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Abstract

The complemented subspace problem asks, in general, which closed

subspaces M of a Banach space X are complemented; i.e. there exists

a closed subspace N of X such that X = M ⊕N? This problem is in

the heart of the theory of Banach spaces and plays a key role in the

development of the Banach space theory. Our aim is to investigate

some new results on complemented subspaces, to present a history of

the subject, and to introduce some open problems.
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1 Introduction.

The problem related to complemented subspaces are in the heart of the

theory of Banach spaces. These are more than fifty years old and play a key

role in the development of the Banach space theory. Our aim is to review of

results on complemented subspaces, to present a history of the subject, and

to introduce some open problems.

We start with simple observations concerning definition and properties of

complemented subspaces. Some useful sources are [8], [17], [28].

Let X be a normed space, M , N be algebraically complemented subspaces

of X (i.e. M + N = X and M ∩ N = {0}), π : X → X

M
be the quotient

map, φ : M × N → X be the natural isomorphism (x, y) 7→ x + y and

P : X → M, P (x + y) = x, x ∈ M, y ∈ N be the projection of X on M along

N . Then the following statements are equivalent:

(i) φ is a homeomorphism.

(ii) M and N are closed in X and π|N is a homeomorphism.

(iii) M and N are closed and P : X → M is a bounded projection.

The Subspaces M and N are called topologically complemented or sim-

ply complemented if each of the above equivalent statements holds. If N1, N2

are complemented subspaces of a closed subspace M , then N1 and N2 are

isomorphic Banach spaces.

It is known that every finite dimensional subspace is complemented and ev-

ery algebraic complement of a finite codimension subspace is topologically

complemented.

In a Banach space X, applying the closed graph theorem we can establish

that two closed subspace are algebraically complemented if and only if they

are complemented. Moreover, if M is a closed subspace of X, then M is

complemented if and only if the following equivalent assertions hold:

(I) The quotient map i : M →֒ X has a left inverse as a continuous
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operator .

(II) The natural projection π : M → X

M
has a right inverse as a continuous

operator.

l∞ is complementary in every normed space X containing it isomorphi-

cally as a closed subspace [28]. Also, If c◦ is subspace of a separable Banach

space X , then there is a bounded projection P of X onto c◦ of norm ≤ 2,

cf. [44].

Suppose now that F is a retract of a Banach space X, i.e. F is a Banach

subspace of X and there is a continuous linear map φ : X → F such that for

all x ∈ F, φ(x) = x. Then C◦(X−F ) = {f ∈ C(X) : f(x) = 0 for all x ∈ F}

is complemented in C(X). In fact, by defining P : C(X) → C(X) by

P (g) = g ◦ φ, we have P 2 = P, ‖P (g)‖ = Sup

x∈X

|g(φ(x))| ≤ ‖g‖ and KerP =

{g ∈ C(X)|g(φ(x)) = 0 for all x ∈ X} = C◦(X − F ).

Hence we may say that ”complemented ideal’ is the Gelfand dual of ”retract

closed subspace” (see [31]).

There are non-complemented closed subspaces. For example, let X be the

disk algebra, i.e. the space of all analytic functions on {z ∈ C; |z| < 1} which

are continuous on the closure of D. Then the subspace of C(T ) consisting of

the restictions of functions of X to T = {z ∈ C; |z| = 1} is not complemented

in X (see [18]).

Throughout the paper c◦, c, l∞, lp denot the space of all complex sequences

{xn} such that lim
n→∞

xn = 0, {xn} is convergent, {xn} is bounded, and
∞∑

n=1

|xn|
p < ∞, respectively. In addition, Lp denotes the Lp-space over the

Lebesgue interval [0, 1]. The reader is referred to [20] and [26] for undefined

terms and notation.
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2 Complementary subspace problem and

related results.

This problem asks, in general, which closed subspaces of a Banach space

are complemented?

In 1937, Murray [32] proved, for the first time, that lp, p 6= 2, p > 1 has

non-complemented subspace.

Phillips [38] proved that c◦ is non-complemented in l∞. This significant

fact has been refined, reproved or generalized by many mathematicians, cf.

[37], [16], [42] and [34].

Banach and Mazur showed that all subspaces in C[0, 1] which are iso-

metrically isomorphic to l1 or L1[0, 1] are non-complemented, cf. [43] and

[1].

In 1960, Pelczynski [36] showed that complemented subspaces of l1 are

isomorphic to l1. Köthe [22] generalized this result to the non-separable case.

In 1967, Lindenstrauss [25] proved that every infinite dimensional comple-

mented subspace of l∞ is isomorphic to l∞. This also holds if l∞ is replaced

by lp, 1 ≤ p < ∞, c◦ or c.

It is shown by Lindenstrauss [24] that if the Banach space X and its

closed subspace Y are generated by weakly compact sets (in particular, if X

is reflexive), then Y is complemented in X.

In 1971, Lindenstrauss and Tzafriri [26] proved that every infinite dimen-

sional Banach space which is not isomorphic to a Hilbert space contains a

closed non-complemented subspace.

Johnson and Lindenstrauss [19] proved the existence of a continuum of

non-isomorphic separable L1-spaces. (An L1-space is a space X for which

X∗∗ is a complemented subspace of an L1-space)

Classically known complemented subspaces of Lp, 1 < p < ∞ , p 6= 2 are
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lp, l2, lp ⊕ l2 and Lp itself. In 1981, Bourgain, Rosenthal and Schechtman [3]

proved that up to isomorphism, there exist uncountably many complemented

subspaces of Lp.

It is shown that a complemented subspace M of l∗∞ is isomorphic to l∗∞

provided M is either w∗-closed or isomorphic to a bidual space, cf. [29].

Pisier [39] established that any complemented reflexive subspace of a C∗-

algebra is necessarily linearly isomorphic to a Hilbert space.

In 1993, Gowers and Maurey [13] showed that there exists a Banach space

X without non-trivial complemented subspaces.

If E is one of the spaces lp, (1 ≤ p ≤ ∞) or c◦, and X is a vector

space complemented in E which contains a vector subspace Y complemented

in X and isomorphic to E, then X is isomorphic to E. Moreover, each

infinite dimensional vector subspace complemented in E is isomorphic to E.

Conversely, if Y is a vector subspace of E = l2 or c◦ which is isomorphic to

E, then Y is complemented in E.

If X is an infinite dimensional vector subspace complemented in some

space C(S), then X contains a vector subspace isomorphic to c◦.

Randrianantoanina [40] showed that if X and Y are isometric subspaces

of Lp (p 6= 4, 6, ...), and X is complemented in Lp then so is Y . Moreover, the

projection constant does not change. This number is defined to be inf{‖T‖ :

T : Lp → X is a bounded linear projection of Lp onto X}.

The above theorem fails in the case p ≥ 4 is an even integer, i.e. there

exist pairs of isomorphic subspaces X and Y of Lp to itself so that X is

complemented and Y is not.

3 Schroeder-Bernstein Problem.

If two spaces are isomorphic to complemented subspaces of each other,

are then they isomorphic?
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There are negative solutions to this problem.(see [15] and [?])

4 Basis and complemented subspaces.

A Schauder basis for a Banach space X is a sequence {xn} in X with

the property that every x ∈ X has a unique representation of the form

x =
∞∑

n=1

αnxn; αn ∈ C in which the sum is convergent in the norm topology,

cf. [20]. For example, the trigonometrical system is a basis in each space

Lp[0, 1], 1 < p < ∞.

Pelczynski [36] showed that any Banach space with a basis is a comple-

mented subspace of an isomorphically unique space.

In 1987, Szarek [45] showed that there is a complemented subspace with-

out basis of a space with a basis and answered therefore to a problem of fifty

years old.

5 Approximation property and

complemented subspaces.

A Banach space X has the approximation property (AP) if for every ǫ > 0

and each compact subset K of X there is a finite rank operator T in X such

that for each x ∈ K, ‖Tx − x‖ < ǫ. If there is a constant C > 0 such that

for each such T , ‖T‖ ≤ C, then X is said to have bounded approximation

property (BAP), cf. [20]. For example, every Banach space with a basis has

BAP.

Pelczynski [36] proved that every Banach space with the BAP can be

complementably embedded in a Banach space with a basis.
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6 Complemented minimal subspaces.

A Banach space X is called minimal if every infinite dimensional subspace

Y of X contains a subspace Z isomorphic to X. For example c◦ is minimal.

If Z is also complemented then X is said to be complementary minimal.

Casazza and Odell [5] showed that Tsirelson’s space T (see [46] and [12])

have no minimal subspaces.

Casazza, Johnson and Tzafriri [4] showed that the dual T ∗ of T is minimal

but not complementary minimal.

7 quasi-complemented subspaces.

A closed subspace Y of a Banach space X is called quasi-complemented

if there exists a closed subspace Z of X such that Y ∩ Z = {0} and Y + Z

is dense in X.

Then such a subspace Z is said to be a quasi-complement of Y . Those

notions are first introduced by Murray [33].

Every closed subspace of l∞ is quasi-complemented, cf. [42]. Also Mackey

[27] proved that in a separable Banach space every subspace is quasi-complemented.

Rosenthal [41] showed that if X is a Banach space, Y is a closed subspace

of X, Y ∗ is W ∗-separable and the annihilator Y ⊥ of Y in X∗ has an infinite

dimensional reflexive subspace, then Y is quasi-complement in X.

8 Weakly complemented subspaces.

A closed subspace of a Banach space X is called weakly complemented

if the dual i∗ of the natural embedding i : M →֒ X has a right inverse as a

bounded operator.

For example, c◦ is weakly complemented in l∞, not complemented in l∞

(see [47]).
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If M is complemented in X with the corresponding projection P , then

the adjoint of idX − P is a projection in B(X) with the range Mo = {f ∈

X∗; f |M = 0}. Hence M is weakly complemented in X.

9 contractively complemented subspaces.

As mentioned before, a closed subspace Y of a Banach space X is said to

be complemented if it is the range of a bounded linear projection P : X → X.

If ‖P‖ = 1, Y is called a contractively complemented or 1-complemented

subspace of X.

Let X be a Banach space with dimX ≥ 3. Then X is isometrically iso-

morphic to a Hilbert space iff every subspace of X is the range of a projection

of norm 1 (see [21] and [2]).

In 1969, Zippin [48] proved that every saparable infinite dimensional L1-

predual space (i.e a Banach space whose dual is isometric to L1(µ) for some

measure space (Ω, Σ, µ) )) contains a contractively complemented subspace

isomorphic to c◦.

Lindenstrauss and Lazar [23] proved that X contains a contractively com-

plemented subspace isometric to some space C(S) when X∗ is non-separable.

Question. Let X be a Banach space and T : X → X be an isometry. Is

the range of T is contractively complemented in X?

In Hilbert and Lp, (1 ≤ p < ∞) spaces, we have an affirmative answer. In

case C[0, 1], however, it may happen that the range of an isometry is not

complemented, cf. [9].

Pisier [39] proved that if M is a Von Neumann subalgebra of B(H) which

is complemented in B(H) and isomorphic to M⊗M , then M is contractively

complemented.
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10 Prime Banach spaces and

complemented subspaces.

A Banach space X is called prime if each infinite dimensional comple-

mented subspace of X is isomorphic to X, cf. [26].

Pelczynski [36] proved that c◦ and lp (1 ≤ p < ∞) are prime. Linden-

strauss [25] proved that l∞ is also prime. Gowers and Maurey [13] constructed

some new prime spaces.

11 Complemented subspaces of topological

products and sums of Banach spaces.

Metafune and Moscatelli [30] proved that when X is one of the Banach

spaces lp(1 ≤ p ≤ ∞) or c◦, then each infinite dimensional complemented

subspace of XN is isomorphic to one of the spaces ω, ω × XN or XN , where

ω = KN (K is the scaler field) and XN is the product of countably many

copies of X.

In [11], the authors obtained a complete description of the complemented

subspace of the topological product lm∞ where m is an arbitrary cardinal

number.

Every complemented subspace of a product V =
∏

i∈I Xi of Hilbert spaces

is isomorphic to a product of Hilbert spaces (I is a set of arbitrary cardinal),

cf. [10].

Ostraskii [35] showed that not all complemented subspaces of countable

topological products of Banach spaces are isomorphic to topological products

of Banach spaces.

Chigogidze [6] proved that complemented subspaces of a locally convex

direct sum of arbitrary collection of Banach spaces are isomorphic to locally
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convex direct sum of complemented subspaces of countable subsums.

Chigogidze [7] proved that a complemented subspace of an uncountable

topological product of Banach spaces is isomorphic to a topological product

of complemented subspaces of countable subproducts and hence isomorphic

to a topological product of Frechet spaces.

12 Some interesting problems.

The following problems in this area arise:

1) Given a Banach space X, characterize the isomorphic types of its

complemented subspaces.

2) Given a Banach space X, characterize the isomorphic types of such

Banach space Z that every vector subspace of Z isomorphic to X is comple-

mented in Z.

3) Is every complemented vector subspace of C(S) isomorphic to some

C(S1)?

4) If a Banach space X is complemented in every Banach space containing

it, is X isomorphism to some C(S) over a Stone space S? (A space is Stonian

if the closure of every open set is open)

5) Does every complemented subspace of a space with an unconditional

basis have an unconditional basis? Recall that an unconditional basis for a

Banach space is a basis {xn} such that every permutation of {xn} is also a

basis or equivalently, the convergence of
∑

αnxn implies the convergence of

every rearrangement of the series, cf. [20].

6) If a von Neumann algebra is a complemented subspace of B(H), is it

then injective?

7) Are lp, 1 ≤ p ≤ ∞ and c◦ the only prime Banach spaces with an

unconditional basis? is still open.
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Remark. Some pieces of information are taken from Internet-based re-
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