|ξ|

]∨
.



However, this inverse Fourier transform only gives a function when n = 1, 2 and

a measure when n = 3. In higher dimensions one needs to consider distributions.


