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MAT 533 is a continuation of MAT 532 in the Fall of 2020.

In the Fall, Prof. Cheng covered most of Chapters 1, 2, 3 and 5. He did not

cover the section on interpolation of Lp spaces. I am willing to discuss it briefly,

but I am not planning to cover it in detail.

We will try to cover as much of Chapters 4, 5, 7, 8, 9, 10 as we can (not

everything, though some chapters are short).

I work in analysis: conformal and quasiconformal mappings, holomorphic dy-

namics (especially transcendental dynamics), hyperbolic geometry, algebras gen-

erated by harmonic functions, analysis of fractals, computational geometry, op-

timal meshing.
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Textbook: Real Analysis: modern techniques and their applications,

2nd Edition.

by Gerald Folland (professor emeritus at Univ. Washington, Seattle)



Gerald Folland (1947–present)

Interview with Gerald Folland

http://www.math.stonybrook.edu/~bishop/classes/math533.S21/Notes/FollandInConversation.pdf


Chapter 4: Point Set Topology

4.1 Topological Spaces

4.2 Continuous Maps

4.3 Nets

4.4 Compact Spaces

4.5 Locally Compact Hausdorff Spaces

4.6 Two Compactness Theorems

4.7 The Stone- Weierstrass Theorem

4.8 Embeddings in Cubes



Chapter 5: Elements of Functional Analysis

5.1 Normed Vector Spaces

5.2 Linear Functionals

5.3 The Baire Category Theorem and its Consequences

5.4 Topological Vector Spaces

5.5 Hilbert Spaces

5.6 Notes and References

Chapter 7: Radon Measures

7.1 Positive Linear Functionals on Cc(X)

7.2 Regularity and Approximation Theorems

7.3 The Dual of C0(X).

7.4 Products of Radon Measures



Chapter 8: Elements of Fourier Analysis

8.1 Preliminaries

8.2 Convolutions

8.3 The Fourier Transform

8.4 Summation of Fourier Integrals and Series

8.5 Pointwise Convergence of Fourier Series

8.6 Fourier Analysis of Measures

8.7 Applications to Partial Differential Equations

Chapter 9: Elements of Distribution Theory

9.1 Distributions

9.2 Compactly Supported, Tempered, and Periodic Distributions

9.3 Sobolev Spaces



Existence theorem for ODE:

We will follow Prof. Varolin’s notes (posted on webpage).

Chapter 10: Topics in Probability Theory

10.1 Basic Concepts

10.2 The Law of Large Numbers

10.3 The Central Limit Theorem

10.4 Construction of Sample Spaces

10.5 The Wiener Process



Chapter 4.3: Nets

Basic idea: nets are like sequences, but only partially ordered.

A set in a metric space is compact iff every sequence has a convergent sub-

sequence.

A set in a topological space is compact iff every net has a convergent sub-net.

Every sequence is an net, but not conversely. It is possible for a sequence to

have a sub-net that is not a sequence.

We will use nets to prove Tychonoff’s theorem and in Chapter 5 when discussing

weak and weak* topologies on Banach spaces, and later when discussing topolo-

gies on spaces of distributions. These are not always metrizable (but one of the

most important, the weak* topology on probability measures is metrizable).



In a general topological space taking limits of all sequences in a set need not

give the whole closure.

CR = all complex functions with product topology.

A sequence converges in this topology iff it converges pointwise.

C(R) = continuous complex functions.

Theorem 2.9 says pointwise limits of continuous function are Borel. Thus “se-

quential closure” of C(R) are Borel functions.

But C(R) is dense in CR in product topology. Given any function, a neighbor-

hood consists of all functions approximating it to within ε on a finite set. A

continuous function can be chosen to agree with any function on a finite set.



A directed set is a set A equipped with a binary relation . such that

• a . a for all a ∈ A;

• if α . β and β . γ then α . γ;

• for any α, β ∈ S there is a γ with α . γ; and β . γ.



Defn: A net in X is a mapping from a directed set A into X .

Examples:

(1) N = {1, 2, 3, . . . } with usual ordering (sequences)

(2) finite sets under inclusion. Gives nets in product topology on CR.

(3) The set of neighborhoods of a point ordered by reverse inclusion.

(4) Finite partitions of an interval ordered by maximum gap length. Gives

limits for defining Riemann integrals.

(5) R \ {a} ordered by decreasing distance to a. Defines convergence to a

point.

(6) Product of directed sets. Define (α, β) . (γ, δ) iff α . γ and β . δ.



Defn: A net is {xα} is eventually in E ⊂ X if α . β ⇒ xβ ∈ E.

Defn: A net is {xα} is frequently in E ⊂ X if for all α there is a α . β

with xβ ∈ E.

Defn: A net converges to a point if it is eventually in every neighborhood of

that point.

Defn: A net clusters or accumulates at a point if it is frequently in every

neighborhood of that point.



Defn: x is an accumulation point of E if every neighborhood of x contains a

point of E other than x itself.

Prop 4.18.A: x is in accumulation point of E iff there is a net in E \ {x}
converging to x.

Proof. If x is an accumulation point every neighborhood hits E \ {x}. Define

a net by taking one such point from each neighborhood ordered by reverse

inclusion. This net converges to x.

If xα is a net in E \ {x} converging to x then every neighborhood of x has

contains some xα ∈ E \ {x}, so x is an accumulation point. �

Prop 4.18.B: z is in the closure of E iff there is a net in S converging to z.

Proof. Closure of E is the union of E and its accumulation set (Prop 4.1). �



Prop 4.19: A map f : X → Y of topological spaces is continuous iff every

convergent net maps to a convergent net.

Proof. If f is continuous and V is a neighborhood of f (x) then U = f−1(V ) is

a neighborhood of of x, so it eventually contains any net converging to x. Thus

V eventually contains the image of any such net.

Conversely, if f is not continuous at x, there is a neighborhood V of f (x) whose

preimage U is not a neighborhood of x, so x is in the closure of the complement

of U . By Prop. 4.18.B there is net in the complement converging to x, but the

image is not in V , so does not converge to f (x). �



Defn: {yβ}B is a subnet of {xα}A if there is a map B → A so that

• yβ = xα(β)

• for each α0 there is a β0 so that β & β0 ⇒ α(β) & α0.

A subnet can be larger than a net “containing” it.

Consider a dense sequence in C([0, 1]). Set of subsequences of sequence has

cardinality c of R.

But this sequence has subnets that converge to any element of C[0,1]. This space

has strictly more than continuum of elements. So there are subnets that are not

sequences (most of them).



Prop 4.20: x is a cluster point of X iff every net clustering at x has a subnet

converging to x.

Proof. Part 1:

Suppose there is a convergent subnet yβ to x. For any neighborhood V of x,

there is a a β1 so β & β1 ⇒ yβ ∈ V .

By the defn of subnet, For any α choose β2 so that β & β2 ⇒ α(β) & α.

By the defn of partial order there is a β3 & β1, β2 so that β & β3 ⇒ α(β) & α

and xα ∈ V . So xα is in V frequently.



Part 2:

If x is a cluster point of {xα}A, let N be the set of neighborhoods of x (ordered

by inverse inclusion) and take usual partial order on A×N . for each (U, γ) in

product choose α & γ so xα ∈ U . This subnet converges to x. �



Section 4.4 Compact Spaces:

Defn: a collection of open sets such that X = ∪αUα is called an open cover

of X .

Defn: X is compact if every open cover contains a finite subcover.

Defn: X is precompact if its closure is compact.

Defn: A family of sets Xα has the finite intersection property if any

finite number of them has a point in common.

Prop. 4.21 X is compact if ever family of compact sets with the finite inter-

section property has non-empty (infinite) intersection.



Prop. 4.22 A closed subset of a compact set is compact.

Prop. 4.23 If F is a compact subset of a Hausdorff space X and x 6∈ F , then

there are disjoint open sets U, V such that x ∈ U and F ⊂ V

Defn: A space is Hausdorff, a.k.a. T2, if given x 6= y there are disjoint open

sets U, V with x ∈ U , y ∈ V .

Prop. 4.24 Every compact subset of a Hausdorff space is closed.

In a non-Hausdorff space, compact sets need not be closed, and intersections

of compact sets need not be compact (Exercise 37). All our spaces will be

Hausdorff.



Felix Hausdorff 1868–1942

https://mathshistory.st-andrews.ac.uk/Biographies/Hausdorff/


Defn: A space is T1, if given x 6= y there is an open sets U with either

x ∈ U, y ∈ U c, or x ∈ U c, y ∈ U .

Defn: A space is normal, a.k.a. T4, if it is T1 and given disjoint closed sets

A,B there are disjoint open sets U, V with A ⊂ U , B ⊂ V .

Prop. 4.25: Every compact Hausdorff space is normal.

Prop. 4.26: If X is compact and f : X → Y is continuous, then f (X) is

compact.

Cor. 4.26: Complex valued continuous functions on a compact space are

bounded.

Prop. 4.28: If X is compact and Y is Hausdorff, then a continuous 1-1 map

f : X → Y has a continuous inverse, i.e., is a homeomorphism.

Thm. 4.29: If X is a topological space, TFAE:



(a) X is compact.

(b) Every net in X has a cluster point.

(c) Every net in X has a convergent subnet.

Proof. (b) ⇔ (c) is Prop. 4:20.

Assume (a) holds (X is compact). If xα is a net, let Eα = {xβ : β & α}
definition of partially ordered set implies this has finite intersection property,

hence so does family of closures Eα. By compactness, this family has non-empty

intersection E.

If x ∈ E then any neighborhood U of x hits every Eα, hence Xα clusters at x.

Assume (a) fails (X is not compact). Let {Uβ}B be an open cover with no

finite subcover. Let A be collection of finite subsets α of B ordered by inclusion

and define net on A by choosing xα not in ∪β∈αUβ. For every x ∈, this net is

eventually outside an open set containing x, so does not cluster at x. Hence it

clusters nowhere. �



Section 4.6: Two compactness theorems:

Defn: If {Xα}A is a family topological spaces, then X =
∏

αXα is the space

of all maps A→ ∪αXα that takes α into xα.

Defn: The product topology is the weakest making the projection onto each

coordinate continuous. The open sets are all finite intersections of inverse images

of open sets under the coordinates.

Corresponds to pointwise convergence on each coordinate.

Defn: We say p ∈
∏

CXα is an extension of q ∈
∏

BXα if B ⊂ C and p = q

on B.

Tychonoff’s Theorem: If {Xα} is a family of compact topological spaces,

then X =
∏

αXα is compact.



Andrei Nikolaevich Tikhonov 1906–1993

 https://mathshistory.st-andrews.ac.uk/Biographies/Tikhonov/


Tychonoff’s Theorem: If {Xα} is a family of compact topological spaces,

then X =
∏

αXα is compact.

Proof. We have to show any net xi has a cluster point. Let

P = ∪B⊂A{p ∈
∏
α∈
BXα : p is a cluster point of πB(xi)}

When B = {α} is a single point, the projected net has cluster point since Xα

is compact. Order P by inclusion.

Given a linearly ordered subset of P , we claim the union p∗ ∈ ∪B∗Xα is an

element of P . Indeed, p∗ has a neighborhood of the the form U =
∏
Uα where

Uα = Xα except for finitely many indices, all of which belong to some Bl in the

linear ordering. Thus the projection of xi into
∏

Bl
Xα is in

∏
Bl
Uα frequently,

so the projection on B∗ is in U frequently, so p∗ is a cluster point of it, so p∗ ∈ P .



By Zorn’s lemma P has a maximal element p ∈
∏

BXα. If B is not all of A,

choose γ ∈ A \ B. By the definition of P there is a net in the product over B

that clusters at p and hence a subset that converges to it. Since Xγ is compact,

there is a subnet that also converges when projected to Xγ, and this defines an

extension o B ∪ γ, contradicting maximality. Thus B = A.

Thus any net xi has a cluster point in
∏

AXα, proving the product space is

compact. �



Max Zorn (1906–1993)

https://mathshistory.st-andrews.ac.uk/Biographies/Zorn/


Defn: a family of functions is equicontinuous at x if for every ε > 0 there is a

neighborhood U so that x, y ∈ U ⇒ |f (x)− f (y)| < ε.

Defn: a family of functions is equicontinuous on X if it is equicontinuous at

x ∈ X .

{xn} is not equicontinuous on [0, 1]. Neither is {sin(nx)}.

Defn: a family of functions F is pointwise bounded equicontinuous on X if

{f (x) : f ∈ F} is bounded for each x.



Arzela-Ascoli Theorem, I: Let X be a compact Hausdorff space. If F is an

equicontinuous, pointwise bounded subset of C(X), then it is totally bounded

in the uniform metric and is precompact.

Arzela-Ascoli Theorem, II: Let X be a σ-compact, locally compact Haus-

dorff space. If fn is an equicontinuous, pointwise bounded sequence in C(X),

then there a subsequence that converges to some f ∈ C(X) uniformly on com-

pact subset.



Cesare Arzelà (1847–1912) or Giulio Ascoli (1843–1896)?

Wikipedia shows this picture for both.



Cesare Arzelà according to St.Andrews

https://mathshistory.st-andrews.ac.uk/Biographies/Arzela/


Section 4.5 The Stone-Weierstrass theorem:

Weierstrass’s Theorem: The polynomials are uniformly dense in C([0, 1]).

Throughout this section, X will denote a compact Hausdorff space.

Defn: A subset A of C(X) is said to separate points if for every x, y ∈ X
with x 6= y there exists f ∈ A such that f (x) 6= f (y).

Defn: A is called an algebra if it is a real vector subspace of C(X), such that

fg ∈ A whenever f, g ∈ A.

Defn: IfA ⊂ C(X,R), theA is called a lattice if f, g ∈ implies max(f, g) ∈ A
and min(f, g) ∈ A.

Since the algebra and lattice operations are continuous, one easily sees that if

A is an algebra or a lattice, so is its closure A in the uniform metric.



The Stone- Weierstrass Theorem: Let X be a compact Hausdorff space.

If A is a closed subalgebra of C(X,R) that separates points, then either A =

C(X,R) A = {f ∈ C(X,R : f (x0) = O} for some x0 ∈ X . The first

alternative holds iff A contains the constant functions.

Not true for complex functions. The algebra A generated by {zn}, n ≥ 0

on the unit circle separates points, but only contains functions that extend

holomorphically into the disk, e.g., z 6∈ A. More about this later.



Karl Weierstrass (1815-1897)

https://mathshistory.st-andrews.ac.uk/Biographies/Weierstrass/


Marshall Stone (1903-1989)

https://mathshistory.st-andrews.ac.uk/Biographies/Stone/


Lemma 4.46: Consider R2 as an algebra under coordinate wise addition

and multiplication. Then the only subalgebras are R2, {(O,O)}, and the linear

spans of (1, 0), (0, 1), and (1, 1).

Proof. These subspaces are evidently subalgebras.

If A ⊂ R2 containing a non-zero element (a, b), then (a2, b2) ∈ A. If a, b are

both non-zero and unequal then these two points are linearly independent and

generate the whole plane. Otherwise they generate one of the given subalgebras.

�



Lemma 4.47: For any ε > 0 there is a polynomial P on R such that P (O) = 0

and ||x| − P (x)| < ε on [−1, 1].

Proof. Proof. Many possible proofs. e.g.,

|x| =
√
x2 ≈

√
x2 + ε ≈

n∑
0

an(x2 + ε− 1)n,

where
∑
an(y − 1)2 is the Maclaurin series for

√
y, centered at 1. If P (0) 6= 0,

replace P by P − P (0). �

Corollary: If A ⊂ C(X,R) is a closed algebra, then f ∈ A⇒ |f | ∈ A



Lemma 4.48: IfA is a closed subalgebra ofC(X,R), and if f ∈ A⇒ |f | ∈ A,

then A is a lattice.

Proof. If h ∈ A is not the zero function, scale it to have supremum norm 1. By

the previous result |h| ∈ A. Thus

max(f, g) =
1

2
(f + g + |f − g|),

min(f, g) =
1

2
(f + g − |f − g|),

are in A. �



Lemma 4.49: Suppose A is a closed sublattice of C(X,R), and if f ∈
C(X,R). Suppose also that for every x, y ∈ X there is a gxy ∈ A that agrees

with f at x and y. Then f ∈ A.

Proof. For ε > 0, x, y ∈ X let

Uxy = {z ∈ X : f (z) < gxy(z) + ε}
Vxy = {z ∈ X : f (z) > gxy(z)− ε}.

For a fixed y, Uxy is cover of X , so has a finite subcover {Uxjy}n1 . Let

gy = max
j
gxjy,

and note f < gy + ε on X . Also f > gy − ε on

Vy = ∩Vxjy.
These sets are an open cover of X , so also have a finite subcover {Vkk}. Let

g = min
h
gxky,

and note g − ε < f < g + ε so |f − g| < ε. Since A is closed, f ∈ A. �



Proof of Stone-Weierstrass Theorem:

Proof. For x 6= y ∈ X let

Axy = {(f (x), f (y)) : f ∈ A}.
This is a subalgebra of R2 so has one of the forms described earlier.

If Axy = R2 for all x, y then we are done by the previous lemmas.

Axy can’t always be (0, 0) or span of (1, 1, ) since it separates points.

Assume Axy is the span of (1, 0) or (1, 0). In either case there is a point where

every f ∈ A vanishes, and only one such point since A separates points. The

previous lemma implies A = {f ∈ C(X,R : f (x0) = 0}i for some x0 ∈ X

If A contains all constant functions, there is no such point x0 so A is all contin-

uous functions on X . �



Cor. 4.50: If B is a subalgebra of C(X,R) that separates points then either

B is dense in C(X,R) or dense in

{f ∈ C(X,R : f (x0) = O}
for some x0 ∈ X .

Complex Stone-Weierstrass Theorem: Suppose X is a compact Haus-

dorff space. Suppose A ⊂ C(X) is a closed subalgebra that separates points

and that is closed under complex conjugation. Then A = C(X) or A = {f ∈
C(X) : f (x0) = 0} for some x0 ∈ X .

Proof. Since Re(f ) = (f + f )/2 and Im(f ) = (f − f )/2i, A contains it real

and imaginary parts. Apply SW-theorem to these. and �



Defn: If A is a subalgebra of C(X), a nonempty subset S of X is called an

A-antisymmetric set if whenever f is an element of A and the restriction of f

to S is real-valued, then the restriction of f to S is constant.

Associated to A is a unique decomposition of X into pairwise disjoint, non-

empty, closed, maximal A-antisymmetric sets. Denote this family by A(X).

Errett Bishop’s Stone-Weierstrass Theorem 1961: Let X be a com-

pact Hausdorff space, A a uniformly closed subalgebra of C(X) containing the

constants. Then f ∈ C(X) belongs to A iff for for every anti-symmetric set S

there is an F ∈ A so that f |S = F |S.

Burckel’s MMA article on Bishop’s theorem

https://www-jstor-org.proxy.library.stonybrook.edu/stable/pdf/2322166.pdf?refreqid=excelsior%3Ab33a3960f7afddbe4086c15fa927b727


Erret Bishop (1928–1983)

https://mathshistory.st-andrews.ac.uk/Biographies/Bishop


Machado’s Theorem 1977: Let X be a compact Hausdorff space, A a

uniformly closed subalgebra of C(X) containing the constants. Then

dist(f, A) = inf
g∈A

sup
x∈X
|f (x)− g(x)| = sup

S
dist(f |S, A|S),

where supremum on the right is over all anti-symmetric sets S.



There are many generalizations variations. Here is one I proved as a postdoc.

Thm. (C. Bishop 1996) If f is real valued and harmonic on the unit dist,

let A be the closed algebra generated by f and the set of bounded holomorphic

functions. If g ∈ L∞(D) then

dist(g, A) = inf
δ>0

sup
a∈C

dist(g,H∞(f−1(D(z, r)))).

paper

The closed algebra generated by f and the set of bounded holomorphic functions

is usually denoted H∞(D)[f ]. I f is constant on an open subset U of D, the

functions in A are clearly holomorphic on U , so the condition is reasonable.

Cor. (Axler-Shields, 1987) If f is a bounded harmonic function on D that

is not holomorphic, then H∞(D)[f ] contains C(D).

http://www.math.stonybrook.edu/~bishop/papers/Dist_Formula.pdf


Sheldon Axler (1949–present)

https://www.axler.net/


Allen Shields (1927-1989)

https://mathshistory.st-andrews.ac.uk/Biographies/Shields/
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