

Projecting m onto c0

Author(s): Robert Whitley

Source: The American Mathematical Monthly, Mar., 1966, Vol. 73, No. 3 (Mar., 1966), pp. 285-286

Published by: Taylor & Francis, Ltd. on behalf of the Mathematical Association of America

Stable URL: https://www.jstor.org/stable/2315346

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

Taylor & Francis, Ltd. and Mathematical Association of America are collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly

as a parametric solution of (10). Hence from (9), taking the plus sign before α ,

$$a_1 = 7m^2 + 13mn - 30n^2.$$

Then from (8), $a_2 = 13m^2 - 22mn - 26n^2$. Finally from (5),

 $a_3 = -8m^2 + 39mn - 16n^2$, $b_3 = -13m^2 + 24mn - 26n^2$.

The negative sign before α only interchanges a_1 and a_3 with sign changed. If we denote the quadratic form $am^2+bmn+cn^2$ by the notation [a, b, c], we write the solution of the system (3) as

$$a_1 = [7, 13, -30],$$
 $a_2 = [13, -22, -26],$ $a_3 = [-8, 39, -16]$
 $b_1 = [-7, 13, -16],$ $b_2 = [8, -13, -30],$ $b_3 = [-13, 24, -26].$

By Theorem 3, the system (2) has then the following parametric solution:

$A_1 = [-7, 62, -30],$	$A_2 = [7, 38, -50],$	$A_3 = [5, -8, -22],$
$A_4 = [19, -32, -42],$	$A_5 = [-19, 36, -62],$	$B_1 = [-9, 66, -42],$
$B_2 = [5, 42, -62],$	$B_3 = [-21, 38, -22],$	$B_4 = [9, -14, -50],$
	$B_5 = [21, -36, -30].$	

References

1. L. Bastein, Sphinx-Oedipe, 8 (1913) 171-172.

2. J. Chernick, Ideal solutions of the Tarry-Escott problem, this MONTHLY, 44 (1937) 626-633.

3. Gazeta Matematica, 48 (1942) 68-69.

PROJECTING *m* ONTO *c*₀

ROBERT WHITLEY, New Mexico State University

It is a well-known result, due to Phillips, that the Banach space m, of bounded sequences with the sup norm, cannot be projected continuously onto the subspace c_0 of sequences converging to zero [1, page 33, Corollary 4]. A typical use of this fact is found in [2]. We give a simple proof using an idea inherent in [4] and, as was pointed out by the referee, in [3]. Our method may also be used to simplify the proof of the result in [4].

LEMMA [5, page 77]. Let I be a countable set. Then there is a family $\{U_a: a \text{ in } A\}$ of subsets of I such that (1) U_a is infinite, (2) $U_a \cap U_b$ is finite for $a \neq b$ and (3) the index set A is uncountable.

Proof. Arthur Kruse has given the following elegant proof: Take I to be the rationals in (0, 1), A the irrationals in (0, 1) and, for a in A, let U_a be a sequence of rationals in (0, 1) converging to a.

Recall that a subset of the conjugate space X^* of a Banach space X is total if the only vector annihilated by all members of the subset is the zero vector. For brevity we say that a Banach space X has (property) B if X^* contains a countable total subset. It is easy to see that B is preserved under isomorphism, that a subspace of a space with B has B and that the space m has B.

THEOREM. There is no continuous projection of m onto c_0 .

Proof. Suppose that there is a continuous projection of m onto c_0 . Then $m = c_0 \oplus R$, where R is a closed subspace of m. Since m/c_0 is isomorphic to R we see that m/c_0 has B. The proof consists of showing that m/c_0 does not have B.

We think of m as B(I), the bounded functions on a countable set I. Let $\{U_a: a \text{ in } A\}$ be a family of subsets of I as in the lemma and let f_a be the coset in m/c_0 which contains the characteristic function of the set U_a .

Let g be in $(m/c_0)^*$. We will show that the set $\{f_a: g(f_a) \neq 0\}$ is countable; it suffices to show that the set $C(n) = \{f_a: |g(f_a)| \ge 1/n\}$ is countable for each natural number n. Choose f_1, \dots, f_m in C(n) and let $b_i = \operatorname{sgn}(g(f_i)) = \overline{g(f_i)} / |g(f_i)|$. The vector $x = \sum b_i f_i$ is of norm one (note that as a coset x contains vectors whose norm may be greater than one), and so $||g|| \ge |g(x)| \ge m/n$; thus C(n) is finite for each n.

We conclude by noting that if $\{h_i\}$ is a countable subset of $(m/c_0)^*$ then our argument shows that there are only countably many f_a with $h_i(f_a)$ nonzero for some *i*. Hence we can find a vector f_a which is mapped into zero by all the h_i , and so the set $\{h_i\}$ is not total.

References

1. M. M. Day, Normed Linear Spaces, Academic Press, New York, 1962.

2. J. Lindenstrauss, A remark concerning projections in summability domains, this MONTHLY, 70 (1963) 977–978.

3. M. Nakamura and S. Kakutani, Banach limits and the Čech compactification of a countable discrete set, Proc. Imp. Acad. Japan, 19 (1943) 224-229.

4. A. Pełczyński and V. N. Sudakov, Remark on non-complemented subspaces of the space m(S), Colloq. Math., 9 (1962) 85-88.

5. W. Sierpinski, Cardinal and Ordinal Numbers, Warszawa, 1958.

INTERIORITY AND THE TONELLI CONDITIONS

W. V. CALDWELL, Flint College, Univ. of Michigan

In 1937, S. Stoïlow proved that if f is a complex-valued function of a complex variable which has the properties: (i) point inverses are totally disconnected, and (ii) f maps interior points of its domain of definition into interior points of the image, then f is topologically equivalent to an analytic function. This result stimulated interest in light interior functions (i.e. functions satisfying (i) and (ii)) and in establishing conditions which insure that a function satisfying these conditions will be light and interior. Titus and Young proved that if $f \in C'$ and