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1966] MATHEMATICAL NOTES 285

as a parametric solution of (10). Hence from (9), taking the plus sign before «,
ey = Tm? 4+ 13mn — 30n2.
Then from (8), a;=13m?—22mn — 26n2. Finally from (5),
a3 = — 8m? 4+ 39%9mn — 16n2, bs = — 13m? + 24mn — 26n2.

The negative sign before a only interchanges a; and a3 with sign changed. If
we denote the quadratic form am?+4-bmn-+cn? by the notation [a, b, c], we write
the solution of the system (3) as

ay = [7, 13, —30], a: = [13, =22, —26], a3 = [—8, 39, —16]
by = [—7, 13, —16], b, = [8, —13, —30], by = [—13, 24, —26].

By Theorem 3, the system (2) has then the following parametric solution:

A, = [-1, 62, —30], A, = [7, 38, —50], Ay =[5, =8, —22],
Ag=[19, —32, —42], A5 =[—19, 36, —62], By = [—9, 66, —42],
By = [5, 42, —62], By = [—21, 38, —22], B, =[9, —14, — 50],

Bs = [21, —36, —30].
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PROJECTING 7 ONTO ¢
RoBErT WHITLEY, New Mexico State University

Itis a well-known result, due to Phillips, that the Banach space 7, of bounded
sequences with the sup norm, cannot be projected continuously onto the sub-
space ¢, of sequences converging to zero [1, page 33, Corollary 4]. A typical
use of this fact is found in [2]. We give a simple proof using an idea inherent
in [4] and, as was pointed out by the referee, in [3]. Our method may also be
used to simplify the proof of the result in [4].

LEMMA [5, page 77]. Let I be a countable set. Then there is a family { Usian A }
of subsets of I such that (1) U, is infinite, (2) U,N\Uy is finite for a=b and (3) the
index set A is uncountable.

Proof. Arthur Kruse has given the following elegant proof: Take I to be the
rationals in (0, 1), 4 the irrationals in (0, 1) and, for a in 4, let U, be a sequence
of rationals in (0, 1) converging to a.

Recall that a subset of the conjugate space X* of a Banach space X is total
if the only vector annihilated by all members of the subset is the zero vector.
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For brevity we say that a Banach space X has (property) B if X* contains a
countable total subset. It is easy to see that B is preserved under isomorphism,
that a subspace of a space with B has B and that the space m has B.

THEOREM. There is no condinuous projection of m onto co.

Proof. Suppose that there is a continuous projection of m onto ¢o. Then
m=co®R, where R is a closed subspace of m. Since m/c, is isomorphic to R
we see that m/c, has B. The proof consists of showing that #/c, does not have B.

We think of m as B(I), the bounded functions on a countable set I. Let
{U,:a in A} be a family of subsets of I as in the lemma and let f, be the coset
in m/c, which contains the characteristic function of the set U..

Let g be in (m/co)*. We will show that the set {f.: g(f.) O} is countable;
it suffices to show that the set C(n) = {f.: | g(f.)| Z1/n} is countable for each
natural number #. Choose fy, « - +,fnin C(n) andlet b;=sgn(g(f:)) =g/ |2(f:)|.
The vector x= Zbif,- is of norm one (note that as a coset x contains vectors
whose norm may be greater than one), and so ” g“ =|g(x)| Zm/n; thus C(n) is
finite for each .

We conclude by noting that if {h@} is a countable subset of (m/co)* then
our argument shows that there are only countably many f, with %;(f,) nonzero
for some 7. Hence we can find a vector f, which is mapped into zero by all the %;,
and so the set {/;} is not total.
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INTERIORITY AND THE TONELLI CONDITIONS
W. V. CarpweLL, Flint College, Univ. of Michigan

In 1937, S. Stoilow proved that if f is a complex-valued function of a complex
variable which has the properties: (i) point inverses are totally disconnected,
and (ii) f maps interior points of its domain of definition into interior points of
the image, then f is topologically equivalent to an analytic function. This result
stimulated interest in light interior functions (i.e. functions satisfying (i) and
(ii)) and in establishing conditions which insure that a function satisfying these
conditions will be light and interior. Titus and Young proved that if f&C’ and
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