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ON THE STRONG LAW OF LARGE NUMBERS 
FOR PAIRWISE INDEPENDENT 

RANDOM VARIABLES 

S. CS~RG0, K. TANDORI, member of the Academy, and V. TOTIK (Szeged) 

R e s u l t s  and d i s cu s s ion  

The basic idea of Etemadi's clever "elementary proof of the strong law of large 
numbers" for identically distributed random variables in [2] consists in the observa- 
tion that it is enough to establish the law for the positive and negative parts of the 
underlying variables separately. Then the monotonicity of the corresponding partial 
sums enables one to avoid the use of the Kolmogorov inequality, and the only prop- 
erty required from these positive or negative part variables is that the variance 
of a sum from some truncated versions of them be equal to the sum of the termwise 
variances. The simplest way to ensure the latter requirement of lack of pairwise 
correlation is to assume that the original sequence consists of pairwise independent 
variables. Thus Etemadi was able to show that the averages of pairwise independent 
identically distributed random variables converge almost surely to the common 
mean of the variables assumed to be finite, thereby relaxing the assumption of total 
independence in Kolmogorov's classic law. 

The aim of the present note is to point out that Etemadi's idea works for non- 
identically distributed random variables as well. We derive analogues of Kol- 
mogorov's other classical strong law for nonidentically distributed variables assumed 
to be pairwise independent only. Our sufficient conditions raise a few problems 
and some of these are also solved and discussed below. 

Setting D~(X)=E(X--EX) z for the variance of the random variable X, the 
principal result is 

THEOREM 1. I f  the pairwise independent random variables X1, X~, ... 
the conditions 

D2(___ X-) 
(1) , .~ m~ < 
and 

(2) L ~ elx~-ex.l = o0), 
n m = l  

then 

(3) lim --1 ~ (X, , -EXm)= 0 
. * ~  n , .=1 

almost surely. 

For a sequence a =  {a,}~' of positive numbers set 

~Y., if IY.l<=a. 
Y. (a) = 10, otherwise, 

satisfy 
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where Y , = X . - E X . ,  EIX,]<~, n = l ,  2, .. . .  The "truncated" version of Theo- 
rem 1 is 

THEOREM 2. I f  the random variables X1, X2 .. . .  are pairwise independent such 
that condition (2) is satisfied and the centered and truncated sequence satisfies 

(4) 
m=l m 2  .<  co 

and 

(5) 2 P{Y.  ~ rm(a)} < - - ,  
re=J- 

then for any sequence {b,}~ of constants satisfying 

we have 

(6) 

almost surely. 

lim i ~ (b,,-EYm(a)) = 0 
n ~  n m--1 

lira --1 2 ( Y,, - b,,) = 0 
n * ~  n m = l  

In general, the choice b,,=0, m = l ,  2 . . . .  cannot be ensured under the given 
conditions. However, if, in addition, the variables X1, X~, ... are identically 
distributed in Theorem 2, then (4) and (5) are known to hold by the classical proof 
of Kolmogorov for the truncating sequence a,, =n, n = 1, 2 ... .  (pairwise independence 
suffices here!), and it is easy to see that EY, (a ) -EX,=EY, (a ) -EXI~O,  as n-*~,, 
with this truncation. Therefore Etemadi's result follows from Theorem 1 in exactly 
the same classic way as Kolmogorov's theorem for identically distributed variables 
followed from his other theorem for non-identically distributed variables. 

The latter Kolmogorov theorem tells us that condition (1) alone is sufficient 
for (3) to hold for totally independent random variables. It is well known that, 
in this case, this condition is best possible in the sense that if {gt2}~ is a sequence of 
positive numbers such that 

m=l m 2  ~_ o o  

then there exists a sequence X1, X2, ... of totally independent random variables 
not obeying (3) but for which D~(Xm)=G~, m = l ,  2 . . . .  (cf. R6v6sz [6]). On the 
other hand, according to the equally classical result o f  Men~ov and Rademacher 
(cf. again [6]), the stronger condition 

(7) ~ D~ (Xm) (log m) 2 
m 2 ~ c~ 

m=2 

already implies (3) for any sequence X1, X~, ... of pairwise uncorrelated (orthogonal) 
random variables. The latter condition is also best possible for uncorrelated variables 
in the above sense (Tandori [8]), provided that the corresponding a~/m 2 sequence 
is nonincreasing. We show that condition (1) alone is not enough to imply (3) 
when the variables are only pairwise independent: 
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STRONG LAW OF LARGE NUMBERS 321 

THEOREM 3. For every e, 0 < e < l ,  there exists a sequence 
pairwise independent random variables such that 

D 2 (X,.) (log log m) 1 -" 
(8) 

m=2 ~ m2 

and 

o o  

(9) 

xl, 

Therefore some auxiliary conditions are necessary to assume beside (1) to have 
(3). Theorem 1 provides an example for such a condition. The role of this side- 
condition (2) is not entirely clear in general because, as simpe counterexamples 
show, (2) is not necessary for (3) even if we assume 

~, D 2 (X,.) (log m) ~ 
m=2 tn2 

beside (1). 
The construction in Theorem 3 relies on a construction of divergent Walsh 

series by Tandori [7]. His construction was later refined by Bo~karev [1] and Nakata [5]. 
Using the results of these authors, one can in fact strengthen Theorem 3 to obtain 
the following version of it. 

THEOREM 3*. For every ~, 0 < e < l ,  there exists a sequence X1, X2 . . . .  of 
pairwise independent random variables such that 

(10 )  2 D2(Xm) (10g m )  1-~ < oo 
m=2 ?n2 

and (9) still holds true. 

The proof of this result is not given in this note because it would require very 
large space as compared to that of Theorem 3. Condition (10) is now quite close to 
condition (7). In this respect we mention the following conjecture of ours, an 
affirmative proof of which would mean that pairwise independent and pairwise 
uncorrelated random variables do not really differ from each other from the point 
of view of the strong law of large numbers if one is looking at the growth of the 
variances only. 

CONJECTURE. For pairwise independent random variables the condition 

2 D2(Xm) (log m) e-" 
m=2 m e <o% 0 < ~ < 1 ,  

is not enough in general to ensure (3) to hoM almost surely. 

On the other hand, pairwise independent and pairwise uncorrelated random 
variables do differ from each other from the point of view of the strong law of large 
numbers below the domain of (10), or that of the Conjecture, i.e., when we have 
only (1) and, necessarily, an extra assumption such as (2). Indeed, pairwise in- 
dependence cannot be relaxed to pairwise orthogonality in Theorem 1. This is 
the content of our last result in this paper. 
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THEOREM 4. There exists a sequence XI, X2, ... of pairwise uncorrelated random 
variables such that conditions (1) and (2) are satisfied, but 

almost surely. 

In fact the random variables constructed in the proof of Theorem 4 satisfy the 
condition 

lim 1 ~ E[X,,.-EX,.[ = 0 .  
n ~ '~ '  n m = l  

Proofs 

PROOF OF THEOREM 1. We may and do assume EX,=0, n=  1, 2 . . . . .  Introduce 
the partial sums of the positive and negative parts of our variables X, = X~ + -.t"2: 

S + = X + + . . . + X  +, S; /=X~-+. . .+X~- ,  n = l ,  2 , . . . .  

By assumption (2) there is a constant A such that the inequality 

< 1  
o = - E S ,  +, <= A 

n 

is satisfied for each n. Let a > l ,  s>0  and L=[A/8], the integer part of Ale. 
For each pair of integers m and s, m_->0, s=0,  ..., L, put 

1 + 
k~- (m) = inf {k: a m ~ k < a" +1, ~. ES[~ ~ [se, (s + 1) e}, 

1 + 
k$ (m) -- sup {k: o: '~ <= k -< cz "+1, ~ ESi E[se, (s+ 1)e)} 

if the set on the right is not empty, and let k,+(m)=k2(m)=[c~ "] otherwise. 
Since, obviously, D~(X~+)+D2(X2)<--D~(X,) for each n, we obtain, by the 

pairwise independence of Xi ~, X~, . . . ,  the estimate 

(11) 
v : z ~ o  (k~ (m)) ~ j ~  

= j = l  j = l  {m:k~fl:(m)~:j} k s 

1 a 2 ? D 2 ( X j )  
j = l  {m:ccm~j} (  ~ )2  - -  ~ 2 _ _ ]  . =  
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for any 
implies that 

1 
(12) lmim ~ ~ ( S ; •  ,) = 0 

for each s = 0, .... L. 
Now for any natural number n there exists an 

lirnm(n)=oo, O<-s(n)<-L, such that a'n=<n<am+l 

By the definitions of  k)(m) we have 

and so 

s=O, ..., L, by condition (1). Hence the monotone convergence theorem 

k ;  (m) < < k ;  ( ) 

a . s .  

rn=m(n) and an s=s(n), 
and ESn+/nC[s~, (s+l)8).  

1 + + 
kF (m) (S;,;(,,)- ES;,r(m)) 

_~) 1 + 1 1 + + 
~ - - ~ -  1 -  k ' ~ - ~  ES~;(m)~ ~ k;(m) (S;'2(m)-ES;'2("))<- 

< n k 2 ( " ) - I E s +  < I(S"+ -ES"+)< 1 + 1 + _ 1 S+ = n = n  S/qO')- k~+(m) ESk~+(m)q-e'~- 

ot + _ES_~1(m))+(a_ l )A+e .  k+ (m---~(Sk+<m) 

By (12) these inequalities yield 

- 8 - ( 1 - 1 )  A <= __lim I(S~+-ES,+)<= 1-~ I(S~+-ES~+)<= (c~-l)A +~ 
n ~  rl n~oo 

almost surely, and since this is true for any ~>1 and z>0,  we obtain that 

lira I ( S ~  + -ES~  +) = 0 a.s. 

It can be proved in the same way that 

and the theorem follows. 

lira --1 ( 5 ; 2 - E S ; )  = 0 
n ~  n 

a . s .  

PROOF OF THEOREM 2. Clearly, 

1 " 2 n 2 " 
.~E]Ym(a)-EYr,(a)[ <= ~ I E  = O(1), -- <--- Z E[rm(a)[ [X~-EXm[ 

n m = l  l"l m=l  "-n = 

and hence an application of Theorem 1 to Yl(a), Y2(a), ... yields 

lim 1 ~ ( r . ( a ) - E r . ( a ) )  = o a.s. 
n ~  n m = l  
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Condition (5) and the Borel--Cantelly lemma then give (6) with bin= Y,,(a), 
r e = l ,  2, . . . .  

PRoof or  THEORrg 3. Consider the probability space (f2, sO, P), where 
g2=(0, 1), ~ '  is the a-algebra of  the Lebesgue-measurable subsets of  f2 and P 
is the Lebesgue measure on d .  Let r,,(@=sign sin (2"rico), n - l ,  2 . . . .  ; co~(0, 1), 
be  the n-th Rademacher function. Consider the sequence {w~(og)}~ of  Walsh 
functions, i.e., w0@)-  1, and if n is a positive integer with the diadic representation 
n=2V~+. . .+2  vp, v l< . . .<vp ,  then w,(og)=rv~+l(co)...rvp§ cot(0, 1). For any 
n = l ,  2, ... we have Ewn=O and D(w~)=l. Set 

~o(m)=2 ~'m and O(m)=222m, m = 1 , 2  . . . . .  

Tandori [7] proved that if m > 1, then there is a rearrangement 

of the functions Wl(CO), ..., w~,(,,)(co) and there can be given real numbers ax(m) . . . .  
.... a~,(m)(m) such that 

a~(m)+ ... +a~(m)(m) ~ 5ra 

and if ~o~(0, 1/4) and is not diadic, then 

k m 
m a x  Z aj(m)wiAm)(~ >--'~. 

l=/___~(m) j = l  

For any m = 1, 2, ..., define the numbers 

2 (~b(m)) ~a2.(2m) 
Dz(,.)+n = 2m(z_~/z) ', n = 1 . . . . .  @(rn), 

where 0 < e <  1, and introduce the random variables 

XCtm)+.(o9 ) = D  q,(,,)+nrr n = ! . . . .  , ~b(rn). 

For any other index k, let Xk(@--=_0, co~(0, 1). By the definition of  the Walsh 
functions it is obvious that X1, X.~ . . . .  are pairwise independent, EX. =0, n =  1, 2 . . . .  , 
and the definition also ensures that condition (8) is satisfied (implying (1)). Exactly 
as we saw it in (11), condition (1) alone implies that 

1 q,(m) 
lira ~ Z X~ = 0  0(m) 

almost everywhere in (0, 1). Nevertheless we show that 

1 
03) - Z x j  = 

n~,~ n j = l  

almost everywhere in (0, 1/4). 
For any integer m ~ l  let ~(m)<n<=2~O(rn). Then 

n 
"-~ Z Xj(r r  1 Ze'~') Xj( ) 

j=~(m)+X n @(m) ~=1 
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STRONG LAW OF LARGE NUMBERS 325  

say. We know that ~im Z , = 0  almost everywhere in (0, 1). But 

r "-~ ' (")  
V.(co) = n2,,(1_~/4) ro(.)+l(a) ) Z aj(2m)wij(2")(O0), 

j = l  
and hence 

m a x  1 1 ' )1 qt(m) n~20(m) 2 2 "(1-'/a) max a j(2 )wij(2,,)(co _-> 2 "(~/~) l~k~=O(m) j = l  

almost everywhere in (0, 1/4). It now follows that we have (13) indeed, almost 
everywhere in (0, 1/4). 

PROOF OF THEOREM 4. Our point of departure is a function system of Kaczmarcz 
[3] which, in essence, is a simplified version of  a system considered originally by 
Mengov [4]. Let p=>2 be an integer and for / = 1 ,  ..., 2p, consider the functions 

We have 

1 '  xC , , k = l  . . . . .  4p. 
k - p - l - - ~  

f u~ (x) dx 
o 

= 1 ~  1 
[ P k=l k - - p -  I---~ 

whence 

(14) G < / - -  = u~ (x)  dx <_ __C~ I = 1 . . . .  , 2 p ,  
P o P '  

where C1, C, , . . .  will denote positive absolute constants. If  i >j ,  then 

1 ~ 1 

11 /1 i} 
p i , j  - 1 - .  1 -- 

k - p - i - - ~  k - p - j - - ~  

1 1 

p i - j  

3p-- i 1 
Z 

~ = l - p - l k _ l  
2 

p i--j ~k=l-p-~ 1 

~ = 1 - p - i  k 

z3P-J ~ }  , 
k=3p--i+l k 
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and therefore 

(15) I%1 ~ 1 1 [ i - j  
7 ~ - - - 7  - -  1 / P+j +'~ 

We extend the definition of these functions 

i--j }.~ C3 

3p_i_2" = "-~" 
ut(x) to the interval (4, 5] in such 

a way that they be orthogonal on the whole interval [0, 5]. Let us divide up the 
interval (4, 5] into N=2p(2p-1) pairwise disjoint subintervals Ii~, i,j=l, ..., 2p, 
i ~ j ,  of equal length and set 

I ~N,ohj , ,  xCllj, j=1,...,2p, j ~ l ,  

ut(x)=lO,~Nl~'ilsigna'J'- xCIjt'J otherwise,= 1,...,2p, j ~ l ,  

for each l=1  . . . .  ,2p. The functions ut(x) thus obtained are obviously simple 
(step) functions on [0, 5] and they constitute an orthogonal system there. Further- 
more 

5 4 1 t -1  1 
f ~(x)ax = f .r(x)dx+-~ Z t~,jt+-~ Z I~,jl 

0 0 -r j = l  "~ j = / + l  

and hence by (14) and (15), 

c,  < t~ - -  = u~ (x) dx <= ~,C5 l = 1 ..... 2p. (16) 
P o j P 

If x~[2, 3), then there is a non-negative integer re(x) depending on x, m(x)<p, 
such that E[2p+m(x) 2p+m(x)+l] 

x [ 7 ' ); ," 
Then by definition, ul(x)>-O, ...,up+,~(~)(x)>=O, and 

p+m(x) p+m(x) 1 p+m(x) 1 
X Ul(X)= X 1 = 2 1 ' 
1=1 l=l  2p+m(x)+l+p--l-.~ ~=~ l---~ 

and this implies that 

1 (17) l~,,~_2pmax ~__ut(x) ~- C61ogp, xC[2, 3). 

Moreover we have 
5 4p 1 1 2p 

+ t/2p(2p_l) j_-z:=l I1/~Ul ' 

5 

f u7 (x) dx  = --1 p+lz~ �9 1 
o P k = l  k _ p _ l _ l  

2p 1 Z ~ l ,  
+ ]/2p(2p--1) ~=1 
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whence 
5 5 

08)  f ui ~ (x) dx <- C7 logp , f ui- (x) dx <- - C7 log_____pp 
o P o P 

Put 

v,(x) = u,(x) f u~(x) dx, I = 1 . . . . .  2p. 
0 

These are again simple functions on [0, 5] and constitute an orthonormal system 
there, and by (16), (17) and (18) we have 

" (x)l ' -  (19) l~_m~_~pmaX t~__lvz >= Csl /plogp,  x~[2, 3), 

5 log p 
5 log._.____p_p f vi- (x) dx <= C9 ~ .  (20) of  v,+ (x) dx <_- c9 Cp , o 

Let 
~V~vl(5x), xC (0, 1), 

g~(x) = (0, otherwise, 
and for l = 1, ..., 2p, introduce 

1 (0, , / 11 
~-~gt 2 x--  , x (  , 1  , 

otherwise. 

The latter functions are simple and they form an orthonormal system on (0, 1) 
with 

1 

(21) f f~(p; x ) d x  = O, l = 1, ..., 2p, 
0 

and by (20) we have for any l = 1, ..., 2p that 

1 1 

(22) f A + (p; x) dx <= C,o l~ f f -  (2; x) dx <= Clo Iog_.____pp 
~ r  ' o Vp " 

Furthermore, by (19) there is a simple set A(p)____ (0, 1), i.e. A(p) is the union of  
a finite number of intervals, such that 

l 
(23) rues A (p) _-> y 

and 

(24) t = l f ( p ;  x) __ Cll] /plogp,  xCA(p). 
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Finally, for another parameter a > 1, we introduce the functions 

[0, otherwise, 

l = 1  . . . .  ,2p. These functions are still simple on (0, 1), they constitute an ortho- 
normal system such that by (21) and (22) we have 

1 

(25) f h~(a, I); x )dx  = O, l = 1 . . . . .  2p, 
0 

1 1 

(26) f h~- (a, p; x) dx ~- ClO tog p f h; (a, p; x) c/x ~ Clo log/) 

l = 1 . . . .  ,2p, and, by (23) and (24), there is a simple set H(a, p) ~ (0, 1) such that 

1 
(27) mes H(a,  p) >- "~a ' 

" x) (28) l~=,,<_-=pmax l~=lhl(a,p; =>Cnl/-h--~plogp, xCH(a ,p ) .  

After so much preparation let (f2, sO, P)  be again the probability space in 
the proof  of Theorem 4. On this space we now define a sequence {X,}~' of random 
variables and a sequence {Em}g of sets in ag such that the following conditions 
will be satisfied. The X,, will be simple functions and they will be pairwise un- 
correlated. The events Em will be simple sets and totally independent, and for 
any rn_->2 we shall have 

1 
(29) P{E,~} >= 5(m--"l) " 

Moreover, for any m=>2, the following relations will be satisfied: 

m 
- -  2 m+l n ~ 2 m+~, (30) D~ (Xn) ( m -  1) ~'' < 

(31) max Xe~+l+l (c~ "-=" +Xe~+l+k(a~) I i_~-<~"§ 2'n+i+k ~ Ci~]/m-1,  o)EEra, 

1 1 
(32) EXt + <= C18 _,------v, EX,- =:Cla _r------:, 2'n+1 "< l <= 2 m+= 

Vrn--1 Vm--I  

To begin the construction, set Xn(o))=rn(co)--signsin(2nrm)), toE(0,1), 
n = l ,  ..., 2 a. These are simple and uncorrelated. Let now m0 be an integer, not 
less than two, and assume that the random variables X1, ..., X2,,o+1 and the sets 
E~ . . . . .  Emo are already defined such that the variables are simple and pairwise 
uncorrelated, the events are simple and independent, and relations (29)--(32) are 
satisfied for m=2 ,  ..., m0. Then a sequence 11, ..., Ir of  pairwise disjoint intervals 
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can be given such that (0, 1)= 6 Ik, each of the variables Xj, j = 1, ..., 2 m~ 
k = l  

is constant on any of the intervals _11, ..., Ir, and each of the sets E2 . . . .  , E,,o 
appears as the union of some of the intervals I~, ..., L. 

For a function X(oJ) on (0, 1) and an interval l=(a, b)c=(O, 1) let 

X(I; 09) = 
[ b - a ) '  ogE (a, b), 

0, otherwise. 

Also, for a set H ~  (0, 1), let H(I) be the set contained in I which is obtained 
from H by the application of the transformation x-~(b-a)x+a. 

Consider now the above construction of the h~(a, p; x) functions and H(a, p) 
sets for p = 2  m0, a=mo. Let us break up the interval Ik into two disjoint intervals 
of equal length: Ik-----I~,UI[; , k = l ,  ..., r. We define the next block of  variables as 

1/No r =v -o 
X2,,,o+1+,(r = 2., _ ~ h t ( m o ,  2"~ 17; co)- Z - - h i ( t o o ,  2"o; i;'; CO), 

k=l m o  k=l m0 

1 = 1 . . . .  ,2 "~ and the next event as 

Emo+ l = [kU=l H(mo, 2mo ; I;)) U (~=1H (mo, 2% ; I~') ) �9 

It is plain that the X~, k =2  "o+1, ..., 2 "o+2, are simple functions and Emo+l is 
a simple set. The events E2 . . . .  , E'0+ ~ are obviously independent, and, by (27), 
inequality (29) is satisfied for m = m o +  1. Equation (25) implies that 

(33) EXk = O, 

k = 2  "~ ..., 2 "~ and hence it is evident by construction that X1, ..., X~mo+2 
are pairwise uncorrelated as well. Finally, (30), (31) and (32) also follow from (26) 
and (28) for m=rno+ 1, on the basis of the construction. 

Hence the required sequences {X,} F and {E'}~ are obtained by induction, 
and (33) also holds for any k=>l. Now we claim that the constructed X,'s satisfy 
all the requirements of the theorem. 

From (30) we get 

f D~(X,) m~.. 2 2m+2 D2(X,) 
.=28+1 n 2 = Z n------T-- ~-- = . = 2 m + 1 + 1  

< 2  ~ 1 2 m  2--+2 1 = 1 
m = 2  m n = 2  + + 1  u = 

This and (33) imply in the usual way that 

(34) lim Xl +... + Xe.+x = 0 
m~= 2 "+1 
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almost  surely. 

and hence 

I t  follows f rom (32) that  

lim EX~ + =- lira EXs  = O, 

lira 1 ~ E IX l = o, 
n ~  n m = l  

Through  the second Bore l - -Cante l l i  l emma (29) gives tha t  

= 

Therefore  it follows by  (31) that  the inequali ty 

max  X I + . . . + X k  ~ max X ~ m + l + . . . + X k _  X I + . . . + X ~ + I  > 
a " + l < k < - - 2 " +  ~ k Sm+l<k<--Zm+2 k 2 " + 1  - -  

_ , -  x l + . . .  +x~,,+~ [ 
>= Crz g m -  ~ ] 

holds a lmost  surely for infinitely many  m. This and (34) imply that,  indeed, a lmost  
surely 

-Ix,+ ;.+ lim . X. , ~ , 
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