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Abstract. We propose a new algorithm for computing the Riemann mapping of the unit disk
to a polygon, also known as the Schwarz–Christoffel transformation. The new algorithm, CRDT (for
cross-ratios of the Delaunay triangulation), is based on cross-ratios of the prevertices, and also on
cross-ratios of quadrilaterals in a Delaunay triangulation of the polygon.

The CRDT algorithm produces an accurate representation of the Riemann mapping even in the
presence of arbitrary long, thin regions in the polygon, unlike any previous conformal mapping algo-
rithm. We believe that CRDT solves all difficulties with crowding and global convergence, although
these facts depend on conjectures that we have so far not been able to prove. We demonstrate
convergence with computational experiments.

The Riemann mapping has applications in two-dimensional potential theory and mesh generation.
We demonstrate CRDT on problems in long, thin regions in which no other known algorithm can
perform comparably.
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1. Introduction. Let P be an open, simply connected, proper subset of the
complex plane C. The celebrated Riemann mapping theorem [8] states that there
is an analytic function f with a nowhere-vanishing derivative such that f(D) = P ,
where D denotes the open unit disk, and such that f is bijective on D. Furthermore,
let z0 be an arbitrarily specified point in P and let α be an arbitrary angle in [0, 2π).
Then f can be chosen so that f(0) = z0 and arg f ′(0) = α. With such a specification,
f is uniquely determined. The point z0 is called the conformal center of f .

This mapping f can be used to solve problems in potential theory posed on P . The
classical example is Laplace’s equation 4u = 0, which is invariant under conformal
transplantation. A second application is finite-difference mesh generation. Because
conformal mapping preserves angles, an orthogonal grid on the disk is mapped by f
to a grid on P whose grid lines also meet orthogonally, which simplifies the task of
discretizing a differential operator.

In the case that P is a simple polygon, the Riemann mapping can be written down
almost in closed form. Let P be a finite polygon whose boundary is piecewise linear,
with no interior angles equal to 0 (no cusps). Let the vertices of P in counterclockwise
order be denoted z1, . . . , zn. Let the interior angles at z1, . . . , zn be α1, . . . , αn, and
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let βj = αj/π − 1 for each j, so that βj ∈ (−1, 1] for each j. (If βj=1, zj is the tip
of a slit, and the sides adjacent to zj coincide at least partially.) Then any conformal
mapping f : D → P has the form [8]

f(w) = A+B

∫ w

0

n∏
j=1

(
1− ω

wj

)βj
dω,(1)

where A,B are complex constants (B 6= 0) and w1, . . . , wn are points in counter-
clockwise order on the boundary of the unit disk. The points w1, . . . , wn are called
prevertices; they map to the points z1, . . . , zn. Formula (1) is known as the Schwarz–
Christoffel (S–C) formula.

The S–C formula is not quite in closed form, because there is no explicit expression
for the n+ 4 real parameters A,B, θ1, . . . , θn, where θi = argwi. The affine constants
A and B can be determined after the prevertices are known, and the three degrees of
freedom may be fixed, so that n− 3 unknowns remain. In practice, these parameters
are determined by solving a system of nonlinear equations derived from geometric
constraints. Any particular specification of the unknown parameters will yield some
polygon whose side lengths and orientation can be measured and compared to the
desired image polygon to yield n− 3 conditions [19].

Actual software packages for S–C mapping like SCPACK [18] and its cousin,
the SC Toolbox for Matlab [7], solve such nonlinear systems numerically. But two
difficulties limit the generality of polygons these packages can handle.

1. The system of nonlinear equations does not have any special structure that
lends itself to easy solution. In fact, the system can have local minima that can trap
nonlinear solvers and prevent convergence entirely [9].

2. More important, SCPACK and the SC Toolbox cannot generally handle
crowding, a phenomenon of conformal mapping that occurs whenever the domain
has any long, narrow channel [14]. Such a channel will skew the prevertex positions
to a degree exponential in the aspect ratio of the narrow region (see Fig. 2). For
instance, if the aspect ratio is 20 to 1, then at least 14 significant digits are lost when
computing a difference between certain θj ’s.

One partial solution to the problem of crowding in the SC Toolbox is its pro-
vision for mapping elongated domains to rectangles. The elongation in the domain
can be matched by a similar elongation in image rectangle, alleviating the crowding
problem [9, 12]. While this technique can be generalized to certain classes of multi-
ply elongated polygons [11], the technique becomes much more delicate, and a new
fundamental domain is needed for each number of elongated branches.

We propose a new algorithm that remedies both of the deficiencies described
above. There are two principal innovations in the new algorithm.

1. Our algorithm uses as primitive variables certain cross-ratios of the wj ’s
(see section 4). Because cross-ratios are invariant under fractional linear transforma-
tions, we can compute many different conformally equivalent embeddings of the wj ’s,
each of which yields the same polygon. In particular, we choose embeddings for which
the resulting maps are accurate locally within different regions of the polygon. Thus,
crowding is no longer a problem.

2. Our system of equations enforces constraints on certain absolute cross-ratios
in the image polygon (rather than enforcing conditions about side lengths and ori-
entations as above). The resulting nonlinear system appears to have a monotonicity
property that makes it much easier to solve than the other formulations.
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To keep the cross-ratios near O(1), some edges of the polygon will first be split;
i.e., new vertices are introduced whose angles are π. In order to define both sets of
cross-ratios, the CRDT algorithm computes a Delaunay triangulation which defines
n − 3 overlapping quadrilaterals. CRDT stands for “cross-ratios of the Delaunay
triangulation.”

The remainder of the paper is organized as follows. In section 2 we describe the
basic properties of the constrained Delaunay triangulation. In section 3 we present the
splitting step of our algorithm. In section 4 we define cross-ratios and establish some
of their properties. In particular, we show that n− 3 cross-ratios uniquely determine
the image polygon under (1) up to similarity transform. In section 5 we present the
whole algorithm in detail. In section 6 we explain how CRDT circumvents crowding.
In section 7 we discuss solvers for the nonlinear system and report on experiments with
various polygonal domains. In section 8 we describe how to use CRDT to compute
the disk map. In section 9 we describe how to use CRDT in two applications. We
know of no other algorithm that could duplicate the results of section 9.

2. The Delaunay triangulation. Let P be a simple polygon. A triangulation
of P is a division of P into nondegenerate triangles whose vertices are vertices of P .
Triangles that intersect must do so at either a vertex or an entire edge.

It is well known that any n-vertex simple polygon P has a triangulation consisting
of n−2 triangles. It is also known that any triangulation of P has exactly n−3 distinct
diagonals, triangle edges that are not also polygon edges. Each triangulation has a
dual graph, which has one node for each triangle and an edge between two nodes if
their corresponding triangles have a common diagonal. It is well known that the dual
graph of a triangulation of a simple polygon is in fact a tree.

Every P has at least one constrained Delaunay triangulation [2], or just Delaunay
triangulation, which has the following (defining) property. If d is a diagonal, let Q(d)
be the quadrilateral associated with d, that is, the union of the two triangles on either
side of d. Then the sum of the two opposite interior angles of Q(d) that are split by d
is at least π. A Delaunay triangulation of P can easily be computed in O(n2) steps.

3. Splitting edges. The first step of our algorithm is to split some edges of the
polygon. Splitting an edge means replacing it by several smaller edges whose union
is equal to the original edge. These new edges are joined by vertices whose angles
are π. Notice that this operation does not affect the S–C formula (1); a vertex whose
interior angle is π has its β exponent equal to 0 in that formula.

The purpose of splitting is to make sure each individual quadrilateral in the
Delaunay triangulation is well conditioned. By “well conditioned” we mean that the
prevertices of the quadrilateral are not too crowded in some valid arrangement of the
S–C prevertices. In particular, we want to avoid quadrilaterals that are long and
narrow with the long edges equal to polygon edges, because the prevertices of such a
quadrilateral will be crowded on the unit circle. (A long and narrow quadrilateral is
acceptable provided that the polygon is “fat” around it, that is, if the quadrilateral
can be enclosed in a disk that is mostly interior to the polygon.)

The splitting procedure has two phases. First, for every vertex v with an interior
angle of π/4 or less, we chop off the corner at v as follows. Find the largest isosceles
triangle T that can be formed by v and its two adjacent edges such that T is contained
in P , and introduce new vertices along the two edges that are adjacent to v at the
midpoints of the two sides of T . After this split, the two edges adjacent to v are said
to be protected ; that is, we do not allow them to be split during the second phase.
Let P ′ denote the polygon obtained after this chopping phase is complete.
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Fig. 1. On the left is the Delaunay triangulation of a polygon. The middle shows the Delaunay
triangulation after the sharp corners have been chopped in the first splitting phase. On the right is
the subsequent result of the second phase, in which narrow regions are subdivided and the Delaunay
triangulation is recomputed.

The second phase of the edge-splitting procedure is iterative and generates a
sequence of polygons, each of which is a subdivision of its predecessor, starting with
P ′. Let e be an unprotected edge of some polygon occurring in the iteration. Let l(e)
be its length. Let d(e) be the smallest distance from e to any foreign vertex, where
“foreign” means a vertex other than the endpoints of e, and distance is measured
geodesically, i.e., along the shortest piecewise linear path that remains inside the
polygon. (It turns out that d(e) can be determined efficiently given a triangulation of
the polygon.) Then we say e is ill separated if

d(e) < l(e)/(3
√

2).(2)

At each iteration we identify all ill-separated edges and split them into three equal
pieces. We repeat this until all edges are well separated. See Fig. 1 for an example
of both phases of the splitting process. The splitting of edges and protecting of
sharp angles is reminiscent of techniques previously introduced in the finite-element
mesh generation literature; see, for example [1, 3, 4, 15]. In the mesh generation
literature, the purpose of these techniques is similar to our own, namely, to prevent
the occurrence of poorly shaped triangles that could arise in a triangulation of the
original (unsplit) polygon. The main difference is that finite-element mesh generation
subdivides the interior of the domain as well as its boundary to avoid all kinds of
long, skinny quadrilaterals, whereas our splitting technique eliminates only the skinny
quadrilaterals whose long edges are polygon boundaries.

We do not try to prove that the splits computed by this procedure are “effec-
tive” for our algorithm, because we do not yet have an a priori characterization of
well-conditioned quadrilaterals. We do prove, however, that the second phase of the
splitting procedure described in this section always terminates after a finite number
of steps. Let r(e) be the geodesic distance from edge e to the closest foreign edge. (A
foreign edge is one that is not adjacent to e.) Let r0 be the minimum of r(e) over all
unprotected edges of P ′. Notice that there can be no edge shorter than r0 in P ′, for
if there were an edge e0 = (v1, v2) of length shorter than r0, let e1 be the other edge
whose endpoint is v1 and let e2 be the other edge whose endpoint is v2. Then one
checks that dist(e1, e2) ≤ l(e0) < r0, contradicting the choice of r0.



CONFORMAL MAPPING USING CROSS-RATIOS 1787

We claim that the splitting procedure above never produces an edge shorter than
r0. To see this, let e = (v1, v2) be an unprotected edge of a polygon at some inter-
mediate stage of the above algorithm whose length is less than 3r0. We must argue
that we could never split e. By induction, let us assume that no edges up to now are
shorter than r0. Let e0 denote the original edge of P ′ that contains e. Let v be the
foreign vertex closest to e, i.e., dist(v, e) = d(e). There are three cases: v lies on an
edge that was foreign to e0 in P ′; it lies on an edge that was adjacent to e0; or it lies
on e0 itself.

In the first case, we know that dist(e0, v) ≥ r0 and hence dist(e, v) ≥ r0. But
l(e) < 3r0, so (2) is not satisfied and e is not split.

In the second case, let e′0 be the original edge that contains v, so that e0 and e′0 are
adjacent; say their common point is v′. Since e0 cannot be protected by assumption,
the interior angle at v′ is greater than π/4. By assumption, the distance from v′ to
v is at least r0. Therefore, some simple trigonometry shows that the distance from v
to e0 is greater than r0/

√
2. Thus, d(e) > r0/

√
2, whereas l(e) < 3r0, so (2) is not

satisfied.

In the third case v is collinear with e, and its distance from e again must be at
least r0, so the same reasoning shows that (2) is not satisfied.

4. Cross-ratios and embeddings. Let a, b, c, d be four distinct points in the
complex plane such that abcd is a quadrilateral with counterclockwise vertex order
and such that ac is an interior diagonal of the quadrilateral. We define the cross-ratio
of these points to be

ρ(a, b, c, d) =
(d− a)(b− c)
(c− d)(a− b) .

Note the identity ρ(a, b, c, d) = ρ(c, d, a, b). Thus, the cross-ratio depends on the
quadrilateral and the diagonal, but not on which endpoint of the diagonal we start
at.

In general, the cross-ratio is a complex number, but there is an important special
case when it is real.

Lemma 1. Let a, b, c, d be four distinct points on a circle in counterclockwise
order. Then ρ(a, b, c, d) is a negative real number.

Proof. The angle of the quadrilateral abcd at a and the angle at c are inscribed
in complementary arcs of the circle, so the sum of these angles must be π. A quick
diagram shows that (d − a)/(b − a) has its argument equal to the angle at a, and
(b − c)/(d − c) has its argument equal to the angle at c. Therefore, the argument of
the cross-ratio, which is the sum of these arguments, is π.

As mentioned in the introduction, the n−3 primitive real variables of the nonlinear
system arise from n−3 cross-ratios of prevertices. The preceding lemma confirms that
these variables are indeed real. However, in order to implicitly impose the constraint
that they be negative, our primitive variables are logarithms of the negatives of the
cross-ratios (see (3) below).

We now explain which n − 3 cross-ratios we use. Assume the vertices z1, . . . , zn
of the polygon P are given in counterclockwise order. Let d1,. . . ,dn−3 and Q1 =
Q(d1),. . . , Qn−3 be the n− 3 diagonals and associated quadrilaterals of the Delaunay
triangulation of P as defined in section 2. Let the vertices of Qi, for i = 1, . . . , n−3, be
denoted by (zκ(i,1), zκ(i,2), zκ(i,3), zκ(i,4)), so that for each i, (κ(i, 1), κ(i, 2), κ(i, 3), κ(i, 4))
is a four-tuple of distinct indices in {1, . . . , n}.
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Then the ith primitive variable σi is defined to be

σi = ln(−ρ(wκ(i,1), wκ(i,2), wκ(i,3), wκ(i,4))), i = 1, . . . , n− 3.(3)

It is apparent that given a list of prevertices w1, . . . , wn, the primitive variables
σ1, . . . , σn−3 are easily computed from (3). For evaluating the nonlinear CRDT map-
ping, the process must be reversed. The remainder of this section explains how to
find w1, . . . , wn on the unit circle to satisfy (3) given σ1, . . . , σn−3.

Notice that there are three degrees of freedom, because (3) imposes only n − 3
real constraints on n real variables. We will use the flexibility afforded by these
degrees of freedom to our advantage; indeed, they are the reason that the CRDT
algorithm avoids problems with crowding, as discussed in section 6. For now, let us
fix these degrees of freedom by assuming that the three prevertices corresponding to a
Delaunay triangle T0 are arbitrarily placed on the unit circle in a manner preserving
their ordering. (Later, we will show that the choice of T0 and the three prevertex
positions will not affect the S–C image. See Theorem 2 at the end of this section.)

We now show how to embed the remaining n − 3 vertices using the cross-ratio
information, starting with a lemma that tells us how to place a single prevertex.

Lemma 2. Given distinct points a, b, c on the unit circle in counterclockwise
order, and given a negative real number ρ0, there exists a unique point d on the unit
circle such that ρ(a, b, c, d) = ρ0. Furthermore, this point is counterclockwise from c
and clockwise from a.

Proof. If we write out the formula and substitute, we get an explicit closed formula
for d,

d =
hc+ a

h+ 1
,(4)

where

h =
ρ0(b− a)

(c− b) .

We must first show that h 6= −1 so that the denominator in the formula for d is
nonzero. But this is obvious, because (b− a)/(c− b) must have a nonzero imaginary
part (since a, b, c cannot be collinear), so h also has a nonzero imaginary part. Thus
d is uniquely determined.

Next, we must show that d lies on the unit circle between c and a. Consider
sliding a test point along the unit circle starting from very near a clockwise to c. It
is easy to check that the cross-ratio, which is a negative real number by the earlier
lemma, varies continuously from 0 to −∞. Therefore, its value must be ρ0 at some
intermediate point. But the last paragraph shows that this intermediate point is
unique.

Remark. If the distances between a, b, and c become very small, we may not
be able to compute d with high precision relative to these small distances. However,
we can find d accurately relative to well-separated points on the circle, which is all
CRDT requires.

Now the first main theorem of this section tells us that, assuming the first three
prevertices are determined, we can place the remaining n− 3 prevertices uniquely.

Theorem 1. Let T0 be any triangle in the Delaunay triangulation of P , and let
its vertices in counterclockwise order be indexed as zφ, zψ, zχ. Suppose the prevertices
wφ, wψ, wχ are specified as distinct points on the unit circle in counterclockwise order.
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Then, given any real-number values for the primitive variables σ1, . . . , σn−3, there
exists a unique solution to (3), that is, a unique way to define the remaining n − 3
wi’s on the unit circle satisfying (3). The algorithm to find the wi’s satisfying (3) is
linear time. Furthermore, for this solution to (3), w1, . . . , wn will be in the correct
counterclockwise order. We call such a placement of the prevertices an embedding.

Proof. This proof relies heavily on the fact that the dual of the Delaunay triangu-
lation is a tree. Let T1 be a triangle sharing a diagonal with T0. The two vertices of
T1 shared with T0 are already embedded, and we can embed T1’s third vertex using
(4) and the given value σi, where i is the index of the quadrilateral T0 ∪ T1. Using
this rule to position the third vertex of T1 ensures that (3) holds for this particular
i. Now that the embedding of T1 is known, we can embed T1’s neighbors and so on.
The general rule is as follows: regard the dual tree as being rooted at T0, inducing a
parent-child relation on the Delaunay triangles. We can embed each triangle after its
parent is embedded, starting with the known embedding of T0. The edges of the dual
tree are in one-to-one correspondence with quadrilaterals in the Delaunay triangula-
tion, so we use each given σi exactly once in this process. This shows that (3) will
be satisfied for i = 1, . . . , n− 3. Furthermore, an induction argument shows that this
embedding is uniquely determined because every step of this construction is forced.

Finally, we must show that the wk’s end up in the correct counterclockwise or-
der. Consider embedding Tj with prevertices wa, wb, wc, and suppose that wa, wb are
already in place. Lemma 2 ensures that wc will be in the arc between wa, wb comple-
mentary to the arc that contains the parent triangle’s other prevertex. Therefore, wc
is placed correctly with respect to wa and wb. But notice that wc must be the first
prevertex placed between wa and wb because any other prevertices on this arc arise
from children of Tj . Thus, the placement of wc is correct with respect to all vertices
placed before it.

This theorem shows that given values for the primitive variables and the positions
of the three prevertices corresponding to a Delaunay triangle, we can compute the
positions of all of the prevertices. How should we choose the initial triangle and embed
its prevertices? It turns out that any initialization is acceptable; all embeddings give
the same image polygon, up to similarity transform.

To show this, we begin by recalling some standard facts from complex analy-
sis [16]. First, any conformal map from the unit disk to itself is a fractional linear
transformation of the form

g(z) = eiθ
z − r
1− r̄z ,(5)

where r is a complex number such that |r| < 1 and θ ∈ [0, 2π). As a consequence,
there is a unique such mapping that takes any three distinct points on the unit circle
to any other three points on the unit circle, preserving ordering [16]. We formalize
another consequence in a lemma.

Lemma 3. Let a, b, c, d be four points on the unit circle in counterclockwise order.
Let g be a conformal mapping of the unit disk to itself. Then

ρ(a, b, c, d) = ρ(g(a), g(b), g(c), g(d)).

Proof. Simple algebra verifies that cross-ratios are invariant under fractional linear
transformations. See [16] for details.

We now show that no matter which initial triangle T0 we select in Theorem 1,
and no matter how we choose the positions of its three prevertices, we end up with
the same image polygon, up to similarity transform.
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Theorem 2. Let σ1, . . . , σn−3 be given. Let T0, T ′0 be two triangles in the Delau-
nay triangulation whose vertices are (zφ, zψ, zχ) and (zφ′ , zψ′ , zχ′), respectively. Let
(wφ, wψ, wχ) and (w′φ′ , w

′
ψ′ , w

′
χ′) be order-preserving embeddings of their prevertices

in the unit disk as in Theorem 1. Use the construction of Theorem 1 to produce the
two embeddings (w1, . . . , wn) and (w′1, . . . , w

′
n), respectively. Let P̃ , P̃ ′ be the images

of the unit disk under (1) using these two prevertex sets. Then P̃ and P̃ ′ are similar;
i.e., they agree up to a translation, rotation, and scaling.

Remark. We have not explained how to choose the affine constants A and B in
(1). The theorem holds for any choice of these constants. Alternatively, the theorem
asserts that, given the constants for one embedding, these constants can be chosen
for the other embedding in such a way that the image polygons coincide.

Proof. Let (w′φ, w
′
ψ, w

′
χ) be the positions of the prevertices of T0 in the second

embedding. Let g be the conformal mapping of the unit disk to itself carrying the
points (wφ, wψ, wχ) to (w′φ, w

′
ψ, w

′
χ). That is, g maps the prevertices of T0 in one

embedding to the prevertices of T0 in the other.
We claim that g(wi) = w′i for all i, not just {φ, ψ, χ}. Because g preserves

cross-ratios, the embedding (g(w1), . . . , g(wn)) has the same n − 3 cross-ratios as
(w1, . . . , wn), which by assumption has the same n − 3 cross-ratios as (w′1, . . . , w

′
n).

But since three entries in (g(w1), . . . , g(wn)) are equal to the three corresponding
entries in (w′1, . . . , w

′
n), the uniqueness part of Theorem 1 guarantees that g(wi) = w′i

for all i.
Now consider composing (1) with the conformal mapping g−1 of the disk to itself.

The composition is a conformal mapping from the unit disk to P̃ , so the S–C formula
(1) must also hold when the prevertices are given by (w′1, . . . , w

′
n) for a suitable choice

of the affine constants. So P̃ and P̃ ′ are similar.

5. The CRDT algorithm. We are now prepared to specify the CRDT algo-
rithm in more detail.

Step 1. Split the edges of the polygon as described in section 3. We
again use P to denote the polygon obtained after splitting. Let n be the number of
its vertices.

Step 2. Compute the Delaunay triangulation of P . Now that the Delaunay
triangulation is computed, we can fix a particular numbering of the diagonals and
quadrilaterals in the triangulation. Recall the notation κ(i, j) used in (3) to number
the vertices of the quadrilaterals.

Let us define

ci = ln(|ρ(zκ(i,1), zκ(i,2), zκ(i,3), zκ(i,4))|)(6)

for i = 1, . . . , n − 3. Note that the cross-ratio in this formula in general will be a
complex number, so the absolute value symbols denote magnitude.

Step 3. Solve the nonlinear system F(σ) = 0. The map F : Rn−3 → Rn−3

is defined as follows. The input variables are the primitive variables σ1, . . . , σn−3

defined by (3). It was shown in section 4 that there is a unique (up to similarity) S–C
mapping that can be computed from these primitive variables. Let ζ1, . . . , ζn be the
vertices of the image of (1). For i = 1, . . . , n− 3, let

Fi(σ1, . . . , σn−3) = ln(|ρ(ζκ(i,1), ζκ(i,2), ζκ(i,3), ζκ(i,4))|)− ci.
Observe that although the ζ’s themselves are determined only up to similarity trans-
form, the cross-ratio of four of them is invariant under similarity transform, so this
definition makes sense.
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For each i we need to find the four image vertices ζκ(i,1), . . . , ζκ(i,4). To do
so we construct a certain embedding Ei of the prevertices. Recall from section 4
that given the vector σ, we can arbitrarily embed three of the prevertices, such as
wκ(i,1), wκ(i,2), wκ(i,3). We embed these three in such a way that when wκ(i,4) gets
placed, these four prevertices will be arranged in a rectangle centered at the origin
with the correct cross-ratio. Then, as in Theorem 1, we position the rest of the prever-
tices to complete Ei. This embedding defines an S–C map fi, given by (1) with A = 0
and B = 1, which we use to compute the relative positions of the four image vertices
ζκ(i,1), . . . , ζκ(i,4). The path of integration is a straight-line segment from the origin,
and we use the compound Gauss–Jacobi quadrature rule described by Trefethen [18].

We discuss nonlinear solvers in more detail in section 7.
Note that at a solution to F(σ) = 0, we have for i = 1, . . . , n− 3 that

|ρ(ζκ(i,1), ζκ(i,2), ζκ(i,3), ζκ(i,4))| = |ρ(zκ(i,1), zκ(i,2), zκ(i,3), zκ(i,4))|.
Furthermore, we know that all the interior angles of the polygon determined by
ζ1, . . . , ζn are correct because the angles are inherent in the S–C mapping. Is this
polygon the correct one? We state the result as a proposition, whose proof has been
communicated to us by Snoeyink [17].

Proposition 1. Let P be an n-vertex triangulated simple polygon. Then P is
uniquely determined up to similarity transform by the following data:

1. the sequence of all interior angles of P at its vertices, and
2. the list of n−3 absolute values of cross-ratios of the quadrilaterals determined

by the triangulation of P .
We could have chosen the n− 3 equations as the conditions on side lengths used

by SCPACK and the SC Toolbox. The advantage of equations that enforce cross-
ratio conditions is that the system of nonlinear equations apparently has a desirable
monotonicity property, described in section 7.

Step 4. Compute the constants in the affine transformations. When
F(σ) = 0, we know that the map fi applied to the prevertices of quadrilateral Qi in
embedding Ei produces a quadrilateral Q′i that is similar to Qi. Two points of each
quadrilateral define the transformation between them, so we can solve either a linear
system or a least-squares problem to find the constants Ai and Bi that appear in (1).
This completes the map from Ei to P .

In section 9 we describe an alternative method, needed in certain situations, for
computing the affine constants.

Observe that CRDT essentially computes n− 3 simultaneous S–C maps from the
disk to P . In the following sections we will see how each map is locally accurate in a
region of P that overlaps with other such local regions.

6. On the circumvention of crowding. In this section we explain the crux
of our claim that CRDT is unaffected by crowding. If the domain P contains any
long, narrow channel, then for any possible correct embedding of the prevertices, some
of the prevertices will be extremely crowded. But the embedding Ei (described at
the end of the last section) for computing the ith component of F guarantees that
wκ(i,1), . . . , wκ(i,4) will not be crowded, either against each other or against any other
prevertex. Therefore, the crowding has no impact on the accuracy of the quadrature
rule applied to these four prevertices, because the path of integration never passes
close to crowded prevertices. Thus, it is the flexibility to re-embed the prevertices for
each coordinate entry of F, along with the splitting of narrow channels, that allows
us to circumvent crowding. See Fig. 2.
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Fig. 2. On the left is a triangulated polygon with two distinguished quadrilaterals whose diago-
nals are given as dashed lines. No embedding of the S–C prevertices will be globally uncrowded. In
the middle picture we see an embedding that keeps the prevertices of the first quadrilateral (marked
with circles) uncrowded, while the prevertices of the other (marked with triangles) are crowded—too
closely to be distinguished. However, in another embedding (far right), the crowding situation is
reversed.

In order to confirm that none of the four prevertices are crowded against each other
or their neighbors, we need a result stating that none of the cross-ratios ρ1, . . . , ρn−3

of the prevertices is very large (close to −∞) or very small (close to 0). Unfortunately,
there cannot exist fixed (constant) upper or lower bounds on these cross-ratios that
apply to all polygons, as a regular n-gon shows. Any triangulation of the regular
n-gon is a Delaunay triangulation, so CRDT might compute a triangulation that has
a quadrilateral whose aspect ratio is O(n). Since the S–C mapping of an n-gon is close
to the identity mapping, there will also be four prevertices whose cross-ratio is O(n2),
or O(n−2). Thus, there is no a priori upper or lower bound possible on the ρi’s, and
therefore none on the σi’s either. This growth of the σi’s is very slow (logarithmic in
n) and is thus not expected to have a significant impact on the accuracy of CRDT. But
the absence of a constant upper bound or lower bound means, for example, that there
is no a priori upper bound on how much adaptation is necessary in the compound
Gauss–Jacobi integration used to evaluate (1).

A more plausible conjecture might be that the difference σi − ci (where ci was
defined by (6)) has constant upper and lower bounds. This result would show that
CRDT is not affected by crowding in the sense that it never works with distances that
are substantially shorter than side lengths in the original polygon. Note that both
quantities σi and ci are logarithms, so subtracting them is the right way to check
how they differ. We do not know whether this conjecture is true, but we have not
seen substantial divergence between σi and ci in our computational experiments. In
Fig. 3 we present a histogram of σi − ci for all polygons in our experiments, for all
indices i, at the final solutions obtained by the CRDT algorithm. Notice that points
in this histogram lie in a fairly narrow range. (The cross-ratios stay similarly bounded
in intermediate steps of the iterations because of the monotonicity observed in our
nonlinear equations, described in the next section.)

The representation of prevertices used by the SC Toolbox and SCPACK is also
well conditioned in the presence of crowding, because logarithms of distances between
prevertices are used as primitive variables rather than the prevertex positions them-
selves. But the logarithmic distances cannot be used directly to compute S–C maps,
so both packages pass (in an intermediate step) from these primitive variables to a
particular prevertex embedding used to evaluate all the components of F, causing
some of them to be affected by cancellation due to crowding. By contrast, the well-
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Fig. 3. Evidence of controlled cross-ratio sizes. The histogram depicts the discrepancies σi− ci
between the primitive cross-ratio variables and polygon cross-ratios for the experiments in section 7.
The variables are logarithmic. The clustering near zero and absence of large outliers supports the
claim that CRDT circumvents crowding.

conditioned cross-ratio representation used in CRDT is transformed into separate
embeddings for each component of F, so that the prevertices of interest are never
crowded and cancellation is avoided.

Does this mean that CRDT “solves” all problems with crowding? If one takes the
results of CRDT and computes a single, fixed embedding of the prevertices, then there
is no improvement compared to the Toolbox with regard to crowding. Therefore, if
one wants to use CRDT in an application, then one must devise an algorithm in which
the cross-ratios produced by CRDT are used to shuffle between different embeddings
of the prevertices. We give some examples of problems from potential theory that can
be solved in this manner by CRDT in section 9. In fact, for every reasonable problem
in potential theory that we have considered, we have always been able to come up
with a way to use the cross-ratios directly and avoid crowding. But in each case
the technique we have devised is slightly different, so we are not able to state with
certainty that CRDT can solve all problems in potential theory posed on elongated
polygons.

7. Computational experiments with CRDT. In this section we experiment
with an implementation of CRDT in Matlab. We present some evidence of the
monotonicity of the nonlinear system and consider the matter of solving it numerically.
We also compare the performance of the CRDT algorithm to the SC Toolbox for
Matlab [7] and find that CRDT is competitive for most regions. The principal
exceptions are regions which cause the edge-splitting algorithm to add a great many
extra vertices of angle π. While such vertices do not affect the amount of work in
computing the S–C integral (1), they do affect the size of the nonlinear system to be
solved.

The computational core of CRDT is solving the nonlinear system F(σ) = 0. We
consider nonlinear solvers that require only function evaluations. According to our
experiments, a particular very simple linear iteration always converges at a linear
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Fig. 4. Lack of global convergence in the SC Toolbox. In solving for the polygon on the left,
dparam arrives at the polygon on the right and terminates. The horizontal slits cannot move past
each other without temporarily increasing the nonlinear system residual.

rate. This iteration starts with σ(0) = c, where ci was defined above by (6). Then we
iterate:

σ(k+1) = σ(k) − F(σ(k)).(7)

Our conclusion from experiments is that this iteration always satisfies ||F(σ(k+1))||2 ≤
α||F(σ(k))||2, for an α that is problem-dependent but always satisfies α < 1. We have
not been able to come up with a convincing explanation for this behavior. The
essential reason is apparently that the Jacobian F′ approximates the identity, but
none of the likely conditions on F′ that would support this claim have been found to
hold in experiments.

The smooth convergence of (7) makes us suspect that F has some strong mono-
tonicity property. Expected consequences of this monotonicity are that ‖F‖ has no
local minima and that F is injective. In contrast, the nonlinear system used by SC-
PACK and the SC Toolbox does not have strong monotonicity properties and in fact is
prone to local minima [9]. This is demonstrated by Fig. 4. If the SC Toolbox is used to
solve for the polygon on the left in the figure, it arrives at the polygon on the right and
terminates due to an apparent local minimum in the system. The minimum results
from the fact that the two horizontal slits cannot be moved past each other without
temporarily increasing the solution residual. This phenomenon was first described
by Howell [9], who also points out that crowding often masks the effect. However,
in this case the correct prevertices are not fatally crowded in double precision, and
the Toolbox will find the solution if given a good enough starting guess. We cannot
be certain that there do not exist polygons for which CRDT exhibits similar global
convergence difficulties.

In practice, the convergence of the simple iteration (7) is too slow. Instead we
use the nonlinear equation solver NESOLVE due to Behrens, which is based on a
Gauss–Newton method with a Broyden update of F′, as described in [6]. This is the
same nonlinear system package used by the SC Toolbox. In one variant, Full CRDT,
we use the standard finite-difference Jacobian to seed the Broyden update. In the
other, Shortcut CRDT, we attempt to exploit the monotonicity by setting the initial
F ′ = I. In Fig. 5 we show convergence curves for a typical case, the goblet region
in Fig. 6. The linear convergence of (7) is strikingly smooth. The convergence of the
NESOLVE variations is more complex, but overall is approximately linear at much
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Fig. 5. Convergence curves for numerical solutions of F(σ) = 0. The iteration (7) converges
linearly. The NESOLVE variations exhibit approximately linear convergence as well, but at much
better rates.

better rates than the simple iteration. The slower rate for Shortcut CRDT is more
than offset by the savings gained by not initializing F′.

We compare the performance of CRDT to the SC Toolbox functions dparam

or rparam for maps from the disk or rectangle, respectively, depending on whether
the target region is elongated. From each method we demand a nonlinear residual
with maximum norm no larger than 10−8. All the experiments reported here were
performed on a SPARCstation-10.

Figure 6 shows four experimental polygons with their Delaunay triangulations,
after the edge splitting has been done. In Table 1 we present the number of function
evaluations and total CPU time required by the nonlinear system solver for these
regions.

Table 1
Performance of CRDT variants versus the SC Toolbox for the solution of the parameter problem

for the regions in Fig. 6. The first number in each entry is the number of nonlinear function
evaluations made by the nonlinear solver; the other number is the CPU time in seconds.

SC Toolbox Full CRDT Shortcut CRDT
Cross 31/10.03 18/14.52 12/11.78
Goblet 78/14.35 42/142.3 26/112.3
Spiral 186/275.4 51/237.1 34/197.0
Y −/− 35/76.37 25/70.38

Note that Shortcut CRDT is indeed always faster than Full CRDT. Also observe
that the individual SC Toolbox iterations are much faster than those for CRDT.
This is because of the additional unknowns introduced by splitting and the multiple
embeddings used by CRDT to thwart crowding. However, the nonlinear systems
posed by the SC Toolbox for these polygons are not as easily solved, and thus many
more iterations may be required even though the systems are smaller.
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Fig. 6. Four regions on which CRDT experiments were performed, after splitting and Delaunay
triangulation. See text.

The cross-shaped region (top left) is not elongated and both dparam and the
CRDT variants converge rapidly. The SC Toolbox has less overhead and dparam is
slightly faster. The goblet region (top right) has 22 vertices added by the splitting
algorithm to its original eight. These extra vertices greatly slow down the CRDT
solvers, making dparam much faster even though it has some difficulty finding the
solution. For the spiral (bottom left), the solution is sufficiently difficult for rparam

that CRDT is a little faster. Finally, for the Y-shaped region (bottom right), the SC
Toolbox is unable to find a solution because of the doubly elongated nature of the
region. CRDT, however, finds the solution easily.

These examples demonstrate what we observe about CRDT in general. CRDT is
least efficient when many extra vertices are added during splitting. This most often
occurs near sharp corners and in narrow channels of the region, both of which are
prominent in the goblet region. While it seems that there is no way to circumvent
subdividing a channel because of crowding effects, we do not know if there is a more
efficient way to produce well-conditioned quadrilaterals near sharp corners. On the
other hand, CRDT handles multiply elongated regions with no difficulty, something
which previously no general-purpose method for S–C mapping has been able to do.

8. Computing maps. In section 6 we remarked that in order to use the in-
formation obtained by CRDT in the parameter problem solution, we would have to
continue to work with multiple simultaneous embeddings of the prevertices. In this
section we illustrate this idea by describing how to map points from the disk.
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We set the stage by describing another sort of dual to the Delaunay triangulation
of polygon P . We define the quadrilateral graph to have a node for each of the n− 3
quadrilaterals in P , with nodes i and j being adjacent when Qi and Qj share three
vertices. It is easy to see that the quadrilateral graph is connected.

The significance of the quadrilateral graph is in the overlapping of adjacent quadri-
laterals. Embedding Ei is assumed to give an S–C map that is locally accurate in Qi.
If Qi is adjacent to Qj , they share three vertices and hence three prevertices. Thus
we can find the fractional linear transformation between Ei and Ej . Moreover, since
a quadrilateral’s prevertices are well separated in its own embedding, this transforma-
tion can be computed very accurately. This is not necessarily the case for embeddings
that are not adjacent, as crowding could introduce fatal ill conditioning.

The first step in mapping from the disk is to choose a particular reference em-
bedding of the disk in which to specify points. For this purpose we will assume that
wn = 1 and that the conformal center z0 = f(0) is given; this fixes the three degrees
of freedom and implicitly selects an embedding of the prevertices. Let Qk be a quadri-
lateral of P that contains z0. We can invert the affine transformation defined by Ak
and Bk and invert the S–C integral fk numerically to find the inverse image w0 of z0

in embedding Ek.
Because Ek yields a locally accurate map for Qk, we expect that w0 will not

be too close to the boundary of the disk. Thus, given a point w in the reference
embedding, we can find its image under transformation to embedding Ek. Now we
can accurately map w to all the embeddings adjacent to Ek in the quadrilateral graph.
We can continue this process iteratively until the equivalents of w are known in all
embeddings. Any embedding can in principle be used to find the image of w. However,
because we expect each local map to be most accurate near the origin, we select the
embedding in which the equivalent of w is smallest in magnitude.

Inverse mapping is similar. Given a point z in P , we invert z numerically in an
embedding corresponding to a quadrilateral containing z. We then transform this
inverse image through the quadrilateral graph to embedding Ek and thence to the
reference embedding.

9. Applications. In this section we describe two applications of CRDT that
demonstrate its ability to handle crowding in practice. While we cannot specify a
universal recipe, we believe that the techniques of this section can be adapted to suit
a variety of situations. In both techniques we rely heavily on the quadrilateral graph
described in section 8.

Our first example is to compute the map from a rectangle to a generalized quadri-
lateral. For our purposes, a generalized quadrilateral is a polygon with four distin-
guished vertices, which map to the four corners of a rectangle. The fact that four,
rather than three, of the vertices are constrained is compensated by the fact that the
aspect ratio of the rectangle must be a certain unknown value, known as the conformal
modulus. Computation of this mapping is equivalent to solving Laplace’s equation on
the polygon with the Dirichlet values of 0 and 1 on two generalized sides separated
by two generalized sides with homogeneous Neumann conditions.

For a multiply elongated region, branches other than the main channel will col-
lapse into crowded clusters on the sides of the rectangle. Computing the map ac-
curately in the vicinity of these clusters (into the collapsed branches) is therefore
challenging.

In Fig. 7 we plot the images of straight lines in a rectangle to a certain quadrilat-
eral. The rectangle has a width of 1 and a height of about 18.2, which is the conformal
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Fig. 7. Rectangle map to a “maze.” The exits of the maze map to the short rectangle sides,
which are normalized to unit length. The maze has several branches that are very crowded on the
long rectangle sides. The solid curves in the maze are images of lines with abscissae 0.2, 0.4, 0.6,
and 0.8. The preimages of the dotted curves are separated from the long rectangle edges by 10−2,
10−4, . . . , 10−16. All computations were performed in double precision.

modulus. The solid curves are images of lines which are well separated from the long
edges of the rectangle, so they stay out of the side turns, or “deadwaters.” The dot-
ted curves have preimages that are exponentially close to the long rectangle edges,
and they closely follow the maze boundary into the deadwaters. The crowding of the
spiral branch is comparable to machine precision, and it would pose no difficulty if it
were much more crowded. As far as we know, no other conformal mapping algorithm
can accurately compute these curves.

We proceed to describe how we produced Fig. 7. Suppose a valid embedding of
prevertices for the S–C map to polygon P is known. Define a new vector of turning
angles β̃, where β̃j = −1/2 if vertex j is distinguished and β̃j = 0 otherwise. We

define a new S–C map by using β̃ in place of β in (1) and the same prevertices. We
call this new map the rectified map for the polygon, because the image of the disk
under this map is clearly a rectangle. Thus the composition of the inverse of the
rectified map with the original map is the desired rectangle map.

In order to compute the map between the rectangle and embedding Ei, we must
find the appropriate affine constants Ãi and B̃i that follow the S–C integrals f̃i. This
process is complicated by the fact that the vertices of the rectangle are unknown; we
do not even know the conformal modulus. Notice that (allowing degenerate triangles)
we can define the same triangulation and quadrilateral structure on the rectangle as
on P .

The rectangle is determined only up to a similarity, so let a reference side e be
given. Choose a quadrilateral Q̃k that has e as an edge. As before, we compute f̃k
on the prevertices of Q̃k to find Q̃′k. Find Ãk and B̃k directly, by comparing Q̃′k to

e. Now visit a neighboring quadrilateral Q̃j . Since Q̃j shares three vertices with Q̃k,

we can find the affine transformation that relates Q̃j to Q̃k. Furthermore, this is a
well-conditioned step because of the local accuracies of the embeddings. But then by



CONFORMAL MAPPING USING CROSS-RATIOS 1799

composition with the known affine constants Ãk and B̃k, we can find Ãj and B̃j . The

moduli of all the B̃i may range over many orders of magnitude, but the above process
leads to each by multiplication, rather than subtraction, so high relative accuracy is
maintained.

As the affine transformations to the rectangle are computed, they can be used to
compute the images of the vertices of P on the rectangle. The rectangle prevertices
will all be found with high accuracy relative to the overall size of the rectangle, and
the conformal modulus can be found accurately as well.

To produce Fig. 7, we ran Shortcut CRDT on the polygon, which after splitting
had 87 vertices. This found the solution vector σ to a residual tolerance of 10−8 after
just 27 function evaluations. Then we computed the affine constants for the standard
and rectified maps, and the rectangle prevertices. Now suppose the rectangle line we
wish to map is separated from the rectangle boundary by a distance h. In the image
plane of f̃i, that separation scales to h/|B̃i|. If h/|B̃i| � 1, the image of the line will
be very close to the boundary of P in the vicinity of Qi. If h/|Bi| � 1, then Q̃i is
degenerate, Qi is in a deadwater region, and the image of the line will be far from Qi.
In short, only for those embeddings in which h is comparable to |B̃i| do we need to
track the image of the line. In these cases we numerically invert f̃i and apply fi and
then (Ai,Bi).

We believe that this technique can be generalized to perform grid generation for
any polygon. Instead of mapping from a rectangle, one would map from a more general
region whose angles are integer multiples of π

2 . It is trivial to find an orthogonal grid
in such a region, because all edges could be aligned with coordinate axes. The main
obstacle is in automatically assigning the most appropriate angle at each prevertex.

Our second example of applying CRDT involves the solution to a certain boundary
value problem related to harmonic measure. Our BVP is Laplace’s equation 4u = 0
with Dirichlet boundary conditions on a polygonal domain P . There is one edge s of
the polygon, which we call the forced edge, with boundary condition 1, and the solution
on the rest of the boundary is zero. We want to find u only at a particular point x
in the interior of P . Let the endpoints of s be denoted zp and zq, in counterclockwise
order.

Mathematically the problem is easily solved. Let f0 : D → P be an S–C map
that has f0(0) = x. The solution u of the original problem maps to a Laplace solution
û on the unit disk via the formula û(w) = u(f0(z)). Because the solution to Laplace’s
equation at the center of a disk is identically the average of the boundary Dirichlet
values, we have that u(x) is precisely the arc-length distance θ measured in radians
between f−1

0 (zp) and f−1
0 (zq), scaled by 1/(2π).

An obvious algorithm is to compute the prevertices of the disk map and read
off the angular distance between prevertices p and q. In fact, it suffices to compute
h = |f−1

0 (zp)− f−1
0 (zq)|. For, given the Euclidean distance h between two points on

the unit circle, we can get the angular distance via

θ = 2 sin−1(h/2).(8)

However, this direct method will fail when the forced edge s is separated from x by
a long, thin region, as in Fig. 8. In this case, the value u(x) will be extremely close
to zero, and cancellation error will dominate h. Yet we insist on computing u(x)
accurately in a relative sense. It suffices to compute h with high relative accuracy,
since (8) can be evaluated accurately when h is very small (indeed, θ ≈ h for small
h).
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Fig. 8. The BVP of section 9 is solved on this T-shaped region. The length L is allowed to
vary, and the forced edge is denoted s. The point x at which the solution is sought is at 0.1i. The
dimensions of the horizontal bar are 8× 0.2.

If the domain P is singly elongated, a solution to the BVP is possible using an
SC Toolbox map from a rectangle. A rectangle is transformed to the upper half-plane
by the elliptic function sn (z|m), where m is obtained in the S–C solution. We can
further construct a fractional linear transformation that maps the half-plane image
of x to the center of the unit disk, and then accurately measure h. Of course, such a
solution is not available when P is multiply elongated and the Toolbox rectangle map
fails.

We assume throughout that x is not too close to any edge of the polygon. If x
is close to an edge, this creates a different problem with relative accuracy that is not
addressed here, though it could be addressed by other means.

We start by running CRDT on P and computing the affine transformation con-
stants. Let Q1 be a quadrilateral having s as an edge. (We assume for now that s
is an unsplit edge of the original polygon and deal with the case of split s below.)
Let Qm be a quadrilateral in P that contains the point x. We can accurately invert
the S–C map using embedding Em to find ξ. Furthermore, ξ will not be close to the
boundary of the disk.

Let Q1, Q2, . . . , Qm be a path in the quadrilateral graph. In the embedding E2,
we can compute the distance |wp−wq| accurately, because either wp or wq is a vertex
of Q2. Thus we can compute the cross-ratio ρ2 of wp, wq, and two more prevertices of
Q2, including the prevertex that is not shared with Q1. Now consider the embedding
E3. In this embedding, wp and wq may be crowded. However, we still know the cross-
ratio ρ2 of wp, wq, and two prevertices of Q3. Hence, of the four lengths that are
factors in the formula for |ρ2|, only one may be small, so we can compute it accurately
using ρ2 and the other lengths. By the same token, we can accurately compute ρ3, the
cross-ratio of wp, wq, and two other prevertices of Q3, including the one not shared
by Q2. As in the previous example, we are computing a very small quantity (given
by (8)) by repeated multiplication of small numbers rather than by subtracting two
nearby complex numbers.

We can continue this procedure through ρm, a cross-ratio involving wp, wq, and
two prevertices of Qm. Finally, we find the image of these points under the fractional
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Fig. 9. Solution of the BVP for the region in Fig. 8. The inset shows the solution at points
for L < 1. As L grows, the curve quickly approaches k · e−πL, corresponding to the leading-order
behavior of the solution for a rectangle.

linear transformation that moves ξ to the origin. Since ξ is not close to the boundary
of the disk, the well-separated points will remain uncrowded. The invariance of ρm
under fractional linear transformation allows us to recover |wp − wq|, which is now
the desired h.

In the situation where segment s is split by CRDT, we simply add up the con-
tributions to u(x) separately from each subsegment using the preceding algorithm. A
Laplace solution is linear in the boundary data, and there cannot be any cancellation
at this step because each contribution is positive.

We use the method described above to solve the BVP on the T-shaped region of
Fig. 8. The region is parameterized by L, the length of the long arm of the T, and the
forced edge s lies at the end of the shortest arm. The point x lies along the centerline
of the long arm and at a distance 0.1 from the end.

In Fig. 9 we plot the solution u(x) for L up to 20. After a transient phase (shown
in the inset), the behavior very quickly approaches k · e−πL for some constant k. This
is easily replicated by replacing the T by a rectangle with forced edge at the top.

One issue that arises immediately is verification of the computed solutions. We
do this by noting that the elongations not containing x or the forced edge are largely
irrelevant to the solution. In Fig. 8, for example, we can shrink the right branch of the
crossbar, decreasing the BVP solution by an exponentially small amount. Once this
branch is sufficiently small, we can compute a rectangle map and solve the approxi-
mate BVP as described above. We have done this for several values of L and verified
the CRDT solutions to at least 10 digits. The advantage of the CRDT method is that
the solution is found for the original region directly without introducing any approxi-
mations. Furthermore, the CRDT method is fully automatic. In several experiments,
we were always able to accurately solve this class of exponentially small harmonic-
measure conformal mapping problems using the approximation process. But conver-
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gence was attained only with prohibitively laborious hand-tuning that would not be
feasible for novice users of the Toolbox.

The key idea in the applications of this section is the quadrilateral graph. By
always operating in steps between overlapping quadrilaterals, we ensure that each
step is well conditioned, even though the eventual results of compounding the steps
may vary over many orders of magnitude. We believe that this technique is central
to the application of CRDT to potential theory problems.

10. Conclusions. We have introduced CRDT, a new algorithm for finding the
S–C prevertices on the unit circle for arbitrary bounded polygonal regions. The
classical crowding problem is avoided through conformally equivalent re-embeddings of
the prevertices so that the numerical mapping is always locally accurate. In addition,
the nonlinear system chosen for numerical solution apparently has a monotonicity
property that makes it easier to solve numerically than previously posed systems for
the S–C parameter problem, although we cannot verify that this is so for all polygons.
We have so far been unable to prove that CRDT always converges.

The polygon is first split so that long, narrow regions can be represented piecewise
by well-conditioned triangles. A Delaunay triangulation of the resulting n-vertex
polygon is computed and used to define n− 3 quadrilaterals, whose diagonals appear
as internal sides in the triangulation. The primitive variables of the nonlinear system
are logarithms of the cross-ratios of the prevertices of those n − 3 quadrilaterals.
These cross-ratios define an infinite set of conformally equivalent configurations of
the prevertices, each of which produces an S–C map to the same image polygon. The
imposed constraints are on the magnitudes of the cross-ratios of the quadrilaterals in
the image polygon.

The CRDT algorithm generally compares favorably with the SC Toolbox for
Matlab in numerical experiments. The principal exceptions are those regions which
require a great many extra vertices to be added in the splitting phase of the algorithm.
We do not know if there is a more effective splitting procedure. On the other hand,
CRDT has no problem finding the prevertices for arbitrarily elongated polygons,
something which no previous algorithm can claim.

We demonstrate the use of CRDT in applications. Figure 7 shows the rectangle
map to a multiply elongated polygon for which we believe no other algorithm would
work. We also illustrate how to use CRDT to solve a particular elliptic boundary
value problem. In each case, the key is to follow a path in the quadrilateral graph of
the polygon (dual of the triangulation). The distance separating prevertices can be
computed without cancellation, even when the distance is extraordinarily small. This
technique can be used to solve a certain Dirichlet problem or compute a conformal
modulus to an accuracy not achievable by other methods on most regions.

Besides the unresolved matters already introduced in this work, there are open
questions about possible extensions of CRDT to work with polygons with infinite
vertices, circular-arc polygons [10], or multiply connected regions [5, 13]. Future work
will include the application of CRDT to grid generation and the incorporation of
CRDT into the SC Toolbox.
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Note added in proof. We have incorrectly referred to local minima of nonlinear
equations arising in the SC Toolbox. The situation that may arise is that the only
descent direction leads to infinity.
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