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The Bieberbach Conjecture 

A famous unsolved problem and the 
story of de Branges' surprising proof. 

PAUL ZORN 

St. Olaf College 

Northfield, Miinnesota 55057 

Introduction 

The biggest mathematical news of 1984 was the proof of the 68-year-old Bieberbach conjecture. 
Louis de Branges of Purdue University had solved what Felix Browder of the University of 
Chicago described as "one of the most celebrated conjectures in classical analysis, one that has 
stood as a challenge to mathematicians for a very long time." Beginning in spring 1984, the news 
spread quickly through the mathematical world as de Branges lectured in Europe and as preprints 
and informal communications circulated. Even the New York Times (Sept. 4, 1984, p. C12) 
reported the story-incorrectly. What was all the fuss about? 

The details of de Branges' ingenious proof are well beyond our scope. We will focus instead 
(mainly) on the conjecture itself. What does it say? Why would one conjecture it? What partial 
results are " obvious"? Why did so many mathematicians work so hard at the problem for so long? 
Who contributed to its solution? What comes next? 

The Bieberbach conjecture is an attractive problem partly because it is easy to state-it says 
that under reasonable restrictions the coefficients of a power series are not too large. More 
precisely, let 

f(z) =z+a2z2?+a3z3?+ 

be a power series in z, with complex coefficients a2, a3,.... Assume that f(z) converges for all 
complex numbers z (=x+iy) with IZI (=(X2+y2)1/2)<1, and that the function f(z) is 
one-to-one on the set of such z. Then 

BIEBERBACH CONJECTURE. Ia,, I < n, n = 2, 3,. The inequality is strict for every n unless f is a 
"rotation" of the Koebe function 

00 

k(z) = nz" = z + 2z2 + 3Z3 + 

(The term "rotation" is defined at the end of the next section.) 
The Bieberbach conjecture (hereafter, "BC") is at heart an assertion about extremality of the 

Koebe function. Therefore, understanding the Koebe function and why it is the natural candidate 
to be "biggest" in the sense of the conjecture is a recurring theme in this essay. 

The BC first appeared in a footnote to a 1916 paper [4] of the German mathematician Ludwig 
Bieberbach, of which the principal result was the second coefficient theorem: Ja2l < 2; equality 
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940 Gesarntsitzung v'om 20. Jildi 1916. - 'Mitteiluing vom 6. .ltili 

Uber die Koeffizienten derjenigen Potenzreihen, 
welche eine sehlichte Abbildung des Einheits- 

kreises vermitteln. 
VTon P-of. Dr. LUDWIG BIEBERBACH 

in Frankfurt a. M. 

(Vorgelegt voln Hrni. FROBENIUS am 6. Juili 1916 [s. obeii S. 751].) 

The article 

DaB k,, > n zeigt das Beispiel 5 nz.. V'ielleiclit ist iuelhae1i )t k, =. 

and the footnote that led to it all. 

holds essentially only for the Koebe function. As we shall see, consequences of Bieberbach's 
theorem are at least as important as the theorem itself for understanding the BC, and in univalent 
function theory generally. Bieberbach himself proved no other analogous coefficient theorems. 
Before de Branges' general proof, Ia,, I < n was known only for n < 6. 

The BC's words are familiar from elementary real calculus, but the meaning and interest of the 
conjecture are essentially rooted in complex analysis. This article aims to provide some mathe- 
matical and historical context for the BC. It is neither an exhaustive summary of the gigantic body 
of research in univalent function theory (which comprises thousands of papers; see, e.g., [2]) nor a 
careful presentation of de Branges' solution. It is an eclectic sample of background material, 
related results, and exercises related either to the conjecture itself or to standard ideas and 
techniques of the subject. We are less concerned with de Branges' dramatic achievement itself than 
with the stage setting-lighting, scenery, and backdrop-against which it is played. 

Why write this essay when a wealth of clear and inviting expository books and articles already 
exists? (See, e.g., [3], [7], [8], [9], [11], [14], [15].) This article, which might have been titled "BC for 
Tourists" had not A. Baernstein [3] already used that phrase, is an invitation and a preamble to 
these sources, which assume more mastery of complex analysis. We assume that the reader is 
familiar with the rudiments of that subject (as developed in any undergraduate text), but only the 
rudiments; most of what is used is stated explicitly. Because all of the cited works contain 
extensive bibliographies, references for standard theorems discussed here are usually omitted. 
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What does the BC say? 

The adjective "analytic" applied to a complex-valued function of a complex variable means 
"continuously differentiable in the complex sense"; i.e., f is a function of z, defined on a domain 
D in C, and the limit 

lim () _ ='(z) 
Z -->Zo z -z 

exists and is a continuous function of zo. This generalization from real-variable calculus looks 
innocuous, but it is not. Analytic functions have pleasant properties not shared by their 
real-differentiable cousins. Most important, every analytic function can be expanded in a 
(complex) Taylor series 

f ( Z) , 
a,1 (z - Zo) a, 

J 
n 

't)( 
. 

11 =0 

about any point zo of its domain; the series converges to f(z) in any circular neighborhood 
centered at zo that lies within the domain D. (Conversely, any series Za, z' that converges for all 
z in D defines a function analytic on D.) None of this is true of an arbitrary real differentiable 
function: f may be no more than once differentiable, and so have no Taylor series at all; f's 
Taylor series, if it exists, may diverge; f 's Taylor series, if it converges, may converge to a limit 
other than f. 

Thus, an analytic function defined on any domain is, at least locally, a power series. An 
analytic function f(z) that happens to be defined on the unit disk { z: Iz I < 1} in C -hereafter 
referred to as D-is globally a (convergent) power seriesY?Z 0 a,,z". The sequence {ao, a,, a2,... } 
of coefficients completely determines f's behavior. How, then, are analytic and geometric 
properties of f (e.g., univalence, boundedness, convexity) reflected in properties of f 's coefficients 
(e.g., growth rate, individual bounds)? The BC (now de Branges' theorem) is the best-known 
"coefficient problem" of this kind. 

The BC concerns functions which are analytic and also univalent on the unit disk. " Univalent" 
is the complex analyst's term for "one-to-one": f(zI) = f(z2) unless zI = Z2. Synonyms for 
"analytic univalent" include the German schlicht (simple, unpretentious) and the Russian odno- 
listni (single-sheeted). These words emphasize a geometric property of a univalent function 
w = f (z): it maps the disk D in the z-plane one-to-one and onto a domain f (D) in the w-plane. 
(See FIGURE 1.) By contrast, the p-valent function f(z) = zP maps D onto D, but each image 

z w 

// 1 
7 

FIGURE 1 
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point (except w = 0) has p different preimages. More picturesquely, f(z) = zP can be viewed as 
mapping D in the z-plane univalently onto a spiral-like surface with p layers ("sheets") hovering 
above D in the w-plane. 

The most important property of univalent analytic functions is the famous Riemann mapping 
theorem, stated in 1851: every proper subdomain of the complex plane that is simply connected 
(without "holes") is the image of the unit disk under a univalent analytic mapping f(z). The 
mapping function f(z) is uniquely determined by the domain D, the image point f(0) in D, and 
the requirement that f'(0) be a positive real number. Thinking of univalent analytic functions as 
"Riemann mappings," one naturally wonders how analytic properties of f and geometric 
properties of the image domain f(D) reflect each other. This is the viewpoint of geometric 
function theory; until de Branges' proof, the BC was its main problem. 

The BC, as usually stated, is an assertion about a special family of analytic functions on D: 

DEFINITION. The normalized schlicht class, denoted S, is the family of univalent analytic functions 
f: D -- C for which 

1. f(0)=0 
2. f '(0) = 1. 

Conditions 1 and 2 say that an S-function has power series 
00 

f(z) =z+a2Z2+ a3z3? + =zz a,,z"l. 
= 2 

The normalizing assumptions simplify the BC's appearance by eliminating irrelevant constants. 
Fortunately, the normalizations are harmless: if f is any univalent analytic function on D, then 
g(z) = (f(z) - f(0))/f'(0) is in S, and properties of f are easily deduced from those of g. 
Geometrically, studying g rather than f corresponds to first translating the image domain by the 
vector f (0), dilating by the factor If '(0) , and rotating through the angle arg(f'(0)). All of these 
operations are reversible. 

The identity f(z) = z is in one sense a prototype for S: the normalization means that every 
S-function agrees with the identity up to order one at the origin. The most important nontrivial 
schlicht function is the Koebe function k(z) = z/(1 - z)2, named for the German mathematician 
P. Koebe, whose achievements include the first correct proof the Riemann mapping theorem. 
Using the fact that 

k(z) = 4 1 ]d 

it is easy to see that k can be written as the power series 

k(z) =z+ 2Z2 + 3Z3 + 4Z4 + 

which converges for every z in D. Bieberbach conjectured that k is at the other extreme from the 
identity function-every coefficient of k is as large as possible. Why did Bieberbach guess this 
almost 70 years before it was proved? As a first step toward understanding k, let's check explicitly 
that it is univalent on D and find its image. The identity 

k ( 1 ( 1+ z )2_1] 

means that k(z) is composed of the mappings 

l+z 2. 1 
s=l_z; t=s; =(-) 

in that order. The first, a linear fractional transformation, maps D univalently onto the right half 
of the s-plane. The mapping t = S2 is one-to-one when restricted to the right half-plane; its image is 
the entire t-plane minus the nonpositive real axis. The last mapping is simpler yet: a translation 
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FIGuRE 2 

one unit to the left followed by a dilation with factor 1/4. (See FIGURE 2.) 
Could the Koebe function be unique among S-functions in having the largest possible 

coefficients? The answer is "essentially, but not quite": given one S-function, here is a way to 
construct infinitely many others with coefficients of the same modulus: if f(z) is in S, and a is 
any real number, let 

f( z) = e-laf ( elaz). 

The fa are called rotations of f, because the mapping z -- eiaz is geometrically a counterclockwise 
rotation of C, about z = 0, through a radians. Thus, fa is formed by preceding and following f 
with opposite rotations through a radians. (The last operation keeps ka in S.) In power series 
notation, if 

00 

f(z)=z?+ ,a zil 
n7=2 

then 
00 

fo(z) = z + Eb, z'l2 
n7=2 

where b,, = a,,ei(-l)&. Since Ieial = 1, Ia1l = b,, [. The BC, which we can now state precisely, says 
that the extremal function k is unique "up to rotations": 

THE BIEBERBACH CONJECTURE. If f(z) = Z + Z?I=L2 a,,z " is in S, then Ia,,I < n for every n > 2. If, 
for any n, Ia,,I = n, then f is a rotation of the Koebe function. 
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What does the BC mean? Why is it plausible? 

Consider this infinite collection of optimization problems: for each n > 2, find in S a function 
f = Z + ?Z?= 2 a,, z" ) for which la,, I is as large as possible. Two questions occur immediately: 

1. Is there, for each n, an absolute bound on Ia, 1, as f ranges over S? 
2. If the nth coefficients of S-functions are bounded, is there an S-function f whose nth 

coefficient a,, attains that bound? 
The answer to both questions is yes. Our first goal is to understand why (without, of course, 
assuming the BC). 

Why are the n th coefficients of S-functions bounded? As a thought-experiment, consider what 
restriction, if any, the convergence of the power series Za,, z' of an S-function imposes on the a,. 
The Cauchy-Hadamard formula for the radius of convergence of a power series implies that for 
every R > 1, lim,, 1 

0 
a,/R" = O. (Briefly, Ia,, I< R" asymptotically as n oo.) Although the 

Cauchy-Hadamard condition limits how fast the sequence { a,, a2, a3, ... } can grow, it is no 
restriction at all on any particular coefficient. Every polynomial, for example, is a convergent 
power series, and the coefficients of polynomials can be any complex numbers at all. Our 
experiment is over, but we learn that analyticity alone does not explain the boundedness of 
coefficients of S-functions. We need to look at univalence, a stronger and more subtle property in 
the complex case than in the real. 

To illustrate the difference between the real and complex settings, consider whether there is an 
interesting " real-variable BC." Let f (x) = x + Y?1?= 2 a, x' be a one-to-one real-analytic function, 
defined for all x in the real interval ( - 1, 1); the a,, are real constants. Is there any restriction on 
the size of, say, a3? The answer is no: if a3 is any positive number, the polynomial x + a3X 3 is 
univalent. In fact, every odd polynomial with positive coefficients is monotone increasing, so no 
bounds apply to any of the odd-indexed coefficients. Conclusion: the BC is essentially a complex 
result-it has no interesting real-variable analogue. 

What, then, is the connection between univalence (of a complex function) and the size of the 
a,,? A first observation is that the complex monomial z" is an n-to-one function on D. (Notice 
how the real monomial x " on (- 1,1) differs!) Intuitively speaking, the multivalent powers z " 

threaten to swamp the univalent term z if the a,, are too large. Here is a proposition that 
illustrates the general idea. 

PROPOSITION. Let f(z) = z + a2Z2 + a3z3+ * +a,,z' be a polynomial of degree n. If f is 
univalent in D, then ja,j 1/n. 

Proof. Consider f'(z) =1+ 2a2z+ +na,z 'l =na,( + * * +z 1) By the funda- 2 ~~~~~~~na, 
mental theorem of algebra, the polynomial within parentheses has n - 1 complex roots cl, ... , c, 1 
(some may be repeated). Hence, f'(z) can be factored: 

f'(z) = na,, (z -CMZ 
- C2) 

.. *Z * Cn-J,_) 

Since f is univalent on D, f'(z) has no roots in D (compare the real case!) Therefore each c; lies 
outside D; i.e., Icil > 1 for each i. Since f is in S, 

1 = If'(0) I = Ina,l ICI I Ic21 . . I c,, I > Ina,I l, 

as claimed. 
The converse is false, but: 

Exercise. Let f (z) = z + a,,z". Show that f (z) is univalent on D if and only if Ia,, I < 1/n. 

The key to questions 1 and 2 is the fact that S is a compact subset of the space of all analytic 
functions on D. The topology in question is that of uniform convergence on compacta: a sequence 
(f,,) of analytic functions on D converges to an analytic function f if (f,) converges to f 
uniformly on every compact subset of D. The functional T that associates to an analytic function 
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Bieberbach (on the left) with Sierpinski at the Zurich International Congress in 1932. 
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on D its n th Maclaurin coefficient: 

T(f) = T(Za,,z') = a, 

is continuous in this topology. Therefore, T attains a maximum modulus somewhere on S. 
We will not attempt a rigorous discussion of compactness in spaces of analytic functions. 

Roughly speaking, S is compact because it is closed and locally bounded (or normal). "Closed" 
means that the limit of a convergent sequence of S-functions is again an S-function. The 
nontrivial part of this property of S is a standard theorem of A. Hurwitz: the limit of a 
convergent sequence of schlicht functions is either schlicht or constant. (The normalizations in S 
rule out the latter possibility.) "Locally bounded" means that for every r in (0,1), there is a 
positive number M(r) so that If(z)I < M(r) whenever IzI < r and f is in S. Curiously, the local 
boundedness of S follows from Bieberbach's second coefficient theorem-a uniform bound on 
the second coefficient leads to bounds on all the others. This is shown in the next section. 

Granted that bounds on the coefficients of S-functions are attained, why should the Koebe 
function attain them? Here are several ways in which k is the "largest" member of S. 

Consider first the image domain k(D) (=C - {x: x -1/4)). It is as "big" as it can be: 
adding any open set to k(D) would introduce some overlap, thereby destroying the schlicht 
property of k. Another extremal property of k(D) has to do with the distance 1/4 between 0 and 
the boundary of k(D) in the w-plane. In 1907, Koebe showed that the image f(D) under any 
mapping in S contains a disk {Iw I < p } of some fixed radius p, independent of f. Bieberbach 
deduced from his second coefficient theorem that (as Koebe conjectured) 1/4 is the largest 
possible value of p, attained only by k and its rotations. This result, known as Koebe's 
one-quarter theorem, says that the distortion of the domain D after mapping by an S-function is 
not too severe: the boundary of the image domain cannot approach the origin too closely. Since 
the boundary of k(D) misses the origin by precisely 1/4, the Koebe function exhibits the 
maximum legal distortion. So do rotations k,,(z) = e`k( (eiaz) of the Koebe function; the image 
k,a (D) is simply k(D) rotated -a radians about the origin. The symmetry of k(D) is further 
circumstantial evidence for its extremality. Like D itself (which is the image of D under the other 
extremal S-mapping f(z) = z) k (D) exhibits the simplicity and regularity characteristic of 
extremal objects. 

Analytic as well as geometric intuition suggests that we should pick on the Koebe function. For 
example, the Maclaurin coefficients of a function f are proportional to f 's derivatives at the 
origin. At one extreme-f (z) = z- there is no distortion; all higher derivatives vanish. Since for 
k (z) = E nz " the distortion (in the sense of the one-quarter theorem) is maximal, it is natural to 
guess that k represents the other extreme. 

This section ends with a caveat: Informal evidence for the BC is easy to find. The evidence is 
valid, but the ease of finding it is misleading; rigorous proofs, as history shows, are much harder 
to find. 

The second coefficient 

The previous section says-informally- that for each n > 2, the problem of maximizing Ia,,I 
among S-functions has a solution, which is probably k. It is time to prove something. Bieberbach's 
second-coefficient theorem is the first concrete evidence for the general conjecture. Its corollaries 
(especially the distortion theorem, which implies that S is compact) are the basic tools for further 
study of the BC. The proof illustrates standard ideas and techniques of univalent function theory 
and shows how the Koebe functions arise as extrema. 

BIEBERBACH'S THEOREM (1916). If f = z + 2a2 , z " is in S, then 1a21 < 2. Equality holds if and 
only if f (z) is a rotation of the Koebe function. 

A basic way to obtain Bieberbach-type inequalities is to relate power series coefficients to the 
(nonnegative) area of some region in the plane. The first such result is the area theorem, proved in 
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1914 by T. H. Gronwall. It refers not to S but to a related class of schlicht functions: 

Definition. Let I denote the class of functions 
00 

g(z)=z+bo+bl/z+ * =z+ E btZ1 
nl = 0 

that are analytic and univalent in A = { z Izi> 1}. 

(2-functions are normalized to have a simple pole with residue one at infinity.) If g is in 2, let 
E = - g(A1) be the complement of the image domain. (See FIGURE 3.) 

z ~~~~~~~~~~~w 

FIGURE 3 

One hopes to calculate E's "area" in terms of the b,1. The quotes are necessary because E can be 
quite irregular. The solution is to approximate E from outside by nice domains E(r) = C - { g(z): 
Izi > r}, and then define 

area E = lim area E( r). 

Because the E(r) have smooth (actually, analytic) boundary curves y(r), they have sensible areas 
which can be computed using Green's theorem in complex form. Explicitly, let g(z) = w = u + iv. 
Then 

-area E(r) idudv 
E(r) 

27i fdlWdw , 
E(r) 

since dudv= (1/2i) dWdw. By Green's theorem, 

1 
area E(r) I -w dw 

2vi I -( z) g'( z) dz 
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= 2- frret g( reit)g( re't) dt, 

where the changes of variable w = g(z) and z = reit were made. (Note: the univalence of g was 
used here!) Writing g and g' as power series, 

1 ~~~~1 f27TI 'I 
00 

area E( t) = reit + E nb,r-"e -in' re it + E b, r"ei"'t dt 

00 

= r 2 _ E r- 2*nnjb1j2' 
n2 = 1 

by the orthogonality of distinct powers of e't. Since area E(r) > 0, the partial sum 

n1 

n2 = 1 

for every m > 0. Letting r 1+, we have 

ZnIIb,,21, m=1,2. 
n1 = 1 

We have proved: 

AREA THEOREM. If g = z + Z0 b, z1 is in I, then Y-0= I n I b, 12 1. 

COROLLARY. If g(z) is in 2, then bbl < 1. Equality holds if and only if g(z) =z + bo + eia/z 
(where eia e = 1). 

The area theorem is about E-functions but it leads indirectly to coefficient estimates for the class 
S. Beginning with an S-function, one applies algebraic transformations to concoct a E-function, 
keeping track of the coefficients. This is the idea of Bieberbach's proof. 

Proof of Bieberbach's theorem. Given f(z) = z + Z=2 a,,z" in S, construct the auxiliary 
functions 

g(Z) =(f(z2))1/2 and h(z) = l/g(l/z). 

(The function f(z2) has a schlicht square root because f is univalent.) A routine calculation 
shows that h (z) is in 2, and has Laurent series 

a2 
h(z) =z- + 2z 

The corollary to the area theorem implies that Ia2 1 < 2; equality holds if and only if h (z) = z + b/z, 
where I = 1. Unravelling the definition of h in terms of f shows that 

h(z)=z+b if andonlyif f(z)= - 

The function f (z) is, as claimed, a rotation of the Koebe function. 

The principle observed above-to start with an S- or E-function, carry out some algebraic 
transformation, and then apply a known coefficient theorem to the result-yields several 
interesting consequences of Bieberbach's theorem. Some of them give as much insight into the BC 
as the second coefficient theorem itself. A sampler of such results follows. 

KOEBE'S ONE-QUARTER THEOREM. Letf = z + a2 Z2 + * * be in S, and suppose that f ( D) omits the 
value wo (i.e., f(z) * wo if IzI < 1). Then IwoI > 1/4; equality can hold if and only if f is a rotation 
of the Koebe function. 

Proof. The transformed function 
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g(z) = wof(z) =h(f(z)), where h(w) - wow w 

is univalent because h is (on C - { wo }). Computing g's derivatives at the origin yields 

g(z) =z+(a2+ W)z2 + 

Thus, g is in S and by Bieberbach's theorem, Ia2 +1/wO1<2. By the triangle inequality, 
Iwol > 1/4; equality is possible only if Ia21 = 2. In that case, f is a rotation of k. 

Bieberbach's theorem says that for an S-function f, If"(O) I< 4. This information can be 
transferred from the origin to any zo in D by composition with the linear fractional transforma- 
tion 

w+ zo 
A(w) = + wZ 

Because A is a schlicht mapping of D onto itself, with A (0) = zo, the composite f (A ( w)) is also 
schlicht, though not normalized. Setting 

h(w) f(A(w)) -f(zo) 
(1- _zo 12) f( Zo) 

accomplishes the normalization; a messy (but explicit) calculation shows that 

h(w) = w + [2 (1I-zO2) f(z) -zo W +* 

From Bieberbach's theorem (dropping the subscript on z), 

z f "(z) 2zI12 K" 
41z1 , 

< 

The last inequality can be "integrated" to give upper and lower bounds on If '(z)I and If (z)I in 
terms of Iz 1: 

DISTORTION THEOREM. If f is in S and IzI < 1, then 

I___ 
_z_I_ If Z) I K 1+IzI 

( I zi) (I zi) 
(2) (Ilz) (tz) 

("Distortion" in this context refers to the fact that the mapping f magnifies-distorts-small 
distances near z by the factor If'(z)l.) 

Proof. With z = re"a, the inequality before the theorem becomes 

1 2jr 
| f e ( re') 2 = Tr log[(l - r2)f ̀ ( reia)] -r ff,(reia 1r 

the last equality is checked by direct calculation. Now we integrate along the ray from 0 to z; 
since f'(0) = 1, 

|log[(l - r )f ̀ ( re"a)] |=| p[log[(l 
- 

p2)f ( peia)] dp| 

<Jr 8dlog[( -p2)ff(peia)] dp 
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AJ 4 1 + r 

Taking the real part of log[(1 - r2)f'(rei)] gives 

-21og1 + lzl < log[(I _ IZ12) If'( z) 1] <, 2og + lzl 

which is equivalent to (1). The proof of (2) is similar. 

The distortion theorems are basic to all further analysis of schlicht functions. The Koebe 
function plays its usual role: all of the inequalities are strict unless f is a rotation of k. 

Now we can settle the existence question raised above of bounds for individual coefficients of 
S-functions. What remains undone from the previous section is to show that S is locally bounded. 
This is exactly what the right side of (2) means: 

r 
if lzl < r, then If(z) I < k(r) = 2 (I - r)2 

At last we know that coefficient bounds exist. One can also derive (admittedly unprepossessing) 
coefficient estimates from (2): 

Exercise. Show that Ia,,1 I n2e2/4, n = 2,3,..., for every f in S. 

Hint. Use Cauchy's inequalities: if f(z) = Ea,,z" is analytic and If(z)I < M for IzI < r, then 
Ia, I < M/r ". 

We will do much better for all coefficients in the next section. As a last corollary of 
Bieberbach's theorem, though, let's improve the a3 estimate (the exercise gives Ia3l 1 16.63). 

PROPOSITION. If f is in S, then Ia3l < 5. 

Proof. The function g(z)=1/f(1/z)=z-a2+(a2-a3)z1+ is in E. By the area 
theorem, I a2 - a31 < 1, SO 

Ia3l < Ia2- a31 + Ia212 < 1 + 4 = 5. 

Some history, two classical proofs, and de Branges' solution 

The Riemann mapping theorem guarantees the existence of a schlicht mapping from D onto 
any given simply connected proper subdomain of the complex plane. Univalent function theory is 
the study of concrete properties (especially extremal properties) of "Riemann maps." The 
primeval fact is that S is normal; as discussed above, this assures that extremal problems (e.g., to 
maximize the nth coefficient) have solutions. This fundamental theorem was first proved in 1907 
by Koebe, arguably the father of the discipline. 

That the Koebe function plays some special role in S was evident before the BC appeared in 
1916. For example, in 1914 Gronwall proved (among other properties of k) that if f is in S and 
Izl < 1, then 

Ik( -IzI) I < lf(Z) I < lk(lIzl) 1, 

which means that on every circle Iz I = r, Ik(z) I attains both the largest maximum and the smallest 
minimum of any S-function. (This is also a corollary of the distortion theorem.) With so much 
evidence for the extremality of k in S, the conjecture that k also maximizes individual 
coefficients was certainly in the wind. Bieberbach's contribution is more in having proved the 
second coefficient theorem and its corollaries than in having issued the conjecture itself. (See also 
[11], ch. 2.) 
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Progress on the BC occurred in several directions. Here are three "genres" of partial results: 
1. I a,, I < n for specific n; 
2. la,,I < n for subclasses of S; 
3. la,, I < Cn for sufficiently large C. 

(See [3] and [7] for progress in other directions.) 
Results of the first type came slowly. The third coefficient theorem-la3 < 3 -was proved in 

1923 by the Czech-educated mathematician K. Loewner, who later emigrated to the United States. 
The proof is deep, delicate, and completely different from Bieberbach's second-coefficient proof. 
Loewner's partial differential equation method is notable both for having been found so early and 
because it figures in de Branges' proof of the general conjecture. No more " Ia,,I < n" theorems 
were proved for more than 30 years, and then by still different methods. In 1955, P. Garabedian 
and M. Schiffer, who were then Loewner's colleagues at Stanford, used a specially developed 
calculus of variations in S to prove that Ia4 1< 4. The sixth- and fifth-coefficient theorems 
followed in 1968 and 1972. By 1984, earlier complicated proofs had been revised and shortened, 
but the conjecture remained open for all n greater than six. 

Two early "subclass" theorems, due to R. Nevanlinna (1920) and to W. Rogosinski and J. 
Dieudonne (independently, around 1930), respectively, assert that the BC holds for S-functions 
with either (i) starlike range (f (D) contains the segment joining any of its points to the origin) or 
(ii) all real coefficients. (Loewner had proved a special case of (i) in 1917.) In a slightly different 
direction, certain subclasses of S were shown to satisfy more stringent coefficient growth 
estimates. For example, J. Clunie and Ch. Pommerenke showed in 1966 that the coefficients of 
bounded S-functions satisfy the order-of-growth estimate 

jaj = (n- 1/2 - a ) 

for some positive number a (of unknown best value). Other recent work showed that I a,, < n for 
S-functions for which (iii) Ja21 1 1.05; (iv) f is "near" the Koebe function in an appropriate 
topology; or (v) f is "far" from k. As an example, we prove (ii). 

PROPOSITION. Let f(z) = z + a2Z2 + a3z3 + *.. be in S, with each a,, real. Then Ia,,I < n. 

Proof. Because the a,, are real, the identity 

f(Z) =z) a,, =Z a, zP=f( z) 

holds for all z in D. It follows that the image domain f(D) is symmetric about the real axis; in 
particular, f(z) is real if and (because f is univalent) only if z is real. Moreover, since f'(0) = 1, f 
maps the upper (resp. lower) half of D to the upper (resp. lower) half of f(D). (See FIGURE 4.) 
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FIGURE 4 

VOL. 59, NO. 3, JUNE 1986 143 



Writing f as a power series in polar coordinates (with a, = 1), we have 
00 

f(z) =f(rea )= a e 
rkea 

k= 

=ZEak r cos( ka) + iZ akrksin( k a) 

= U(z) + iV(z), 

where U and V are real-valued functions of z. Recall from elementary calculus that if n and m 
are integers, functions of either form sin(n a) or cos( ma) are pairwise orthogonal with respect to 
integration in a over the interval [T- , 7T], but that 

f_[sin(na)f da = 7T. 

Hence, for each r < 1, 

l a,, r"I = f sin( n a) V( r ela ) d a 
-7T 

Because the integrand is an even function of a, 

a,, r" 
2 7T sin( n a) V( rela ) d a 

< fT Isin( noa) V( re"") I da 

= 2 Isin(n a)IV(rei) da; 

the last equality follows from the mapping property of f- V(z) is nonnegative if a lies in [0, s7]. 
Now we invoke a possibly unfamiliar but straightforward inequality of real analysis (see, e.g., [12, 
p. 356] for a proof): 

Isin(n a) I n sin( a), 0 < a < sr, n = 1,2,.... 

Given this, 

a,, r" < - nf sin( a) V( rela) da 

= 
2 

nf sin( a) V( rela) doa 

= nal = n. 

Because r < 1 is arbitrary, we can let r tend to 1 from below to complete the proof. 
The order of growth of the a,, was known early to be linear, as conjectured. The first good 

theorem of type Ia, I < Cn appeared in 1925, when J. E. Littlewood proved that for f in S, 

Ia,, < en. 

The main ingredient is Littlewood's integral estimate (see [8, p. 38]): if 0 < r < 1 and f is in S, 
then 

1 I2Tf( re'a) I da < _r. 

Assuming this, the proof is straightforward. Let f(z) = Ea, z"; then 

a,, = 2 iJ| f+) dz. 
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M. M. Schiffer, S. Bergman, M. Protter, J. Herriot an C. Lowner at Stanford in the 1950's. Schiffer and Loewner 
Played important roles in the history of the Bieberbach problem. 

z C?1I.....:: 'J,: 



(This simplest version of the Cauchy integral theorem can be checked by direct computation.) 
Writing z = rei" and dz = irei" da, 

Ia, l= 2r1 2qf(re) da| 
o r e 

2r1 f2g If ( rela) I da r< 1 r 

This inequality holds for every r in (0,1). Elementary calculus shows that the right side attains its 
minimum when r = 1 - l/n. Substituting this value of r into the last inequality yields 

Ia,II A rtl r 
ii = n(1 + n-)1) < en. 

In 1974, A. Baemstein improved Littlewood's integral inequality by showing that k has the 
largest possible integral mean of every order: for each f in S and each real number p, 

f2Iif( re"a) I da f2, Ik( rei) IP da. 

0 0 

With p = 1, calculating the right side gives 
2 

If( rei") I do a K r 

Exercise. Mimic the previous proof to show that 

Ian I<e n 1.36 n. 

Given any S-function f, setting g(z) =f(Z2)1/2 =z+ =l b2k?lz2k+l produces an odd 
univalent function. (We did this already in the proof of Bieberbach's theorem.) If f = k, then 

k(Z2)1/2 =Z+ Z3 +ZS +Z7 + * , 

i.e., bk = 1 for all k. In 1932, J. Littlewood and R. Paley made the natural conjecture that Ibk I < 1 
for every odd S-function. (They proved that Ibk I < 14.) 

Exercise. By inverting the square-root transform, show that the Littlewood-Paley conjecture 
implies the BC. 

The Littlewood-Paley conjecture was disproved the following year by M. Fekete and G. Szeg'o, 
but it led M. Robertson to the slightly weaker conjecture that Ibk I < 1 in an average sense: 

ROBERTSON CONJECTURE (1936). If g(z) = z + b3z3 + b5z5 + * is in S, then 1 + Ib312 + 1b512 
+ * - +Ib2n-_ 12<n. 

The Robertson conjecture still implies the BC, even in a strong form (see, e.g., [8, p. 66]). It is what 
de Branges indirectly proved. 

Iterating the square-root transform leads to looking at roots of higher order, and in a limiting 
sense, to the logarithm of a schlicht function. In 1939, H. Grunsky obtained a new class of 
coefficient inequalities that would prove, much later, to be an important step toward a general 
solution of the BC. Beginning with an S-function f, Grunsky studied the coefficients Cjk of the 
function 

f( z) -f (W) E0 E ZjWk log f(z=)f(wCj 
j=O k=O 

analytic in the two complex variables z and w. The Grunsky inequalities are an infinite family of 
estimates on the "logarithmic coefficients" Cjk. (Formally, they assert that the infinite matrices 
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(c: k) associated to S-functions are bounded by one in a suitable norm.) 
Given the Grunsky inequalities, a difficult question remains: how to use knowledge of the 

logarithmic coefficients Cjk to estimate the ordinary Taylor coefficients a,, of f, i.e., how to 
"exponentiate" the Grunsky inequalities. Different techniques were developed in the sixties and 
seventies by N. A. Lebedev and I. M. Milin in the USSR and by C. FitzGerald in the US. They 
were applied to improve earlier "I1a, I < Cn" theorems; by 1978, D. Horowitz had shown 
Ia, I < 1.0657n. (See [13] for a chronology of efforts to reduce C.) 

Lebedev and Milin's work led to a conjecture of exceptional interest: 

LEBEDEV-MILIN CONJECTURE (1967). Iff is in S and logf(z)/z =:- 1 CkZk, then 

f (kIck2 - k< , n = 1,92,3,.... 
r1=1 k=l1 

Since for the Koebe function, log k(z)/z = Z-U 1(2/k) zk, the obvious guess is that for every f in 
SI ICkl < 2/k for every k. This is too optimistic-it can be shown to imply the Littlewood-Paley 
conjecture. The Lebedev-Milin conjecture, like the Robertson conjecture, says that, nevertheless, 
the obvious guess is true in a weaker, average sense for the first n coefficients. Lebedev and Milin 
showed that their conjecture implies the Robertson conjecture, which is stronger than the BC. 
Thus some experts were surprised that the Lebedev-Milin conjecture is exactly what de Branges 
proved. 

De Branges' proof has two main ingredients-a system of time-dependent weight functions, 
and the Loewner differential equation (part of the classical third coefficient proof), which also 
involves a time parameter. De Branges combines these to construct a time-dependent form of the 
Lebedev-Milin inequality which is clearly valid at time t = oo and which equals the Lebedev-Milin 
inequality at t = 0. The brilliant (and "miraculous," according to one expert) choice of the 
weighting functions assures that the inequality remains valid as t retreats to zero. The necessary 
property of the weight functions reduces to an inequality on generalized hypergeometric poly- 
nomials. 

The computer played a role in de Branges' search for a solution, though not in his ultimate 
proof. At a late stage in his work, de Branges approached W. Gautschi of the computer science 
department at Purdue for help in testing his conjectured inequality numerically. The spectacular 
results-proofs of the BC for the first thirty coefficients-were encouraging evidence that de 
Branges' general method would work. They also led Gautschi to call R. Askey, at the University 
of Wisconsin, to inquire whether the inequality had been proven earlier. Surprisingly, it had, in a 
1976 paper of Askey and G. Gasper [1]. By remarkable coincidence, a property of special 
functions of a real variable finished the proof of a complex result. 

De Branges' originally lengthy proof was at first received skeptically. Incorrect proofs of the 
BC had been announced before. Nevertheless, the new proof was confirmed by the Leningrad 
Seminar in Geometric Function Theory (of which I. M. Milin is a member), in five marathon 
sessions in April and May, 1984. A preliminary version of the proof was issued in preprint form 
[6]. The proof was later revised and shortened; now, some of the individual coefficient proofs are 
longer and more difficult. De Branges' version was published in 1985 [5]. (See also [15], [10], and 
[9] for a slightly different version of the proof and for more detailed commentary.) 

Mathematicians working on the BC created and advanced theories (including Schiffer's 
variational method and the theory of quadratic differentials) which, though not necessarily used in 
de Branges' solution, have found applications elsewhere. This is not to say that de Branges does 
not use earlier work. Loewner's method, the Lebedev-Milin conjecture (and, implicitly, the 
Grunsky inequalities), and Askey and Gasper's theorem are all essential-along with de Branges' 
unique contribution-to the ultimate solution. 

Though its most famous problem has been solved, important questions in geometric function 
theory remain. For example, sharp coefficient estimates are unknown for normalized p-to-one 
analytic functions, for 2-functions, and for S-functions with growth restrictions. De Branges' 
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contribution was celebrated at an international symposium held at Purdue in March, 1985; many 
new problems and directions for research were proposed. At the University of Maryland, 
1985-1986 was declared a special year in complex analysis. How and where de Branges' special 
techniques may apply remains to be seen, but his achievement seems certain to spur new work and 
interest in special functions, optimization theory, functional analysis, and complex analysis. 
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