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 286 MATHEMATICAL NOTES [March

 For brevity we say that a Banach space X has (property) B if X* contains a
 countable total subset. It is easy to see that B is preserved under isomorphism,
 that a subspace of a space with B has B and that the space m has B.

 THEOREM. There is no continuous projection of m onto co.

 Proof. Suppose that there is a continuous projection of m onto co. Then
 m = cO (R, where R is a closed subspace of m. Since m/co is isomorphic to R
 we see that m/co has B. The proof consists of showing that m/co does not have B.

 We think of m as B(I), the bounded functions on a countable set I. Let
 Ua: a in A } be a family of subsets of I as in the lemma and letfa be the coset

 in m/co which contains the characteristic function of the set Ua.
 Let g be in (m/co) *. We will show that the set {fa: g(fa) z0} is countable;

 it suffices to show that the set C(n) = {fa: I g(fa) | 1/n } is countable for each
 natural numbern. Choosefl, * * *,fm in C(n) and let bi=sgn(g(fi)) =g(fi)/ g(fi) |.
 The vector x = bfi is of norm one (note that as a coset x contains vectors
 whose norm may be greater than one), and so II1gi I I g(x) _ m/n; thus C(n) is
 finite for each n.

 We conclude by noting that if {hi} is a countable subset of (n/co)* then
 our argument shows that there are only countably many fa with hi(fa) nonzero
 for some i. Hence we can find a vectorfa which is mapped into zero by all the hi,
 and so the set {hi } is not total.
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 INTERIORITY AND THE TONELLI CONDITIONS

 W. V. CALDWELL, Flint College, Univ. of Michigan

 In 1937, S. Stoilow proved that if f is a complex-valued function of a complex
 variable which has the properties: (i) point inverses are totally disconnected,
 and (ii) f maps interior points of its domain of definition into interior points of
 the image, then f is topologically equivalent to an analytic function. This result
 stimulated interest in light interior functions (i.e. functions satisfying (i) and
 (ii)) and in establishing conditions which insure that a function satisfying these
 conditions will be light and interior. Titus and Young proved that if f EC' and
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