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ABSTRACT. We survey various mathematical aspects of the uncertainty principle, including 
Heisenberg's inequality and its variants, local uncertainty inequalities, logarithmic uncertainty 
inequalities, results relating to Wigner distributions, qualitative uncertainty principles, theorems 
on approximate concentration, and decompositions of phase space. 

Introduction 

The uncertainty principle is partly a description of a characteristic feature of quantum mechan- 
ical systems, partly a statement about the limitations of one's ability to perform measurements on a 
system without disturbing it, and partly a meta-theorem in harmonic analysis that can be summed 
up as follows. 

A nonzero function and its Fourier transform cannot both be sharply localized. (0. l) 

When translated into the language of quantum mechanics, as we shall do in §2, (0.1) says that 
the values of a pair of canonically conjugate observables such as position and momentum cannot both 
be precisely determined in any quantum state. Therefore, it leads to mathematical formulations of the 
physical ideas first developed in Heisenberg's seminal paper [5 l] of 1927 and widely promulgated 
thereafter. 

However, the uncertainty principle also has a useful interpretation in classical physics. Namely, 
if f ( t )  represents ~ e  amplitude of a signal (a sound wave or light wave, perhaps) at time t, the 
Fourier transform f tells how f is built from sine waves of different frequencies and (0.1) expresses 
a limitation on the extent to which a signal can be both time-limited and band-limited. This aspect 
of the uncertainty principle was already expounded by Norbert Wiener in a lecture in G6ttingen 
in 1925. Unfortunately, no written record of this lecture seems to have survived, apart from the 
nontechnical account in Wiener's autobiography [ 119, pp. 105-107], so one can only guess at what 
precise versions of (0. l) it might have contained. Whatever influence this lecture might have had on 
the physicists in the audience, however, the uncertainty principle did not really sink into the minds 
of signal analysts until Cabot's fundamental work [40] in 1946. Since then, it has become firmly 
embedded in the common culture. 

On the mathematical side, there were sporadic developments relating to the uncertainty prin- 
ciple in the fifty years after the initial work in the 1920's, followed by a steady stream of results in 

Math Subject Classifications. Primary 42-02, 42B 10, 26D 15; Secondary 43A25, 43A30, 81Q 10, 81 $30, 94A 12, 
94A17. 
Keywords and Phrases. uncertainty principle, Fourier transform, Heisenberg's inequality, logarithmic inequalities, 
Wigner distribution, Landau-Pollak-Slepian theory, phase space. 

(~ 1997 CRC Press, Inc. 
ISSN 1069-5869 



208 G. B. Folland and A. Sitaram 

the last two decades. The purpose of this paper is to give an overview of this work. We shall have 
nothing to say about the purely physical or epistemological aspects of the uncertainty principle or 
the applications of  the mathematics to particular problems in physics or engineering, and our refer- 
ences to the mathematical physics literature are less than comprehensive. Moreover, the uncertainty 
principle impinges directly on some other areas of  analysis with a large literature, notably, (i) the 
study of  the properties a function implied by restrictions on the support or the decay properties of  
its Fourier transform, (ii) the construction of orthonormal bases or frames for L 2 whose elements 
and their Fourier transforms are well localized (wavelets, etc.), and (iii) the body of  analytic results 
relating to signal analysis and communication theory. To do justice to the ramifications of  the uncer- 
tainty principle in any of these subjects would require a book by itself. Fortunately, such books have 
already been writ ten--notably Havin and JSricke [48] and Daubechies [28]--as  well as a number of  
good expository articles such as those by Benedetto [ 10] and Benedetto, Heil, and Walnut [ 13] and 
the collections in Price [92] and Benedetto and Frazier [12]. On these matters, therefore, we shall 
be brief. 

To begin, let us fix some notation and terminology. The reader may wish to proceed to § 1 and 
refer back as necessary. Dym and McKean [32] is a good reference for the relevant background on 
Fourier analysis. 

IR, C, and Z have their usual meanings, and "IF = {z ~ C : Izl = 1}. The Lebesgue measure 
of  a set E C Nn is denoted by IEI, and the charcateristic function of E is denoted by Xe. Inner 
products in any Hilbert space are denoted by (-, .). 

Suppose/z  is a probability measure on JR. The variance of /z  is 

V(/z) = inf f (x - a)2 dtz(x). 
aER g 

If  the integral on the right is finite for one value of a,  then it is finite for all a ,  in which case it is a 
quadratic function of a whose minimum is achieved when a is the mean of #:  

= j" x M(/~) dlx(x). 

Similarly, i f /z  is a measure on R n, we say that /z  hasfinite variance if f Ixl 2 dlz(x) < oo. In this 
case we define the mean M(/z) ~ R" and the covariance matrix V(lz) = (Vjk(lz)) by 

f = f yjygdlz(x)  ( y = x  M (Iz) M (I-t) ). 

I f  dl~(x) = p ( x ) d x  with p ~ L1(~  "), we shall call p a probability density function and write 
M(p)  and V(p) instead of M(/x) and V(#) .  

We shall define the Fourier transform on (L l + L2)(/!~ ") by 

= 5-f(~) = f f ~ )  e-2~ri~X f (x) dx. 

Then the inversion theorem and Parseval formula take the form 7 - 1 f ( y )  = 5r f (_y )  and 11~12 = 
Ilfll2. In particular, if f ~ L2(R ") and Ilfll2 = 1, then [ f l  2 and If]  2 are both probability density 
functions on ~" .  

In this connection the following observation is useful. For a,  b e ~" ,  let us define 

Then 

fa.b(X) = e2rrib'x f ( x  -- a). 

(fa,b )~(~ ) = e-2~ri~'(¢-b) f ~  -- b) = e2Jria'b (7)b -a(~ ). 

(0.2) 
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Thus the map f ~ fa,b preserves all L p norms of f and f w h i l e  shifting the centers of mass of f 
and f by a and b, respectively. 

We shall allow ourselves the following minor abuse of notation, along with other variations 
on the same theme: x j f  andA~jfdenote the functions x --+ x j f ( x )  and ~" ~ ~jf(s~). Thus, for 
example, (af /Ox j'f'-~ 2zr i~j f . 

Some of our discussion will pertain to Fourier analysis on groups other than ]~', so we briefly 
recall the basic notions. (See Folland [38] for more information.) Suppose G is a locally compact 
group, equipped with a fixed left Haar measure dx.  As with I1~', the Haar measure of E C G will 
be denoted by [E]. If rr is a unitary representation of G (always assumed strongly continuous) on 
a Hilbert space 9"~, its integrated representation is the representation of the Banach algebra L~(G) 
on 5£~ defined by 

7r(f)  = f f ( x ) r r ( x )  dx.  

If G is a Lie group, we also have the differentiated representation of its Lie algebra g. Namely, for 
X ~ 0, 7r (X) is the skew-adjoint operator on ~ that generates the one-parameter group zr (exp t X) 
according to Stone's theorem. That is, 

d /=0 zr(exp t X ) u  - u zr(X)u = ~-zr(exp tX )u  = lim 
t~o t 

on the domain of all u ~ 5ff~ for which the limit exists. This domain includes the space 3-C~ of C °o 
vectors for zr, that is, the set of all u 6 ~rr such that the map x --+ zr(x)u is Coo on G. 9-f~ is dense 
in 9£~, zr(X) maps 9-f~ into itself for all X ~ g, and the map X ~ z r ( X ) l ~  is a homomorphism 
of Lie algebras. (See, e.g., Knapp [67, pp. 51-57].) 

Suppose G is either (a) Abelian, (b) compact, or (c) unimodular, second countable, and type 
I, we shall call such groups Plancherel groups. Let G, the unitary dual of G, be a set containing 
exactly one member of each unitary equivalence class of irreducible unitary representations of G. 
The Fourier transform of f ~ L1(G) is the operator-valued function on G defined by 

f ( r r )  = r r ( f ) .  

(The convention for defining f i n  Folland~38] is slightly different.) There is a canonical topology 
on G and a unique Borel measure dzr on G, the so-called Plancherel measure, such that 

I, f i l ]  = 117( )11 ,s 

where II " ItHS denotes the Hilbert-Schmidt norm. (Implicit in this statement is the fact that f ( r r )  is 
Hilbert-Schmidt for almost every ~r.) If G is Abelian, G is identified with the group of continuous 
homomorphisms from G into ~, and Plancherel measure is a Haar measure on G. 

1 .  H e i s e n b e r g ' s  I n e q u a l i t y  

When one asks for a precise quantitative formulation of the principle (0.1), the most common 
response is the following inequality, usually called Heisenberg's inequality. This result does not 
actually appear in Heisenberg's paper [51], which gives an incisive analysis of the physics of the 
uncertainty principle but contains little mathematical precision. This omission, however, was soon 
rectified by Kennard [66] and Weyl [118, Appendix 1] (who credits the result to Pauli). 

T h e o r e m  1.1. 
l f  f E L2(~) and ]]fll2 = 1, then 

1 
g( [ f lZ )g ( [~[  2) > - -  

- 167r 2" 
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In other words,for any f e L2(~) andany a, b e ~, 

f (x_a)Zlf(x)lz dx f (~_b)Zlf(~)lZ d~ >_ Ilftl.__~16zr 2" (1.2) 

Equality holds in (1.2) if and only if f (x) = Ce2~ibx e -y(x-a)2 for some C e C and y > O. 

P r o o f .  By using the transformation (0.2) we may assume that a = b = 0, and clearly we 
may also assume that the integrals in (1.2) are finite. Since (f'Y"(~) = 27r i~f(~) ,  the finiteness 
of  f I~f]  2 implies that f is absolutely continuous and f '  e L 2. The derivative of  I f l  2 = f f  is 

2 Re f f ' ,  so if -cx)  < c < d < ~ ,  integration by parts yields 

f a  xlf(x)12 ~ fd 2 Re x f (x ) f ' ( x )  dx = - If(x)12 dx. 

Since f ,  x f ,  and f '  are all in L 2, the integrals in this equality approach finite limits as e -+ -c<~ 
or d --> oo and hence so do clf(c)l z and dlf(d)l  2. The latter limits must be zero, for otherwise 
l f ( x ) l  2 would be comparable to x - t  for large x and f would not be in L 2. Therefore, 

F F If(x)lZdx = - 2  Re x f ( x ) f ' ( x )dx .  (1.3) 

Inequality (1.2) now follows from the Schwarz inequality and the Plancherel formula: 

Ilfll <_4f x21f(x)12dxf lf'(x)12dx=16 2f x lf(x)l dxf¢:lT( )l d . 
Equality holds here if and only if f '  is a real multiple of x f ,  say f ' (x)  = - 2 y x f ( x )  with y 6 I~. 
This implies that f ( x )  = Ce - ~ ' ,  and of course y must be positive for f to be in L 2. [ ]  

An analogous result (Corollary 2.6) holds for functions on t~", but the proof  is technically 
harder because the square-integrability of  the distribution derivatives Of /Ox j  does not guarantee the 
continuity of  f .  One must first work under the assumption that f is smooth and rapidly decaying 
at infinity and then apply an approximation argument. The (somewhat lengthy) details can be 
found in Benedetto [I0,  Appendix A]. We shall present this argument in an abstract setting in §2. 
(Alternatively, one can reduce to the one-dimensional case by invoking the Stone-von Neumann 
theorem; see Folland [37, §1.5].) 

2 .  T h e  U n c e r t a i n t y  I n e q u a l i t y  i n  H i l b e r t  S p a c e  

Heisenberg's inequality (1.2) is an instance of  a more general inequality conceming selfadjoint 
operators on a Hilbert space, which also has an interpretation in terms of quantum observables. 
Although our focus is on functions and their Fourier transforms, we shall take a little time to discuss 
this general situation. See Folland [37] for more information. 

The states of  a quantum mechanical system are represented by unit vectors in an appropriate 
Hilbert space 9£, and the observable quantities of  the system are represented by selfadjoint operators 
on 9£. The way this works is as follows. If  A is a selfadjoint operator, by the spectral theorem there 
is a projection-valued measure P on 11~ such that A = f k d P ( k ) .  If u is a unit vector, the map 
/zu (E) = (P (E)u,  u) is a probability measure on/1~ that represents the distribution of  the observable 
A in the state u. The mean and variance of this measure are given by 

= f (dP(~.)u, u) = (Au, u), M (lZu) 

= [ ( ~ .  - M(/z , ) )  2 (dP(k)u, u) = II(A - V(/z.)  M(/x, ) )u  112 . 
J 
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M(/zu) represents the expected value of A in the state u, while V(/zu) is a measure of  the uncertainty 
of  A in the state u. In this context, the general uncertainty principle says that there is a positive 
lower bound for the product of  the uncertainties of two observables A and B in a state u whenever 
IABu, u) -%- (BAu, u). 

To make this more precise, suppose A and B are densely defined operators on 9£, with domains 
D(A) and D(B). Then the domain of the product AB is 

D(AB)  =- {u E D ( B ) :  Bu • D(A)}, 

and likewise for D(BA).  The commutator [A, B] is defined as 

[ A , B ] = A B - B A  on D ( [ A , B ] ) = D ( A B ) ( 3 D ( B A ) .  

Note that D([A, B]) C D(A) M D(B).  

Proposi t ion 2.1. 
I f  A and B are selfadjoint operators and or, t3 ~ C, 

II(A - ~ ) u l [  II(B - 13)u[[ >_ 21([A, B]u, u)l f o r a l l u  ~ D([A, B]). (2.2) 

P roo f .  Since subtracting multiples of  the identity operator from A and B does not affect 
[A, B], we may assume that ot = 13 = 0. If u ~ D([A, B]), 

I([A, B]u, u)l = I(Bu, Au) - (Au, Bu)l = 211m{Au, Bu)l < 211Aull IIBull. [ ]  

The triviality of  this proof should arouse one's suspicions, and indeed there is less to Proposition 
2.1 than meets the eye. In the first place, D([A, B]) need not be dense in 9£; it can even be {0}. 
This rarely happens in practice, but a more subtle difficulty is lurking in the shadows. The operator 
[A, B] is usually not closed. If  we denote its closure (the operator whose graph is the closure of  the 
graph of [A, B] in 9£ × 9£) by C, that is, C = [A, B], we would expect to have 

IIAull IlBull > ½1{Cu, u)l for all u E D(A) M D(B) M D(C). (2.3) 

But this is generally false. For example, take 9£ = L2([0, 1]); A f  = i f '  on the domain of  
all absolutely continuous f on [0, 1] such that f '  6 L 2 and f ( 0 )  = f (1 ) ;  and B f ( x )  = x f ( x )  
(D(B)  = 9£). Then [A, B] = i l  on the domain of  all absolutely continuous f such that f '  6 L 2 
and f (0 )  = f (1 )  = 0. Since this domain is dense in 9£ and [A, B] is bounded, C is simply i l  on 
9£. But i fu  is the constant function 1, we have Au = 0 while I(Cu, u)l = 1, in violation of  (2.3). 

Of course, (2.3) follows immediately from (2.2) if for any u ~ D(A) M D(B)  M D(C) there 
is a sequence {uk} in D([A, B]) such that uk --+ u, Auk ---> Au, Buk --+ Bu, and Cuk --+ Cu; the 
trouble with the above example is that this condition does not hold. The following theorem, a slight 
extension of  a result of  Kraus [69] (but with a new proof), describes an important situation in which 
it does. 

Theorem  2.4. 
Let G be a connected Lie group with Lie algebra 9, and let Jr be a unitary representation of G 

on 9£,r. Suppose that X, Y E g and that the linear span 2 of X, Y, and [X, Y] is an ideal in g. Then 
(2.3) holds with A = zr(X), B = zr(Y), and C = zr([X, Y]). 

R e m a r k .  Let 9£~ be the space of  C ~ vectors for zr. By results of  Nelson [87], CI9£~ is 
essentially skew-adjoint. Since [A, B] is skew-Hermitian and [A, B]19£~ = CI9£~, it follows that 
c = [A, B]. 

To prove Theorem 2.4, choose a sequence {Ok} C C~(G)  such that fO~ -- 1 for all k, 
supp(q~k) --+ {1} as k --+ c~, and sup~ f ICkl = M < ~ .  It is a classic result of  G~rding (see 
Knapp [67, p. 56]) that if u ~ 9£Jr, then rr(¢k)U ~ 9£~ and 7r(Ok)U --+ U as k --+ ~ .  We shall 
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show that if u ~ D(n(Z))  for all Z ~ 3, then rr(Z)zr(dPk)U ~ ~r(Z)u for all such Z. Since 
J-f~ C D([rr(X),  Jr(Y)]), the theorem then follows from the remarks preceding the statement. 

Suppose then that u ~ D(zr(Z)) for all Z E 2. We first claim that yr(x)u ~ D(zr(Z)) and 
zr(Z)yr(x)u = rr(x)3r(Ad(x-l)Z)u for all Z E 3 a n d x  ~ G. Indeed, since G is generated by expg  
and Ad(exp W) = exp(ad W) where (ad W)(Z) = [W, Z] E 2, we have u ~ D(zr(Ad(x)Z)) for all 
x ~ G and Z ~ 3. But then 

zr(Z)zr(x)u = d z r ( ( e x p  tZ)x)u d 1 = rc(x)-d~zr(x- (exp tZ)x)u t=o = zr(x)3r(Ad(x-t)Z)u" 
t=O 

Next, integrating both sides of  this equation against ~k (x), we obtain 

zr(Z)Jr(dpk)u = f (bk(x)rr(x)~r(Ad(x-l)Z)u dx 

~--- 7 r (~k )~ (Z )u  --[- f ( bk (X)J r ( x ) [ z r (Ad(x - l )Z )u  - n ' (Z)u]  dx. 

Now zr(~b~)zr(Z)u -+ zr(Z)u as k --~ oo, and the second term on the right is bounded by 

M sup [Irr(Ad(x-l)Z)u-zr(Z)ul[.  
x~supp~k 

Since x --~ A d ( x - l ) Z  is continuous from G to 3 and since Z -+ 7r(Z)u is linear and hence 
continuous from 2 to the finite-dimensional space rr(2)u, this supremum tends to zero as k -~ cx~, 
and we are done. [ ]  

As far as we know, it is an open question whether the hypothesis in Theorem 2.4 that X, Y, 
and [X, Y] span an ideal is necessary. In stating the theorem, one could perfectly well assume that 
1~ = 3 (the case considered by Kraus [69]), but the statement as given is natural for the proof  and 
also for the most important application, the n-dimensional generalization of Theorem 1.1. 

To wit, on Lz(IR n) we consider the selfadjoint operators Pj and Qj (1 < j < n)corresponding 
in quantum mechanics to the components of  momentum and position (with Planck's constant h taken 
to be 1). They are defined by 

p j f = ~ - I [ ~ j ~ ' ( ~ ) ] _  1 Of 
2rri Oxj' Q j f ( x )  = x j f ( x )  

on the domains of  all f ~ L 2 such that ~ j f ' ~  L 2 o r x j f  E L 2, respectively. 2zriPj and 2zriQj are 
the infinitesimal generators of  the one-parameter unitary groups 

Uj( t ) f (x )  = f ( x  + tej), V j ( t ) f (x )  = ea~itxJf(x), 

where e j  is the j t h  standard basis vector for IR n. These groups fit together to make a unitary 
representation ~r of  the (2n + l)-dimensional Heisenberg group Hn, which is the group whose 
underlying set is IR" x IR" x IR and whose group law is given by 

( p , q , z ) ( p ' , q ' , z ' ) =  ( p +  p', q +q ' ,  z + z' + ½ ( p . q ' - q -  p')). 

Its Lie algebra I~n has the same underlying set, with Lie product 

[(p,  q, z), (p ' ,  q' ,  z ')] = (0, O, p .  q ' -  q -  p ' ) ,  

and the exponential map exp : 19n ~ H~ is the identity map in these coordinates. The representation 
in question is 

cr(p, q, z) f (x) = e2rriz+2rtiq'x+Jrip'q f (x + p). (2.5) 

Clearly Uj(t) = rr(tej, 0, 0) and Vj(t) = rr(O, tej, 0); thus, if we set 

Xj = (e j, O, 0), Yj = (0, ej, 0), Z = (0, 0, 1), 
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we have 

o ' ( X j )  = 27riPj, ~(Yj)  = 2yriQj, o([Xj,  Yj]) = ~7(Z) = 27ril. 

For each j ,  the span of X j, Yj, and Z is an ideal in I~,, so Theorem 2.4 applies to give the following 
result. 

Corollary 2.6. 
l f  f E L2(]l;~n), a, b E R n, and 1 < j < n, 

f ( x j _ a i ) Z l f ( x ) 1 2 d x f ( ~ j _ b j ) 2 i f ( ~ ) l Z d ~ >  II f II___~ 
- 16rr2" 

The case n = 1 of Corollary 2.6 is of course Theorem 1.1. The basic integration-by-parts 
argument in the proot: of Theorem 1.1 finds its general expression in Proposition 2.1, and the ap- 
proximation argument needed to finish the proof in dimensions n > 1 is embodied in Theorem 2.4. 
If one works out the proof of Theorem 2.4 for the particular case considered here, one finds that the 
space of C ~ vectors for the representation a in (2.5) is simply the Schwartz class S(/~ ~) and the 
approximation procedure in the proof of Theorem 2.4 amounts to approximating L 2 functions by 
Schwartz functions in the obvious way, that is convolving with a smooth bump function and then 
multiplying by a smooth cutoff function. (More precisely, this is the result if one takes the functions 
q~g in the proof to be of the form ~bk (p, q, z) = e-zrip'q ~)kl (p)cpk2 (q)Cpk3 (Z).) 

In general, two selfadjoint operators A and B on a Hilbert space ~ such that [A, B] = (2zr i ) - l  I 
are said in quantum mechanics to be canonically conjugate. In this case the prescription zr(X) = 
27riA, zr(Y) = 2yriB, re(Z) = 27rii defines a representation of the Lie algebra hi. Theorem 2.4 
implies that one has an uncertainty inequality 

Ilull 2 
II(A - o0ull II(B -/3)ull  _> - -  (u s 9£) (2.7) 

47r 

(with the understanding that the left side is infinite if u f~ D(A) or u ~ D(B))  provided that the 
representation Jr of D~ exponentiates to a unitary representation of H~. But the example following 
Proposition 2.1 shows that this hypothesis is not a mere formality. 

Taking the square root of both sides in Corollary 2.6, summing over j ,  and using the Schwarz 
inequality for vectors in C ", we arrive at the following n-dimensional form of Heisenberg's inequality. 
We shall obtain an improved version of it in §5. 

Corollary 2.8. 
I f  f ~ L2(]~ n) anda, b E R ~, 

f f Ix -a l21 f (x )12dx  I~ -blZlf(~)12d~ > - - I l f l l ~ -  (2.9) 
- 16rr2 

When specialized to radial functions, Corollary 2.8 is equivalent to an inequality concerning 
Hankel transforms of integer or half-integer order. The generalization to Hankel transforms of 
arbitrary positive order has been established by Bowie [21 ]. 

Gesztesy and Pittner [42] give further conditions under which (2.3) is valid, with examples 
and counterexamples. Chistyakov [24] has some generalizations of Proposition 2. I to n-tuples of 
operators. Ishigaki [59] discusses relationships between uncertainty inequalities of the type (2.7) and 
other conditions on the operators A and B. Lahti and Maczynski [71] examine the role of uncertainty 
inequalities in general quantum logics. Kempf [65] derives an uncertainty inequality for operators 
satisfying a quantum-group analogue of the canonical commutation relation. Hetffer and Nourrigat 
[52] prove a Heisenberg-type inequality for systems of pseudodifferential operators satisfying a gen- 
eralized form of the canonical commutation relations. Spera [ 109] discusses uncertainty inequalities 
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in the context of geometric quantization of K~ihler manifolds and shows that certain analogues of 
Gaussian wave packets provide the extremal functions. 

3. Variations on Heisenberg's I n e q u a l i t y  
In this section we return to the question of giving precise formulations of the principle (0.1) 

by considering some generalizations and modifications of Theorem 1.1. For this discussion we shall 
avail ourselves of the transformation (0.2) at the outset to remove the constants a and b from Theorem 
1.1 and write the conclusion in the form 

Ilxfll211~le _> II f 11---~22 (3.1) 
4zr 

One obvious way to extend (3.1) is to replace L 2 norms by L p norms or the factors o fx  and 
by other powers of x and ~. For exainple, we can obtain the generalization 

t lx f l lp l l~ lp  > I1ftl----~22 (1 < p < 2) 
- 4 ~ r  - - 

b y  starting with (1.3) and applying first H61der's inequality, 

Ilftlz 2 < 211xfllpllf'llp,, 

and then the Hausdorff-Young inequality together with the Fourier inversion theorem, 

IIf'llp' _< II(f'Y'llp = 2rrll~lp. 

More generally, one can consider inequalities of the form 

Illxl°fll lll l  l -'>gl)fll= (f L2(~)), (3.2) 

where a, b E (0, ~ ) ,  p, q E [ 1, cx~], and y E (0, 1). Two observations are crucial to the understand- 
ing of (3.2). First, invariance under dilations imposes a restriction on the parameters a, b, p, q, y; 
and second, under this restriction, (3.2) is equivalent to an analogous "additive" inequality. To be 
precise, we have the following lemma. 

Lemma 3.3. 
A necessary condition for  the validity o f  (3.2) is that 

( 1 1 )  ( 1  1 )  
y a + - -  = ( l - y )  b + - -  . (3.4) 

P q 

Moreover, if(3.4) is satisfied, (3.2) is equivalent to 

×}llxlafllp + (I -- ×)ll l~ib:-"]lq _> KIIfll2 (f ~ L=(~)). (3.5) 

Proof. Let f¢(x) = f(cx) (c > 0). If we substitute fc for f in (3.2), we obtain 

c-y(a+(I/p))+(1-×)(b+(,/q)-Ol]lxla f r b , -r  II.lll l fTq >- Kc-l /2l l f l l2 .  

If this is to be true for all c, the exponents of c on the left and right must be equal, that is, (3.4) must 
hold. 

Inequality (3.2) implies (3.5) because of the elementary inequality s×t l -v  < ys  + (1 - y)t  
(s, t > 0, y ~ (0, 1)). On the other hand, if we substitute f¢ for f in (3.5) and multiply through by 
c 1/2, we obtain 

yc-a-(l/p)+(1/2)ll]xla f l l  p -4-(1 - y)cb+(l/q)-(1/2)lll~lb fTq  > Xllfll2- 
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If (3.5) is valid, then this inequality holds for all c > 0, and under condition (3.4) it is easily verified 
that the minimum value of the left side (as a function of c) is nothing but the left side of (3.2). [ ]  

It therefore suffices to study inequalities of the form (3.5), and if one is not worried about the 
sharpness of the constant K, one can dispense with the factors of y and (I - y') on the left. Here 
there is no restriction of the form (3.4), and the definitive result has been obtained by Cowling and 
Price [26]. 

T h e o r e m  3.6. 
Suppose p, q E [1, cx~] and a, b > O. There is a constant K such that 

IllxJ°fll  + II) l  lq >__ gilfJt= (3.7) 

for  all tempered functions f such that f is also a function, i f  and only i f  

1 1 1 1 
- - - and b > - - - .  (3.8) 

a > 2  p 2 q 

Consequently, (3.2) is valid (with perhaps a different constant K)  i f  and only if (3.4) and (3.8) both 
hoM. 

The proof of this theorem in [26] involves a fair amount of  work, but it requires only standard 

real-variable machinery together with the fact that f~_~ I f ( x ) [ 2 d x  < C~ < 1 when Ilfll2 = 1 and 

f is supported in a fixed bounded set, which we shall prove (Theorem 8.4). The case p = q = 2, 
a = b > 0 of (3.2) was first obtained via different methods by Hirschman [54]. 

Cowling and Price [26] also prove generalizations of (3.7) in which Ix I a and It I s are replaced 
by more general weight functions. Generalizations of (3.2) of the same sort can be found in Benedetto 
[10], [11] and Heinig and Smith [50]. 

De Bruijn [29] observed that a sharpened form of  Theorem 1.1 can be derived using the Hermite 
functions 

21/4 ( - 1  ) k ' •x 2 d : _2;,rx 2 .  
hk(x) = ~ ~ e dx-----~te ). 

(The normalizations here are a bit different from the usual ones.) It is well known (see Folland [37, 
§1.7]) that (i) {hk}~ is an orthonormal basis for L2(~),  (ii) h'k = i -khk,  and (iii) 2v/-~xh~(x)  = 

~/k + 1 hk+i(x) + ~ /~hk - l ( x ) .  Given f ~ Lz(~) ,  if one expands f in a Hermite series according 
to (i) and then uses (ii) and (iii) to obtain the corresponding expansions of x f  and ~ f ,  one easily 
arrives at the identity 

1 
Ilxfll22 + II~f]l~ = ~ ~-'~(2k + l ) l ( f ,  hk)l 2. (3.9) 

0 

Since II fll~ = ~ o  I(f, hk)l 2, this implies that 

lixfll~ + IltS]]l~ > ilfll__~ 
- -  2 ~  ' 

with equality if and only if f ( x )  = cho(x) = c'e -"x ' .  This in turn implies Theorem 1.1 by the 
dilation argument used to derive (3.2) from (3.5). Another sharpened form of Theorem 1.1 using 
Hermite functions can be found in Mustard [83]. 

The identity (3.9) also yields an improvement on Theorem 1.1 for odd functions. Namely, if 
f is odd, then (f, hk) = 0 for k even, so 

Ilxfil 2 + il~fll~ >_ 311fll~ 2zr ( f ( - - x )  = - - f ( x ) ) ,  
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with equality if and only if f ( x )  = ch] (x) = c 'xe  - ~ : .  As above, this implies that 

Ilxflhll~f'lh >_ 311f11---'-~22 ( f ( - x )  = - f ( x ) ) ,  
4zr 

with equality if and only if f = cxe  -dx2. (Note that if f is odd, then Ifl 2 and If] 2 are centered at 
0, so the left side of (1.2) is minimized at a = b = 0.) Skoog [102] has used this result to derive an 
improved uncertainty inequality for functions vanishing on a half-line. 

The Hermite function hk is the eigenfunction with eigenvalue 27r(2k + 1) of the Hermite 
operator - ( d / d x )  2 + 4rr2x 2. Thus the extremal functions for Heisenberg's inequality (1.2) are the 
ground states (eigenfunctions of lowest eigenvalues) for the operators - ( d / d x )  2 + cx 2 (c > 0). 
These are the quantum Hamiltonians for particles moving in a potential well V(x)  = cx 2, and it is 
reasonable to expect the ground states for - ( d / d x )  z + V(x )  also to have a rather small uncertainty 
product for many other potentials V. Some precise results along these lines have been obtained by 
Kahane, Lrvy-Leblond, and Sjrstrand [61]. Moreover, Borchi and Marsaglia [19] have observed 
that one can find functions f supported in a finite interval [ - a ,  a] (and with Ilfl12 = 1) for which 
V ( l f l 2 ) V ( I f l  2) is arbitrarily close to 1/16rr 2 by taking f to be the ground state for a Hermite 
operator - ( d / d x )  2 + cx 2 on I - a ,  a] subject to the boundary condition f ( - a )  = f (a) = O. 

Theorem 1. I is somewhat unsatisfactory from the point of view of signal analysis, for the 
following reason. Suppose f represents the amplitude of a signal; for convenience we assume 

Ilfll2 = 1. f must be real-valued, which means that f ' ( - ~ )  = ~(~), and in particular I ~  2 is even. 
Thus, to say that a signal is localized in frequency can only mean that I~  2 has a peak at some point 
~0 and an equal one at -~0- But if~o is large, the variance V( I~  2) will be large even if the peaks are 
narrow, so Heisenberg's inequality provides little information. One way around this difficulty is to 
use the local uncertainty inequalities that we shall discuss in the next section. Another one, suggested 
by Gabor [40], is to replace f by the "complex signal" f + i H f  (H being the Hilbert transform), 
whose Fourier transform is 2fx(0.~). A third one is to to consider the "one-sided variance" 

V+(I~ 2) = inf f ~ ( s  e - b)217(~)12 d~ 
b>0J 0 

instead of V(I~2).  Hilberg and Rothe [53] have shown that for real f with ][f[12 = l, the prod- 
uct V(I f I2)V+([~I2)  has a positive lower bound, which is the smallest eigenvalue of a certain 
Sturm-Liouville problem, and the extremal functions are the Fourier transforms of the correspond- 
ing eigenfunctions. See also Kay and Silverman [54] for the earlier history of this problem. 

Uffink and Hilgevoord [115, 116] have developed a different version of the uncertainty prin- 
ciple. Given two fixed numbers a,/~ E (0, 1), for a function f E L2(~) with [[fl[2 = 1 they define 
the mean width W ( f )  and the mean peak width w ( f )  of f to be, respectively, the smallest W and 
the smallest w such that 

f~+w/: f w ) f ( x )  dx  max / If(x)l  2 dx  = or, f ( x  - = ft. 
c J c -  W/2 J 

They then derive inequalities relating W ( f )  to w(f') and argue that these inequalities capture the 
physics of the uncertainty principle more effectively than Heisenberg's inequality. 

Garofalo and Lanconelli [41], Thangavelu [114], and Sitaram, Sundari, and Thangavelu [101] 
have obtained three related but inequivalent analogues of Heisenberg's inequality for functions on the 
Heisenberg group H,. Price and Sitaram [97] and Hogan [56] have obtained inequalities of the same 
sort for functions on symmetric spaces of noncompact type and locally compact Abelian groups, 
respectively, and Thangavelu [ 114] has some related results for Hermite and Laguerre expansions. 
Nahmod [84] has derived an uncertainty inequality in a very general setting that relates to the spectral 
geometry of elliptic and subelliptic operators. 
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4 ,  L o c a l  U n c e r t a i n t y  I n e q u a l i t i e s  

Heisenberg's inequality says that~f f is highly localized, then f ' c anno t  be concentrated near 
a single point, but it does not preclude f from being concentrated in a small neighborhood of two or 
more widely separated points. In fact, the latter phenomenon cannot occur either, and it is the object 
of local uncertainty inequalities to make this precise. 

The first such inequalities were obtained by Faris [34], and they were subsequently sharpened 
and generalized by Price [91, 93]. The principal results in the setting of L 2 norms are summarized 
in the following theorem. As in §3, we implicitly use (0.2) to reduce to the case where f and f a r e  
centered at the origin. 

T h e o r e m  4.1. 

l there is a constant K~ such that for  all f E L2(~ ") and all measurable i. I f  O < ot < ~n, 
E C I~ n, 

f~ I~ ~ <_ K~IEF~/"III~I~ fll ~. 

i i .  1 I f  or > 5n, there is a constant K~ such that for  all f ~ L2 (~n) and all measurable E C R n, 

[ I/i: _< x~lel II s I1~-'"/°' II Ixl~ ;11~ "/° 
J E  

Part i is proved in Price [91] and Price and Sitaram [97], and part i i  is proved in Price [93]. 
For both parts, the case ct = 1 is due to Faris [34]; related results are in Benedetto [10]. Price [91] 
also contains a generalization involving the L p norm of Ix l~ f  rather than the L z norm. As in the 
preceding section, the relations among the exponents in these inequalities are forced by homogeneity 

t considerations. As discussed in [93], examples show that the restriction ot > 5n is necessary for part 

and it is a simple exercise to see that i cannot hold for ot > 5n. i i;  hence part i also fails for c~ = ~n, l 
The constants K~ can be described quite explicitly, but we shall not do so here. 

Let us indicate the proof of  part i. Let Xr denote the characteristic function of {x : Ixl < r} 
and g~' = 1 - gr- Then for any r > 0 we can write 

if /2 = IlfxEli2 _< II(fx,-Y"x~tl2 + I I ( fx ; )xe l l2  

<_ IEl~/211(f Xr~loo + IIfx ' l l2.  

Now 

and 

ll(:x.~loo _< ,:Xrli, _< Ilul-~x.ll~llrxl":ll~ _< C.r'"/~)-~llt~l~:ll~ 

,fx'U~ ~ Iltxt-~x'lloollixl~fll~ ~ r-~lltxl~fll~, 
s o  

I f j  2 < (C~lElmr¢"/2)-"  + r-~)lllxl~/lt~. 

The desired result is obtained by choosing r so as to minimize the quantity on the right. 
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Each of the inequalities in Theorem 4.1, for any fixed value of or, implies a corresponding 
1 we have global uncertainty inequality of the type (3.2). For example, if 0 < 0t < 5n, 

=/ 
I<r  J i l l  > r  

r - 2 a  [[ [~ [af~12 2 . 

Choosing r so as to minimize the expression on the right, we obtain 

I]fH~ < g"lllxl fll21ll l fT:. 
1 Thus, local uncertainty inequalities are A similar argument yields the same result when a > ~n. 

qualitatively stronger than the global ones of §3. It should be noted, however, that in the case et = 1 
the constant K I' thus obtained is not the optimal constant 4~r/n of Corollary 2.8, even if one uses the 
best constant K~ in Theorem 4.1. 

The form of the inequalities in Theorem 4.1 adapts itself readily to other Plancherel groups. 
Indeed, the analogue of part i for such a group should be 

f llf'(rr)ll~s dzr golEI2°llw°fll 2 (0 0 t ) ,  (4.2) < .( < 

where IEI is the Plancherel measure of E and w is a weight function on G related to the distance to 
the group identity or perhaps the distance to a suitable "thin" subset of G. Results of this sort have 
been obtained in the following situations: 

1. (Price and Racki [94]) G is the n-toms "IF" and w(x) = Ix]', Ixl being the Euclidean distance 
from x to the identity. There is also a generalization with IlwOfll2 replaced by [[w°fllp. 

2. (Price and Sitaram [96]) G is a compact metric group and w(x) is the measure of the smallest 
ball about the identity containing x. Here the I EI on the right, however, is not Plancherel 
measure but a somewhat larger measure. An analogue for functions on compact Riemannian 
manifolds, relative to the spectral decomposition of the Laplacian, is also given. 

3. (Price and Sitaram [97])G is either a noncompact semisimple Lie group or a Euclidean 
motion group, and w(x) is the measure of the set of points whose distance (in a suitable 
sense) to the maximal compact subgroup K of G is at most that of x. Here, however, the 
authors establish (4.2) only for K-finite functions; this restriction is necessary to obtain a 
bound for IIf(~r)llHs in terms of Ilflll- 

4. (Price and Sitaram [97]) G is the Heisenberg group H, described in §2 and w(p, q, z) = Izl. 
Another version of (4.2) for Hn, with w(p, q, z) = ((Ipl 2 + Iq 12) 2 + Iz12) "÷~ but involving 
a more refined description of the Fourier transform on H,,  appears in [101]. 

5. (Hogan [56]) G is a locally compact Abelian group. 

In all of these cases, the basic idea of the proof is similar to that given above, but the complete 
argument involves results from the representation theory of the group in question. 

We return to ~n. One consequence of Theorem 4.2 is that if II f 112 = I and E is the complement 
of a set of small measure, a sufficiently small upper bound on f e  1~2 will force a positive lower bound 
on the variance V(Ifl2). Strichartz [110] has shown that a similar result holds for much "thinner" 
sets E provided that they are "evenly distributed." For example, if E is the union of a collection 
of evenly spaced concentric spheres or a collection of evenly spaced parallel hyperplanes and tr 
denotes surface measure on E, a sufficiently small bound on f e  If]2 dtr will imply a positive lower 

bound on V(lfl2). (It is no restriction to assume that V(If l  2) < ~z, which means that f b e l o n g s  
to the Sobolev space L2; this is enough to guarantee that the restriction of f" to a codimension- 
one submanifold is well defined.) Strichartz [110] also has a similar result for functions f on 
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the unit sphere S, C ~ :  If f = ~ f~ is the expansion of f in spherical harmonics and E is 
an "evenly spaced" subset of Z +, a small upper bound on ~ E  IIA II 2 will imply a positive lower 
bound on fs, sin2d(x)lf(x)12d(r(x) where d(x) is the distance from x to a fixed xo ~ Sn. An 
analogue of Strichartz's theorem for functions on real hyperbolic n-space has been obtained by 
Sun [112]. 

If the function f is supported in a bounded set, one easily obtains bounds on l a n d  its derivatives 
that limit the concentration of f in any small set and may provide lower bounds for the concentration 
of f i n  sufficiently large sets. For example, one has the following simple local uncertainty inequality: 

f e l f ] 2  IEI II~l 2 IEI Ilfll~ tel I{x " 0}111fll~- < < < f ( x )  # (4.3) 

A local uncertainty inequality in this spirit, but applying in some cases to sets E of infinite Plancherel 
measure, has been obtained for the spherical Fourier transform on certain noncompact symmetric 
spaces by Shahshahani [98]. 

We close by quoting an interesting theorem of Logvinenko and Sereda [79] and Kacnel'son 
[60] (see also Havin and JSricke [48]), obtained by studying L e norms on spaces of entire functions 
and then applying the Paley-Wiener theorem. If E C ~ and 1 < p < ~ ,  the following conditions 
are equivalent: (i) for every bounded B C R ~ there exists c > 0 such that fe  Im p > cl lf] lp p for all 
f supported in B, and (ii) there exist y > 0 and a cube K C R ~ such that IE A (K + x)l >_ ~' for 
all x ~ ~n. 

5 .  L o g a r i t h m i c  U n c e r t a i n t y  I n e q u a l i t i e s  

Suppose p is a probability density function on R n. Following Shannon [99], we define the 
entropy of p to be 

E(p) = - f p(x) log p(x) dx. 

This notion of entropy is related but not identical to the more familiar entropy - ~ Pi log Pi (also 
due to Shannon [99]) of a probability distribution on a discrete sample space. Unlike the latter, E(p) 
can have any value in [-c<~, oo], and it can also be undefined (i.e., of the form co - c~). Clearly 
any sharp peaks in p will tend to make E(p) negative, whereas a slowly decaying tail will tend to 
make E (p) positive; hence E (p) is a measure of how localized p is. (See Bialynicki-Birula [ 17] for 
a discussion of the significance of entropy in quantum mechanics.) E(p) is related to the covariance 
matrix V(p) as follows. 

Theorem 5.1. 
l f  p is a probability density function on ]~n with finite variance, then E (p) is well defined and 

E(p) <_ ½ log [(2rre) n det V(p)] .  (5.2) 

This theorem is due to Shannon [99], who argued by proposing to maximize E(p) among all 
p with a given variance. He solved a calculus of variations problem to find that the critical points for 
E are the Gaussians, computed E(p) for p Gaussian, and claimed (5.2) as a result. That the critical 
points actually give the global maximum can be established by using the concavity of the functional 
E - - a  point Shannon omitted to mention. Rather than give the details, we shall present an elegant 
proof that was communicated to us by W. Beckner. 

By composing p with a translation and a rotation, which does not affect the quantities in (5.2), 
we may assume that M(p) = 0 and that the covariance matrix Vjk (p) = f xjxkp(x) dx is diagonal. 
Moreover, if p(x) is replaced by 

Cl'''Cnp(ClX1 . . . . .  CnXn) (¢1 . . . . .  Cn > 0), 
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then both sides of (5.2) decrease by the amount ~ log cj; so by taking cj = ~ (p) we may even 
assume that V(p) = I. Let 

dp(x) = (2rc)n/2elxl2/2p(x),  dy(x)  = (27r)-n/2e-lX12/2 dx 

so mat f ~ dy  = f p dx = 1. Since ?" is a probability measure and t log t is a convex function of 
t, Jensen's inequality gives 

1 
=2n log 27r + ~ ~ Vii(p) - E(p). 

Since Vii(p) = 1 = det V(p), (5.2) follows. 
The fundamental uncertainty inequality in terms of entropy is the following. 

Theorem 5.3. 
I f  f 6 L2(R ") and Ilfll2 = 1, we have 

E( l f l  2) + E( l f ]  2) > n(t  - log2) 

whenever the left side is well defined. 

Hirschman [54] conjectured Theorem 5.3 but was able to prove only the weaker inequality 

g ( l f l  2) + g ( l ~  2) > 0. (5.4) 

(Leipnik [76] independently discovered Theorem 5.3, but his argument contains the same sort of 
gap as Shannon's proof of Theorem 5.1, and concavity isno help here.) Hirschman's proof of (5.4) 
consists of combining the Hausdorff-Young inequality Ilfllq < Ilfllp (I < p < 2, p - l  + q-1 = 1) 
with the following trivial but useful lemma. 

L e m m a  5.5. 
Suppose q~(t) < ~( t )  for a < t < b and ~b(a) = ~(a).  l f  qb and ~ are differentiable at a, 

then dp'(a) < ~'(a). 

If one writes the Hausdorff-Young inequality as 

f [/ ]o ]~[q <_~ l f ]  q/(q- l )  (q > 2) 

and applies Lemma 5.5 to the expressions on the left and right as functions ofq (with a = 2), assuming 
f is such that all the integrals in question are finite for q near 2, one immediately obtains (5.4). (For 
the straightforward limiting argument to remove the restriction on f ,  we refer to Hirschman [54].) 
As observed by both Beckner [6] and Bialynicki-Birula and Mycielski [18], Theorem 5.3 follows 
by applying the same argument to the sharp Hausdorff-Young inequality of Beckner [6], 

Ilf~lq < p,/2pq-n/2q Ilfllp (1 < p < 2, p-1 + q-1 = 1). (5.6) 

If one combines Theorems 5.1 and 5.3, one immediately obtains the following corollary. 

Corollary 5.7. 
l f f  E L2(~ n) and [Ifll2 = 1, 

det V(lf[  2) det V(lf/2) > (16rr2) -n. 
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Corollary 5.7 is a strengthening of Corollary 2.8, for if p is any probability density function 
on R n, 

if [det V(p)]  l/n <_ - Ix - M ( p ) [ 2 p ( x ) d x .  
n 

(This is just the inequality of arithmetic and geometric means applied to the eigenvalues of the matrix 
V(p ) . )  Hence Theorem 5.3 can be regarded as a sharp form of Heisenberg's inequality. 

The preceding results are discussed in Heinig and Smith [50], which also contains a version 
of Theorem 5.3 with weighted norms. 

Since the proof of Heisenberg's inequality is of an elementary nature, whereas Beckner's 
inequality (5.6) is a deep theorem, one may wonder whether we have used heavy machinery merely 
to obtain a mild improvement on Heisenberg's inequality or whether Theorem 5.3 is really a more 
powerful result. In fact, the latter alternative is the case. As Beckner [7] has shown, Theorem 5.3 
yields a short proof of a remarkable improvement on Gross's logarithmic Sobolev inequality, itself a 
deep theorem closely related to (5.6) and Nelson's hypercontractivity theorem. (See Gross [44, 45] 
and Beckner [6].) Indeed, let 

d y ( x )  = (27r)-"/2e-lX?/2 d x  (x E IR n) 

and define the unitary map T : L2(y) ~ Lz(R ") by 

T g ( x )  = 2~/4 e-TrlXl:g(2~r l/2x). 

If we apply Theorem 5.3 to f = Tg,  use the facts that 

f lsel2l~(e)12ds e = 1 f i x7 f (x )12d  x 
4re 2 

l~Tf(x) 12 = 22+(n/2)yr [ [Vg (2n" I/2X)12 + 7r Ix I" Ig (27r I/2X)12 
and 

,) 2 
-2~r 1/2 Re[g(2rr l /2x)x  • Vg(2zr l / -x)]]e  -z~lxl , 

and integrate the cross term in this last expression by parts, we obtain the following theorem. 

T h e o r e m  5.8 .  
Suppose f Igl2 d y  = 1, and  let ~ = T- IOrTg .  Then 

f lglZloglgld× + f l'~121ogl~ld× <_ f lVglZ &. (5.9) 

Gross's inequality is (5.9) with the term involving ~ omitted, which follows from (5.9) since 
both terms on the left are nonnegative. (To see this, use Jensen's inequality as in the proof of Theorem 
5.1 with ¢ = [g[2 or [~[z.) 

Beckner [7] has recently proved another logarithmic uncertainty inequality: 

(5.lO) 

for all f ¢ L2(IR n) for which the quantity on the left is defined, where ~: is the logarithmic derivative 
of the gamma function. Beckner first establishes the inequality 

f ~r'~r(¼(n-~)) f lf(x)]21x]'~dx ( 0 < ~  < n )  If(~)12l~l-"d~ -< F(¼(n+o0) 

and then applies Lemma 5.5 to get (5.10) with a = b = 0; the general case follows by using (0.2). 
Like Theorem 5.3, (5.10) is related to logarithmic Sobolev inequalities and implies Heisenberg's 
inequality. 
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6 .  W i g n e r  D i s t r i b u t i o n s  a n d  A m b i g u i t y  F u n c t i o n s  

In this section we discuss some uncertainty relations for functions on R n that are expressed 
in terms of certain functions on x~-space ("phase space"). For a more detailed explanation of these 
ideas, including several calculations that are elided here, we refer the reader to Folland [37, §§ 1.4 
and 1.8]. 

To begin with, we consider the matrix elements of the phase-space translations 

or(p, q, O) f (x) = e2Zriq'x+~rip'q f (x "~ p). 

(Here tx is the representation of Hn given by (2.5). Since ~r(p, q, z) = eEzriztT(p, q, 0 ) ,  n o  essential 
information is lost by restricting to z = 0.) That is, for f ,  g ~ LE(]~n), we define 

A(f,g)(p,q) = (<7(p,q,O)f, g) = f e2~iqY f(y + ½p)g(y ½p) dy. (6.1) I 

A (f, g) is called the Fourier-Wigner transform of f and g in Folland [37]; in the radar engineering 
literature it is known as the cross ambiguity function of f and g, and A(f, f) is the ambiguity 
function of f .  Also, A(f, g) differs only by a factor of e ~ip'q and the substitution q ~ - q  from the 
windowed Fourier transform or short-time Fourier transform 

= f e-2n iqYg(y  -- p)f(y) dy. 9:gf (p, q) 

The Fourier transform of A(f, g) is the Wigner transform of f and g, namely, 

W(f, g)(~, x) = f f  e-27ri(~P+x'q)A(f, g)(p, q) dp dq 

f e-Z:ri~pf(x -1- ½p)g(x - ½p) dp. 

(The second equality follows from the Fourier inversion theorem.) Clearly A(f, g) and W(f, g) are 
related not only by the Fourier transform but by the more elementary identity 

W(f,  g)(~, x) = 2"a ( f ,  ~ (2 x ,  - 2 ~ )  [~'(x) = g ( -x ) ] .  (6.2) 

W(f, f )  is called the Wigner distribution of f and has the following quantum interpretation. 
Suppose 11 f 112 = 1, so f represents a quantum state. We would like to speak of the joint distribution 
p of momentum P and position Q in the state f .  Such a thing does not exist because the uncertainty 
principle forbids the simultaneous determination of momentum and position, but if it did, its inverse 
Fourier transform ~(p, q) = ff  e2Jri(P~+qx)p(~, x )  d~ dx ought to be the expected value of the 
observable exp2Jri(p • P + q . Q) in the state f .  But if we interpret P and Q as the operators 
(2~r i)-x O/Ox and x as in §2, exp 2rr i (p.  P + q- Q) is nothing but ~ (p, q, 0), so the desired expected 
value is A(f, f)(p, q). Hence p ought to be W(f,  f ) .  

This almost works! In general, W(f, f)  is not a probability distribution function because it 
can assume negative values, but it is not hard to verify that it has the right marginal distributions for 
position and momentum in the state f :  

f W(f, f)(~,x)d~ = [f(x)l 2, f W(f, f)(~,x)dx = [?'(~)l 2. (6.3) 

Therefore, W(f, f )  can be considered a "phase-space portrait" of the function f .  More classically, 
if n = I and f is interpreted as the amplitude of a signal, W(f, f )  is the "time-frequency portrait" 
of f ;  de Bruijn [29] calls it the "musical score" of f .  
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In this setting, the uncertainty principle says that W(f ,  f )  cannot be too sharply localized. 
Indeed, by (6.3), Corollary 2.8, and the inequality ot 2 +/32 > 2ot/3, 

f f  (ix - + IS -  f)(~,  d~ 
a[ 2 bl2)W(f, x) dx 

(6.4) 
II f I1_____~ 

- 2 r r  ' 

which is the analogue of Heisenberg's inequality for Wigner distributions. 
Additional inequalities of  this type can be found in de Bruijn [29]. Another intriguing result of  

de Bruijn [29] (see also Folland [37, §1.8]) is the following. As we have stated above, W(f ,  f )  can 
have negative values. However, let us set y~(x) = ~-ne-~r(x/')~, a Gaussian of total mass 1 whose 
peak has width roughly e. Then 

W~,a(f, f)(~, x) = ff W(f ,  f ) (~  - r 1, x - y)y~(rl)ys(y)drldy > 0 (6.5) 

for all f 6 L 2 if and only if ~3 _> 2. Inequality (6.5) guarantees that W,,a(f, f )  is a genuine prob- 
ability distribution function. Intuitively, it is the joint distribution of  "momentum to within an error 
E" and "position to within an error &" and the uncertainty principle is the fact that this makes sense 
precisely when E8 _> 2. Further results along these lines can be found in Ali and Prugovecki [1] and 
Busch [22]. 

Other uncertainty inequalities for W(f ,  f ) ,  or more generally W(f,  g), can be obtained by 
estimating its L p norm. By (6.2), this is equivalent to estimating the L p norm of A(f ,  g), for which 
the formulas turn out to be a little simpler. First, it is obvious from (6.1) and the Schwarz inequality 
that 

IIA(f, g) l l~  -< Ilfl1211gl12. (6.6) 

It is less obvious, but still easy to verify, that 

HA(f, g)l12 = Ilfll2tlgll2. (6.7) 

Thus f e  IA(f,  g)l 2 < IIA(f, g) l l~ lEI  < IIm(f, g)ll~lEI, so the mass of IA(f,  g)l 2 cannot be con- 
centrated in any set of  small measure. 

If  we normalize f and g so that llfll21lgll2 = 1, we have IA(f,  g)l -< 1 by (6.6) and (6.7), 
so f IA(f ,  g)l p is a decreasing function of  p. The rate of  decrease is less rapid when A(f ,  g) is 
more concentrated; the extreme case (not actually achieved) would be when lA(f,  g)l = ge  with 
1 EI = 1. Hence the uncertainty principle can be embodied in a lower bound for the rate of  decrease 
of f I A (f ,  g)I p as p increases. In fact, Lieb [78] has shown that 

f lA(f ,g)l  p (2/p)nllfll~ltgl[~ i f p  2, < > 

(6.8) 

f lA(f ,g)l  p (2/p)ntlfl[~llgll~ i f p  2. > < 

(Lieb [78] deals explicitly only with the case n = 1, but the passage to higher dimensions is 
straightforward. By (6.2), the same estimates hold for f lw(f, g)l e with an extra factor of  2 "~p-2) 
on the right.) Lieb [78] also has generalizations of  these estimates in which the L 2 norms of f and 
g are replaced by L q norms for other values of  q. 

By applying Lemma 5.5 to (6.8), one obtains the entropy inequality 

f [A(f,  g)l 2 log IA(f, g)l 2 > I whenever Ilfll211g]12 = 1. (6.9) 
d 
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In a somewhat different form (more general in one respect and less so in another), this had been 
conjectured by Wehrl and proved by Lieb in an earlier paper [77], where one can also find a discussion 
of its physical interpretation. As was first shown by Grabowski [43], one can deduce Heisenberg's 
inequality from (6.9). The simplest way is to translate (6.9) into an inequality for W(f ,  g) via (6.2), 
set g = f ,  and apply Theorem 5.1 to obtain (6.4). 

In quantum statistical mechanics one considers not only "pure states" defined by unit vectors 
f 6 L 2 but. also "mixed states" defined by positive trace-class operators T of trace 1, that is, 
operators of the form T = ~ ¢ j P f j  where { f j }  is an orthonormal sequence, Pfi is the orthogonal 
projection onto Cf j ,  cj > 0, and ~ cj = 1. (The pure states are those for which the sequence 
{fj} has only a single term f . )  The Wigner distribution of such an operator T is defined to be 
W(T)  = ~ cj W( f j ,  f j ) .  This again resembles a probability distribution function except that it can 
have negative values. Assuming that its second moments are finite, one can consider its mean and 
covariance 

= f zW(T)(z)dz, Vjk ~- f ~j~k W(T)(z)dz (z = (se, x), ff = z -  M). M 

Narcowich [85] has made an interesting study of the uncertainty principle in terms of the matrix V. 
He characterizes those real positive definite matrices V that are covariances of Wigner distributions, 
gives a symplectically invariant formulation of Heisenberg's inequality for the state T in terms of 
invariants of V, and interprets it in terms of the geometry of the quadratic form defined by V. 

7 .  Q u a l i t a t i v e  U n c e r t a i n t y  P r i n c i p l e s  

By a "qualitat~e uncertaintyAprinciple" we mean a theorem that, without giving quantitative 
estimates for f and f ,  says f and f cannot both be too localized unless f = 0. Here "too localized" 
can be taken in several senses, of which we shall focus on two: restrictions on the sets where f and 
f a r e  nonzero, and bounds on the rate of decay of f and f a t  infinity. 

Our first group of results concerns the sets 

E ( f )  = {x : f ( x )  ~ 0} and ~ ( f ~  = {~ : f (~ )  ~ 0}. 

The first simple result, valid on any locally compact Abelian group, is that 

0 :~ f ~ L 2 ~, IE ( f ) I  Iz(f)l >__ 1 (7.1) 

This follows immediately from (4.3) by taking E = ~ ( f ) .  Equation (7.1) was first derived by 
Matolcsi and Szi.ics [80]; it has been generalized to commutative hypergroups by Kumar [70]. On 
I~ n, however, something much stronger is true. 

Theorem 7.2. 
I f  f ~ L1(1~ ") and IE ( f ) l  [E ( f ) l  < c~, then f = O. 

(Note that if f E L p ( p  > 1) and IE( f ) l  < ~ ,  then f ~ L l and that if f 6 L 1 and 
IE( f ) ]  < c~, then f E L p for all p > 1; hence the theorem applies equally to L p functions.) This 
theorem is due to Benedicks [16], whose elegant proof, first circulated as a preprint in 1974 but not 
formally published for another decade, we reproduce below. It relies on the following form of the 
Poisson summation formula, the proof of which is an amusing exercise (or see Benedetto, Heil, and 
Walnut [13]). 

Lerama 7.3. 
1 n I f  f E L l (~n), the series q~ (x ) = Y]kez, f (x + k) converges in L ( T ) ,  and the Fourier series 

of O is Y]k~Z, f '(k) ez~ik'x" 
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have 
To prove Theorem 7.2, we may assume that I I ] ( f ) l  < 1 by composing f with a dilation. We 

kEZ" . 

f[0, 1] n Z X~'(f)(x-i-k)dx= f~. Xz(y)(x)dx=lZ(f)l<l. 
kEZ n 

These inequalities imply, respectively, that 

i. There exists E C [0, 1]" with IEI = I such that ~ Xz(7)(a + k) < m fora e E, and hence 
fi(a + k) ~ 0 for only finitely many k i f a  e E; 

i i .  There exists F C [0, l ]  n with IFI > 0 such that ~ XE(f)(X + k) = 0 fo rx  ~ F,  and hence 
f ( x  + k )  = 0 for all k i fx  ~ F. 

Given a ~ E, let 

qba(X) = ~ f ( x  + k)e -2~ia(x+k). 
keZ" 

By Lemma 7.3, ~ba e LI (T  ") and the Fourier series ofq~a is f~. f (a  + k)e 27rik'x. Since a e E, tPa is a 
trigonometric polynomial. In particular, ~p~ is analytic, so either q~ = 0 or {x : tpa (x) : 0} intersects 
every line in a discrete set and hence tp~ :~ 0 a.e. On the other hand, kba(x)l _< ~ If(x + k)[ = 0 
for x e F. We conclude that ~b,~ = 0 for all a e E, whence f (a  + k) = 0 for all a e E and k e Z. 
In other words, f =  0 a.e., so f = 0. 

Amrein and Berthier [2] have given a different proof of Theorem 7.2, and their methods also 
yield the following complementary result: If E and F are sets of  finite measure in ll~", the space of  
all f 6 L 2 M L °¢ such that f ---- 0 on E and f ' =  0 on F is infinite-dimensional. See also Busch [22]. 

There is a large literature on the existence or nonexistence of  functions f on ~ or T subject to 
various restrictions on E ( f )  and ~:(f ) .  We refer the reader to Benedicks [15], Havin and Jrricke 
[48], and Benedetto [9] for a fuller discussion. Here we shall just mention a few results related to 
Theorem 7.2. 

1. I f 0  -~ f e L l (~ )  and X ( f )  is bounded, then f i s  the restriction of  an entire function on 
C, so R \ E ( f )  is a countable discrete set. Moreover, by the Whittaker-Shannon sampling 
theorem (see Dym and McKean [32, p. 129]; Benedetto [11]; or Benedetto, Heil, and 
Walnut [13]), R \ Z ( f )  cannot contain any complete arithmetic progression $0 + bZ with 
b _< [d iam(E( f ) ) ]  - l .  

2. (Kargaev [62] and Kargaev and Volberg [63]) There exists a set E C ll~ of  positive finite 
measure, such that X'e vanishes on an interval, and a function f e L 1 (R), such that i E ( f ) [  < 
oo and IR \ ~ ( f ) l  = oo. 

3. Melenk and Zimmerman [81] have recently given an explicit elementary construction of  an 
infinite-dimensional family of  functions f e L 1 M L ~ A C ~ on ~ such that both f and f"  
vanish on sets of the form [ - a ,  a] + 8aZ, where a can be specified independently for f 
and f .  

It should be noted that Theorem 7.2 does not extend to distributions. Indeed, in the language 
of distributions Lemma 7.3 says that the periodic delta-function ~ z ,  8(x - k) is its own Fourier 
transform, and its support Z" has measure zero. 

It is natural to conjecture the following variant of  Theorem 7.2 relating to Wigner distributions: 
I f lE(W(f ,  f ) ) l  < ~ ,  then f = 0. As far as we know, this is an open question, but the following 
partial results are available. First, from (6.3) and Theorem 7.2 it is clear that Z (W (f ,  f ) )  cannot be 
bounded unless f = 0. Second, if f is either even or odd, then W(f, f )  is its own Fourier transform 
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up to a linear change of variable by (6.2); hence in these cases the conjecture follows by applying 
Theorem 7.2 to W(f ,  f ) .  (This is an unpublished remark of D. Mustard.) 

Theorem 7.2 can be generalized to many other locally compact groups. A little experimen- 
tation with examples suggests the following formulation of a qualitative uncertainty principle for a 
Plancherel group G. For E C G and F C G let ]El and IFI denote the Haar measure of E and the 
Plancherel measure of F, respectively. 

Suppose f E Ll(G). l f l Z ( f ) l  < IGI and I~Z(f)l < IGI, then f = 0. (7.4) 

If  G = ql TM, (7.4) simply says that a nonzero trigonometric polynomial cannot vanish on a set 
of positive measure, a fact that we have already noted in the course of proving Theorem 7.2. The 
same reasoning shows that (7.4) is valid when G is any connected compact Lie group. The following 
additional results are known. 

1. (Hogan [57]) Suppose G is infinite and compact. Then (7.4) holds if and only if G is 
connected. Corollary: If  G is a discrete Abelian group, (7.4) holds precisely when G is 
connected or, equivalently, when G is torsion-free. 

2. (Hogan [55], [57]) If G is Abelian, noncompact, and nondiscrete, (7.4) holds precisely 
when the identity component of G is noncompact. Hogan [57] also has an extension of 
this result that applies to certain non-Abelian groups, and Kumar [70] has generalized it to 
certain commutative hypergroups (but see Voit [117, Remark 2.4] for comments on Kumar's 
hypotheses). 

3. (Price and Sitaram [95] and Sitaram, Sundari, and Thangavelu [ 101 ]) Assertion (7.4) is valid 
for the Heisenberg group Hn, where it can actually be strengthened in several ways. 

4. (Cowling, Price, and Sitaram [27]) Assertion (7.4) is valid when G is a connected, noncom- 
pact, semisimple Lie group with finite center, provided the condition I E ( f ) l  < I GI (=  co) 
is replaced by [KE( f )K]  < c~, K being the maximal compact subgroup of G. 

5. (Echterhoff, Kaniuth, and Kumar [33]) If G has a noncompact, nondiscrete normal subgroup 
H such that (7.4) holds for H and G / H  is compact, then (7.4) holds for G. In particular, 
(7.4) holds for the group of rigid motions of I~ n and for R" x K where K is compact. (See 
Price and Sitaram [95] for some variants of the latter results.) [33] also contains a number of 
other related theorems. Note, however, that the uncertainty principle considered throughout 
[33] is not (7.4) but the assertion that if IE ( f ) l  IE ( f ) f  < c~, then f = 0; this excludes 
compact groups and discrete Abelian groups from consideration. 

6. (Meshulam [82]) Suppose G is a finite group. If  f is a function on G let I E ( f ) l  denote 
the cardinality of ~ ( f )  and R ( f )  the rank of the convolution operator g ~ f • g. Then 
[ E ( f ) l R ( f )  > IGI unless f = 0. If  f (1 )  = 1, I Z ( f ) l R ( f )  = [GI if and only if 
H = E ( f )  is a subgroup of G and f ]  H is a one-dimensional character of H. Note that if G 
is Abelian, then R ( f )  is the cardinality of E ( f ) ;  the result in this case is due to Donoho and 
Stark [31 ]. 

It should be emphasized that (7.4) is false for many disconnected groups. The following result, 
while not of maximum generality, covers most of the interesting cases. 

Theorem 7.5. 
I f  G has a normal compact open subgroup H, not equal to G or {1}, such that G / H is either 

Abelian or finite, then (7.4) is not valid. 

Proof .  (See Folland [38] for the necessary background.) G/I-t is discrete, so (G /Hf"  
is either a compact Abelian group or a finite set, and it sits inside G as the set of irreducible 
representations of G that are trivial on H. If Jr 6 G, the Schur orthogonality relations easily imply 
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that ~n(zr) = fH 7r(x) dx = IHIP ,  where P is the orthogonal projection onto the space 

~ = {v ~ 5f,~ : Jr(h)v = v for all h ~ H}. 

But since rr(h)zr(x) = rc(x)rc(x-lhx)  and H is normal, J£ff is invariant under rr. Since Jr is 
irreducible, J£~ is either J-C,~ (which means that zr ~ ( G / H ~  or {0}. 

Thus, E(~ 'n)  = ( G / H ~  Since H :/: {1}, we have IG \ ( G / H ) ~  > 0, and I (G/H)~  < e¢, so 

IZ(~n)]  < IGl. On the other hand, since H 7~ G, it follows that lZ(XH)l = ]HI < IG]. [ ]  

We now turn to the results concerning the decay of f and f a t  infinity. The prototype of  these 
is the following theorem of Hardy [49]. 

T h e o r e m  7.6. 
For a, b > 0 let E(a,  b) be the space of  all measurable functions f on I~ such that 

I f (x ) l  _< ce -aÈx2 and l f (~) l  < ce-°'~'- for some c > O. 

I f  ab < 1, then d i m E ( a , b )  = e¢; if  ab = I, then E (a ,b )  = Ce-~rx2; and if ab > 1, then 
E(a,  b) = {0}. 

We give a sketch of the proof; Dym and McKean [32, §3.2] is a good reference for the details. 
The rescaling f ( x )  --+ f O . x )  maps E(a,  b) onto EO.2a, ,k-2b), so we may assume a = b. First, 
if a < 1, the Hermite functions discussed in §3 all belong to E(a, a). Next, if f 6 E(1,  1), the 
condition I f (x)[  < ce -'rx~ easily implies that f ' ex t ends  to an entire function on C and satisfies 
17(z)l < c'e rrlzl~. Since also I f (~) l  _< ce -~'-  for ~ real, a Phragmrn-Lindel r f  argument allows one 
to conclude that T(z) = Ce -~z" for some C and hence f ( x )  = Ce -Èx'-. Finally, if a > 1, then 
E(a,  a) C E(1, 1) and e - ~ "  ~ E(a,  a), so E(a,  a) = {0}. 

Cowling and Price [25] have obtained the following L p complement for Theorem 7.6: Suppose 
arr x 2 b~r~ ~ p , q  6 [1, o e ] a n d m i n ( p , q )  < oe. If  lie f l i p + l i e  "fllq < e e w i t h a b  > 1, t h e n f  = 0 .  

(Again, the Hermite functions show the necessity of  the condition ab > 1.) 
The case ab > 1 of Theorem 7.6 and its L p version is an easy corollary of the following 

elegant result of  Beurling, whose proof, in the same spirit as that of Theorem 7.6, has been published 
by H6rmander [58]: For f ~ L l ( ~ , ) ,  

fflf(x)f(~)le2'~lX* d x d ~  < ~ --4, f = (7.7) 0. 

S itaram, S undari, and Thangavelu [ 101 ] have derived analogs of  Theorem 7.6, using Theorem 
7.6 itself as a tool, for R n and the Heisenberg group H~. For R" the result is identical to Theorem 
7.6 with x 2 and ~z replaced by [xl 2 and I~12, and the proof consists of  using the Radon transform to 
reduce to the one-dimensional case. For Hn, the result is as follows: Suppose f is a function on H,  
such that I f ( P ,  q, z)l < g(p,  q)e -~Èz'- and Ilf"(trz)llHs < Ce -°rrx', where g E (L 1 71L2)(I1~ 2~) and 
crx(p, q, z) = or(p, )~q, Xz) with ¢r given by (2.5); then f = 0 provided ab > 1. Also, Pati et al. 
[88] have obtained an analogue of  Theorem 7.6 for Hermite expansions on 1R"--namely, if f and its 
Hermite coefficients both decay very rapidly at infinity, then f = 0. 

The crucial fact that allows the use of complex analysis to prove Theorem 7.6 is that the 
characters e~ (x) = e 2rri~x of R can be analytically continued in ~ to give (nonunitary) characters 
with exponential growth in x. A similar phenomenon happens for irreducible representations of  many 
noncompact  non-Abelian groups G. More precisely, one may have families of  unitary representations 
of  G indexed by R n that can be analytically continued to get a family of  (nonunitary) representations 
indexed by C n whose matrix elements satisfy certain growth estimates on G. If these representations 
suffice for the Plancherel formula, one can hope to obtain an analogue of  Theorem 7.6. This has 
been done by Sundari [ 113] when G is the group of rigid motions of/R ~ and by Sitaram and Sundari 
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[100] when G is a connected semisimple Lie group with finite center and either (i) G has only one 
conjugacy class of Caftan subgroups or (ii) attention is restricted to right K-invariant functions. 

The rapid decay of f at infinity imposes restrictions not only on the decay of f at infinity but 
also on the local decay of f near a point. For example, if f is a function on T and [f(k)l  < ce -'lkl, 
then f is analytic and so cannot have a zero of infinite order. More sophisticated theorems of this 
sort for functions on 11~ or T can be found in Havin and J6ricke [48]. Pati et al. [88] have derived a 
sort of hybrid of this result and Theorem 7.6 for eigenfunction expansions of elliptic operators with 
analytic coefficients on compact Riemannian manifolds. 

Havin and J6ricke [48] contains many additional results concerning local or global decay 
conditions on f and f .  We shall mention only one, a neat theorem of Nazarov [86] whose flavor 
is similar to (7.7) but which implies Theorem 7.2 (for n = 1) rather than Theorem 7.6: There is a 
constant c > 0 such that for all A, B C R of finite measure and all f e L2(R), 

]lfll2<ceclallOllfR\alf]2wf~\B[~2 ]" 

8 .  T h e o r e m s  o n  A p p r o x i m a t e  C o n c e n t r a t i o n  

Despite their mathematical solidity, the results of the preceding section--with the exception 
of the simple-minded (7. I)---have little to say about physical phenomena because they are unstable 
under the small errors that inevitably arise in the correspondence between theory and experiment. 
After all, the world is full of signals that are synthesized from a finite band of frequencies and last for 
a finite length of time, no matter what Theorem 7.2 says, and one would like a mathematical theory 
that says something useful about such signals. Thus, we wish to consider functions f on ~"  and sets 
A, B C ll~" such that f and f are "negligibly small" on the complements of A and B, respectively; 
and we ask what sort of sets A and B allow functions with this behavior and what sort of functions 
they are. The uncertainty principle will be expressed as a restriction on the sizes of A and B. 

Here is a very simple result of this sort, due to Williams [120]. Suppose f and f a r e  both in 
L 1; then 

L l f l  < < II~IIIAI. Ilfll~lAI 

Multiplying this inequality by an analogous one with f and finterchanged, we obtain 

fAlYlf. 15 f l f l  f--~- -< Ial Inl. (8.1) 

Note that this gives another proof of (7.1). 
More interesting, however, are the results relating to L 2 norms. If  G is any locally compact 

Abelian group, f c L2(G), A C G, and E > 0, we shall say that f is E-concentrated on A if 
fC\A l f l  2 < e2 fc I f  12, and we wish to know what can be said about f ,  A C G, and B C G if f is 

E-concentrated on A and f ' i s  3-concentrated on B. This problem, for G = R", was first discussed in 
a lecture by Fuchs [39] at the 1954 International Congress. Landau, Pollak, and Slepian then made 
a detailed study of the case where G = I~ and A and B are intervals; we shall discuss their work 
below. However, the simplest and most general results, valid on any locally compact Abelian group, 
are more recent, and we shall begin by discussing them. 

Almost everyone who has worked on this problem has relied on the interplay between the 
orthogonal projections PA and Qo on L2(G), defined for A C G and B C G by 

PaY = fXa, (Q~f)"= fXs. 
The basic facts are summarized in the following theorem. 
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T h e o r e m  8.2. 
Suppose A C G and B C G have finite measure. 

a. PAQB is boundedfrom LP(G) to L q ( G ) f o r  1 < p < 2 a n d q  > 1, and [IPaaBfl lq  < 

IAtl/qlB[l/Pllfllp. 

b. PA QB is a Hilbert-Schmidt operator on L2(G), and II PA QBItHS -- IAll/EIBL1/2 

C. I f  there is a nonzero f E L 2 ( G) such that f is e-concentrated on A and 7 i s  8-concentrated 
on B, then 1 - e - ~ <_ IIPAQBII, where IIPAQsII is the norm Of PAQB as an operator 
on L 2. 

P r o o f .  Since Q s f = f * ~ - I  X B, P A Q B is an integral operator: 

PA Q B f ( x )  = f K (x ,  y ) f ( y )  dy,  K(x ,  y) = XA(X)~B(X y).  

Hence, by the H61der and Hausdorff-Young inequalities, if I < p _< 2 and p '  = p / ( p  - 1), 

[ P A Q s f ( x ) I  < xA(x)ll~sllp, llfllp < XA(X)llxsl[pllfllp = XA(X)IB[1/PHfIIp. 

Part a follows by taking the L q norm of both sides. Moreover, 

IIPaQBll~s=fflK(x,y)lZdxdy=flxnl2f[xalZ=lBIIal, 
which proves part b. Finally, suppose f is e-concentrated on A a n d T i s  g-concentrated on B, and 

Ilfll2 = 1. Since I I P A ( f -  QBf)II2 < l l f -  a B f l l z  = I1(1 - x B ) f l I 2  < 8, we have 

1 - e  - 8  _< Ilfl12 - I I f -  P A f l I 2 - - I l e a ( f  -- QBf)rl2 -< IIPAQnflI2 <-- IIPAQ~II, 

which proves part e. [ ]  

Coro l lary  8.3. 
I f  f 5~ 0 is e-concentrated on A and 7 i s  8-concentrated on B, then I AI I BI _> (1 - e - 8) 2. 

P r o o f .  Combine parts a and c of  the theorem. [ ]  

Theorem 8.2 and Corollary 8.3 were proved by Donoho and Stark [31 ] for G = ll~ or G = Z / n  Z 
and generalized by Smith [ 108] to arbitary locally compact Abelian groups. These papers also contain 
an analog of  Theorem 8.2c (in a slightly weakened form) for L p n o r m s  (1 < p _< 2) and a discussion 
of the sharpness (or lack thereof) of  the estimate in Theorem 8.2a. In addition, Donoho and Stark 
[3 l] give some interesting applications to problems in signal analysis. 

Wolf [121] has extended Theorem 8.2 to Gelfand pairs (that is, to K-biinvariant functions on a 
locally compact group G, where K is a compact  subgroup of G such that convot ution of K-biinvariant 
functions is commutative), and Voit [l 17] has extended it even further to commutative hypergroups. 
Also, de Jeu [30] has proved a version of the L 2 part of  Theorem 8.2 that concerns integral operators 
on abstract measure spaces possessing some of  the features of the Fourier transform, and Koppinen 
[68] has obtained results analogous to Theorem 8.2 in the setting of Hopf  algebras. 

The quantity II PA Q8 II that intervenes decisively in Theorem 8.2 has an interesting geometric 
interpretation: it is the cosine of  the angle between the ranges of  PA and QB. Indeed, we have 

IIPAQBII = s u p { l ( e m a s f ,  g)[ : llfl[2 = Ilgl12 = 1} 

= s u p { l ( Q s f ,  Pmg)l: l l f l [2  = Ilgll2 = I} 

= sup{Re(u, v) : t l u l t 2  = 111)112 = I ,  Q~u = u, Pat: = v } ,  

and Re(u, v) is the cosine of the angle between the unit vectors u and v. 
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A deeper analysis of  the approximate concentration problem can be achieved by studying the 
operator 

(PAQB)*PAQB = QBPAQB. 

This was done by Landau, Pollak, Slepian, and Widom in a remarkable series of  papers [73-75, 
103-105, 107], parts of  which we now describe briefly. Expositions of  this work, with references to 
related papers, can also be found in Landau [72] and Slepian [106]. In what follows we shall assume 
that G = G = R" to simplify the discussion, although some of the results are actually more general, 
and A and B will always denote sets of  positive finite measure. 

Qo PA Qa  has the advantage of being selfadjoint and positive, and by Theorem 8.2b it is 
compact,  in fact trace-class. Hence it has an orthonormal eigenbasis, and the nonzero eigenvalues 
are positive, of  finite multiplicity, and accumulate only at 0. Let {),k}~ be the nonzero eigenvalues, 
listed with multiplicity in decreasing order 0,1 > ~2 _~ "" "), and let {lPk}~ be a corresponding 
orthonormal set of  eigenfunctions. We then have 

LI = [IQBPAQalt = ][PAQBII z, 

so ~ is the cosine of the angle betwen the ranges of  PA and Qa. The crucial fact is the following. 

Theorem 8.4. 
~.i < 1. 

P r o o f .  Clearly Zl = IIQaPAQa]I < I. I f  zl  = 1, there exists f ~ 0 such that 
Q a P a Q a f  = f .  Thus f is in the range of  Qa,  and it is also in the range of  PA because 
11PAgII2 < Ilgl]2 unless g ~ range(PA). But this is impossible by Theorem 7.2. [ ]  

Suppose now that ltfl12 = I, f is E-concentrated on A, and f is 3-concentrated on B. The 
angle between f and PA f is 

( f ,  P a f )  
arccos - -  - arccos'llPafll2 < arccos v/~ -- E z, 

ItPAflIz 

and likewise the angle between f and Pa f is at most arccos ~/1 - 32. The angle between PA f and 
P a f  is, on the one hand, at most the sum of these two angles, and on the other, at least arccos ,¢tL-~l. 
ThUS, 

arccos ~/1 -- E 2 + arccos ~/1 - 62 > arccos v/~l. 

In fact, by taking suitable linear combinations of  the eigenfunctions ~k, one can construct examples 
where f and f have any desired concentrations on A and B subject to this restriction, and one arrives 
at the following theorem. 

Theorem 8.5. 
Suppose 0 < or, fl < 1 and (or, 13) :~ (1 ,0)  or (0, 1). There is a function f E L2(II~ n) with 

Ilfll2 = 1, II e a f l l 2  = c~, and II a ~ f l [ 2  = / 3  if  and only if 

arccos ~ + arccos/3 > arccos ~ = arccos II PA Q~ II. (8.6) 

The full proof can be found in Landau and Pollak [73] or Dym and McKean [32, §2.9]; these 
authors state the result for G = ]i~ and A and B intervals, but the arguments are quite general. (If A is 
bounded, the pair (c~,/3) = (1,0)  is not admissible, for if f = PA f ,  then f is analytic and so cannot 
vanish on B; likewise if B is bounded, then (~,/3) = (0, 1) is not admissible. But Kargaev's  example 
[62, 63] (see §7) shows that the boundedness assumption is necessary.) Another version of the 
uncertainty inequality (8.6) has been proved by Benedetto [8]; the Logvinenko-Sereda-Kacnel ' son 
theorem quoted at the end of §4 is also of interest here. 
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The eigenfunctions ~Pk have a number of  interesting and pleasing properties. For example, 
assuming A and B are bounded, {~k }~, {~-k-I/2pA ~k}~, and {~k }~ are (respectively) orthonormal 
bases for the range of QB, the range of PA, and the range of PB consisting of eigenfunctions for 
QBPA QB, PA QBPA, and PB Q-A PB. (The reader is invited to work out the rather easy proofs of  
these facts.) For our purposes, however, the crucial thing is that ~k is 0-concentrated on B because 
~lrk = )~k I Q8 PA Qs~Pk ~ range(QB) and ~Pk is (1 - ~/~)-concentra ted on A because 

IIPm ~kll 2 ~- IIeAOB~rkll 2 = (QB PA QB~k, ~k) ~- )'kll~rk]12 2" 

It follows that one can obtain functions f such that f and f are well concentrated on A and B by 
taking linear combinations of the ~/'k for which ~-k is close to 1; therefore, the situation calls for an 
analysis of  the eigenvalues ~-k. 

The finest results in this direction are those for the case n = 1, A = ( - 1 T ,  1T)  (the factor of  

1 is traditional), and B = ( - f l ,  fl). By rescaling one can reduce to the case ~2 = 1, and it follows 2 
that the eigenvalues ~-k depend only on the product f2T. We cite two major theorems; others can be 
found in Landau and Pollak [74]. 

First, it was conjectured by Slepian and proved by Landau and Widom [75] that if N(f2T, or) 
denotes the number of  eigenvalues ).k that exceed ot (0 < ot < 1), then 

N(~2T, c0 = 2 ~ T  + log log ~ T  + o(log f2T). 

Thus if f2T >> 1, ).t is very close to 1 for k << 2 ~ T  and very close to zero for k 2,> 2f2T, and the 
transition from large to small takes place over an interval of length O(log ~2T). 

Second, if II f 112 = 1, f is ~-concentrated on ( - 1  T, 1 T), and f is 0-concentrated on ( - f 2 ,  ~2), 
then 

- / _ . ,  ( f ,  < 1262 . 
1 2 

Moreover, for any r / >  0 there exists C > 0 such that 

[2QT]+C log ~T 2 

(f ,  ¢'k)~/rk 2 < (1 f 
~)62. + 

l 

Similar results hold if f i s  merely 6-concentrated on ( - ~ ,  ~) ;  the proof can be found in Landau 
and Pollak [74]. 

These results give substance and precision to the folk wisdom that there are about 2 ~ T  degrees 
of  freedom in a signal of  duration T constructed from frequencies of magnitude _< ~ .  Another 
variation on the same theme can be found in Slepian [ 104]. 

The eigenfunctions aPk for the case A = (--½ T, ½ T) and B = ( - ~ ,  f2) are well-known special 
functions. By the change of variable r ---- 2x /T  we can assume that T -- 2, and in this case it turns 
out that QB PA QB commutes with the differential operator 

d 2 d 
Le  = (1 - r2)~--~r 2 - 2 r ~ r  r - f22r 2. (8.7) 

The eigenfunctions ~Pk are therefore also eigenfunctions of  La ,  and the corresponding eigenvalues 
/z~ are singled out as the only values o f /x  for which the equation Lau = txu has a solution that 
is continuous at both x = 1 and x = - 1 .  Since the operator L arises from the Laplacian in Ii~ 3 
by separation of variables in ellipsoidal coordinates, the functions ~'k have been saddled with the 
ungainly name of"prolate spheroidal wave functions," and they have been studied rather extensively. 
The papers cited above contain more details and references; here we shall just mention one recent 
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result. Let B e = {f  ~ LP(I~) : supp f C  [ - f2 ,  f2]}. As noted above, {~k} is an orthonormat basis 
a 

for B2; Barcel6 and C6rdoba [5] have proved that it is a basis for B p if and only if ~ < p < 4. 
Results similar to the one-dimensional theory have been obtained by Slepian [ 103] for the case 

where A and B are balls centered at the origin in ~n. When A is the ball of radius 1 and B is the ball 
of radius f2, the eigenfunctions ~k are products of spherical harmonics of degree k with functions 

l - 1)2)r -2, where L~ is given by (8.7). o f r  = [xl that are eigenfunctions of L~ + (¼ - (k + ~n 
Analogues of the Landau-Pollak-Slepian theory have been developed in several other settings 

involving Fourier-type expansions: for the groups G = Z / n Z  by Pearl [89] and Griinbaum [46]; 
for the Walsh-Paley group by Pearl [89], for G = T and G = Z by Slepian [105], for orthogonal 
polynomial expansions by Perlstadt [90], and for some situations involving non-Abelian groups 
(rotation groups, spheres, and hyperbolic spaces) by Griinbaum, Longhi, and Perlstadt [47]. See 
also Landau [72] and Slepian [106] for references to other related work. 

9. Minimal Rectangles in Phase Space 

Suppose f c L 2 (~).  If f is concentrated (in some sense) on an interval I and f i s  concentrated 
on an interval J ,  we shall think o f f  as "occupying" the rectangle I x J in (x, ~)-space, or phase space. 
(One can interpret "concentration" as in §8, or with Ilfl]2 = 1 one can take I = [M - a, M + ~r] 
where M = M(lf}  2) and cr = Vx/-~fl 2) and similarly for J;  other variants of this idea are also 
possible.) The results of the preceding sections give several ways of making precise the vague 
assertion that in this case, II × J I = Ill I JI must be at least on the order of magnitude of unity. 
Likewise, if f is a function on 11~ n that is concentrated on a rectangular box I = [I~ I, ,  where each 
Ik is an interval in 11~, and fis concentrated on another such box J = I-I~ Jk, Heisenberg's inequality 
in the form of Corollary 2.6 indicates (roughly) that ] I~ I t J~ ! _> 1 for all k. These considerations 
suggest the following heuristic form of the uncertainty principle: The smallest significant regions in 
phase space are sets of the form 

F I l k  x (-IJk, Ilk[ [J~[ = 1 foral lk .  
1 1 

We shall call such a set a minimal rectangle. This section is devoted to a brief discussion of some 
interesting phenomena that can be understood in terms of this principle. 

First, phase space is the stage for microlocal analysis, a body of techniques developed in 
the past thirty years for studying local behavior of partial differential equations and generalizations 
thereof. In this regard, Fefferman and Phong [35, 36] have proved a number of deep theorems 
concerning boundedness, positivity, and eigenvalue estimates for differential and pseudodifferential 
operators that are based on the following principle: The size of an open set S in phase space should 
be measured not by its volume but by the maximum number of minimal rectangles, or images of 
such under canonical transformations, that can be fitted inside S without overlapping. For example, 
suppose L = ~r(x, D) is a selfadjoint differential operator with symbol or(x, ~) = )--]l~l_<k a~(x)~ ~ 
that is real and bounded below. A classical rule of thumb says that the number of eigenvalues of L 
less than some constant C is roughly equal to the volume of Sc = {(x, ~) : or(x, ~) < C}; but one 
obtains better estimates for the eigenvalues by counting minimal rectangles inside Sc. We refer the 
reader to the introductions of [35] and [36] for more details. 

The other matter we wish to discuss is the problem of constructing interesting bases for L 2 
(preferably, but not necessarily, orthonormal) whose elements and their Fourier transforms are well 
localized. We shall restrict attention to the dimension n = 1. The idea is the following: Suppose 
{Ik x Jk} is a tiling of the phase plane by minimal rectangles; we would like to find a basis {OSk} for 
L2(~) such that ~bk occupies the box lg x Jk in the sense described above. 
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The simplest such tiling is the set of  all squares with vertices in the lattice (Z + ½)2, as shown 
in Figure 1, and the simplest way to try to find a basis associated to this tiling is to take a function 4~ 
that occupies the center square [ -½,  ½]2 and translate it: 

qSjk (X) = e2zrikx qb (X -- j ) .  (9.1) 

~bjk thus occupies the square [ j  - ½, j + ½] x [k _ .~'1 k + ~]._ This idea was proposed by Gabor [40], 

who argued that with ~b(x) = e -'~x2, {q~jk : j ,  k 6 Z} should be a good basis for L 2. Unfortunately, 
this turns out to be false. For this q~, {4~jk} does span L 2, but it fails to be a frame;  that is, it fails to 
satisfy an estimate of  the form 

C-~llf l l2 < Z ](f,~bjk)l 2 < Cllfll2 for all f ~ L 2. (9.2) 

The trouble is not just an unfortunate choice of~b; in fact, if 114~112 = 1 and {~bjk : j ,  k 6 Z} satisfies 
(9.2), then V(14~I2)V(I~I 2) = o~, so 4' cannot really occupy any finite box. This is an extended 
form of the Bal ian-Low theorem; see Benedetto, Heil, and Walnut [ 13]; Benedetto and Walnut [14]; 
or Daubechies [28, p. 108]. Another version of this result, that {~bjk} cannot satisfy (9.2) if ~b is 
continuous and 14~(x)l _< C( l  + Ixl) - 1 - ' ,  is implicit in the arguments in [37, §3.4]. 

Another interesting tiling is shown in Figure 2, where the strip 2 j < ~ < 2 j + |  is CUt up into 
rectangles of  width 2-J .  Here, if ~ occupies the box [0, 1] x [1,2], one can manufacture functions 
to occupy all the other boxes by translating and dilating ~:  

~ J k ( x )  = 2J/2~(2J x -- k).  

In this situation it is indeed possible to find ~ ' s  that are quite well localized in both x and s e for which 
{~jk : j ,  k ~ Z} is an orthonormal basis for L 2. These are the wavelets  that have received much 
attention in recent years; we refer the reader to Daubechies [28] and Strichartz [ 111 ] for accounts of  
their construction. 

We have, however, cheated a little bit, as the vertical axis in Figure 2 denotes I~1 rather than ~. 
It is, in fact, characteristic of  wavelets that ~ has two peaks, one in the region ~ > 0 and one in the 
region s ~ < 0, so that ~ actually occupies the two rectangles [0, 1] × [1, 2] and [0, 1] x [ - 2 ,  - 1 ] .  
(The fact that the region associated to ~ is twice as big as a minimal rectangle should not cause 
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concern. The uneasy reader may compensate for it by compressing the I~ I-axis in Figure 2 by a 
factor of 2, as Figure 2 is only a heuristic guide anyhow.) 

It turns out that if one is willing to apply the same kind of fudging to Figure 1 by replacing 
the exponential in (9.1) by a sine or cosine, thereby replacing the frequency peak at ~ = k by two 
peaks at s e = + l k ,  one can get around the Balian-Low obstruction. More precisely, there exist 
orthonormal bases for L 2 of the form 

~b(x - j ) r [ (k  + ½)zr(x - j )]  ( j  e Z, k 6 Z+), 

where 4) is a smooth approximation to the characteristic function of [-½, ½] and v denotes either 
sine or cosine. The construction of these bases, discovered by Coifman and Meyer and by Malvar, is 
delightfully elementary and generalizes to produce orthonormal bases of L 2 associated to many other 
tilings of the phase plane by minimal rectangles---but always with the "two-peak" phenomenon. 
In fact, one can even construct wavelets this way. We refer the reader to Auscher, Weiss, and 
Wickerhauser [4] and Auscher [3] for a detailed treatment and a discussion of related constructions. 

The papers of Bourgain [20] and Byrnes [23] give other constructions of orthonormal bases of 
L2(~) whose elements and their Fourier transforms satisfy uniform uncertainty estimates. 
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