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T
he circle is arguably the most studied ob-
ject in mathematics, yet I am here to tell
the tale of circle packing, a topic which
is likely to be new to most readers. These
packings are configurations of circles

satisfying preassigned patterns of tangency, and we
will be concerned here with their creation, manip-
ulation, and interpretation. Lest we get off on the
wrong foot, I should caution that this is NOT two-
dimensional “sphere” packing: rather than being
fixed in size, our circles must adjust their radii in
tightly choreographed ways if they hope to fit 
together in a specified pattern.

In posing this as a mathematical tale, I am ask-
ing the reader for some latitude. From a tale you
expect truth without all the details; you know that
the storyteller will be playing with the plot and tim-
ing; you let pictures carry part of the story. We all
hope for deep insights, but perhaps sometimes a
simple story with a few new twists is enough—may
you enjoy this tale in that spirit. Readers who wish
to dig into the details can consult the “Reader’s
Guide” at the end.

Once Upon a Time …
From wagon wheel to mythical symbol, predating
history, perfect form to ancient geometers, com-
panion to π , the circle is perhaps the most celebrated
object in mathematics.

There is indeed a long tradition behind our
story. Who can date the most familiar of circle
packings, the “penny-packing” seen in the back-
ground of Figure 1? Even the “apollonian gasket”
(a) has a history stretching across more than two
millennia, from the time of Apollonius of Perga to
the latest research on limit sets. And circles were
never far from the classical solids, as suggested by
the sphere caged by a dodecahedron in (b). Equally
ancient is the άρβηλoς or “shoemaker’s knife” in
(c), and it is amazing that the Greeks had already
proved that the nth circle cn has its center n
diameters from the base. This same result can be
found, beautifully illustrated, in sangaku, wooden
temple carvings from seventeenth-century Japan.
In comparatively recent times, Descartes estab-
lished his Circle Theorem for “quads” like that in
(d), showing that the bends bj (reciprocal radii) of
four mutually tangent circles are related by
(b1 + b2 + b3 + b4)2 = 2(b2

1 + b2
2 + b2

3 + b2
4) . Nobel

laureate F. Soddy was so taken by this result that
he rendered it in verse: The Kiss Precise (1936).
With such a long and illustrious history, is it 
surprising or is it inevitable that a new idea about
circles should come along?

Birth of an Idea
One can debate whether we see many truly new
ideas in mathematics these days. With such a rich
history, everything has antecedents—who is to say,
for example, what was in the lost books of Apollo-
nius and others? Nonetheless, some topics have
fairly well-defined starting points.

Kenneth Stephenson is professor of mathematics at the Uni-
versity of Tennessee, Knoxville. His email address is
kens@math.utk.edu.

The author gratefully acknowledges support of the National
Science Foundation, DMS-0101324.



DECEMBER 2003 NOTICES OF THE AMS 1377

Our story traces its origin to William Thurston’s
famous Notes. In constructing 3-manifolds, Thurston
proves that associated with any triangulation of a
sphere is a “circle packing”, that is, a configuration
of circles which are tangent with one another in the
pattern of the triangulation. Moreover, this packing
is unique up to Möbius transformations and inver-
sions of the sphere. This is a remarkable fact, for the
pattern of tangencies—which can be arbitrarily in-
tricate—is purely abstract, yet the circle packing su-
perimposes on that pattern a rigid geometry. This is
a main theme running through our story, that circle
packing provides a bridge between the combinatoric
on the one hand and the geometric on the other.

Although known in the topological community
through the Notes, circle packings reached a sur-
prising new audience when Thurston spoke at the
1985 Purdue conference celebrating de Branges’s
proof of the Bieberbach Conjecture. Thurston had
recognized in the rigidity of circle packings some-
thing like the rigidity shown by analytic functions,
and in a talk entitled “A finite Riemann mapping
theorem” he illustrated with a scheme for con-
structing conformal maps based on circle packings.
He made an explicit conjecture, in fact, that his “fi-
nite” maps would converge, under refinement, to
a classical conformal map, the type his Purdue au-
dience knew well. As if that weren’t enough,
Thurston even threw in an iterative numerical
scheme for computing these finite Riemann map-
pings in practice, with pictures to back it all up.

So this was the situation for your storyteller as he
listened to Thurston’s Purdue talk: a most surpris-
ing theorem and beautiful pictures about patterns of
circles, an algorithm for actually computing them,
and a conjectured connection to a favorite topic, an-
alytic function theory. This storyteller was hooked!

As for antecedents, Thurston found that his the-
orem on packings of the sphere followed from prior
work by E. Andreev on reflection groups, and some
years later Reiner Kuhnau pointed out a 1936 proof
by P. Koebe, so I refer to it here as the K-A-T (Koebe-
Andreev-Thurston) Theorem. Nonetheless, for our
purposes the new idea was born at Purdue in 1985,
and our tale can begin.

Internal Development
Once a topic is launched and begins to attract a com-
munity, it also begins to develop an internal ecology:
special language, key examples and theorems, central
themes, and—with luck—a few gems to amaze the
uninitiated.

The main players in our story, circles, are well
known to us all, and we work in familiar geometric
spaces: the sphere P, the euclidean plane C, and the
hyperbolic plane as represented by the unit disc D.
Working with configurations of circles, however,
will require a modest bit of bookkeeping, so bear

with me while I introduce the essentials needed to
follow the story.

• Complex: The tangency patterns for
circle packings are encoded as abstract
simplicial 2-complexes K; we assume K
is (i.e., triangulates) an oriented topo-
logical surface.

• Packing: A circle packing P for K is a
configuration of circles such that for
each vertex v ∈ K there is a corre-
sponding circle cv , for each edge
〈v, u〉 ∈ K the circles cv and cu are (ex-
ternally) tangent, and for each posi-
tively oriented face 〈v, u,w〉 ∈ K the
mutually tangent triple of circles
〈cv, cu, cw〉 is positively oriented.

• Label: A label R for K is a collection
of putative radii, with R(v) denoting the
label for vertex v .

Look to Figure 2 for a very simple first example.
Here K is a closed topological disc and P is a 
euclidean circle packing for K. I show the carrier
of the packing in dashed lines to aid in matching
circles to their vertices in K; there are 9 interior and
8 boundary circles. Of course the question is how
to find such packings, and the key is the label R
of radii—knowing K, the tangencies, and R, the
sizes, it is a fairly simple matter to lay out the 
circles themselves. In particular, circle centers play
a secondary role. The computational effort in 

(a) (b)

(d)(c)

C0

C1

C2C3

Figure 1. A long tradition.
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circle packing lies mainly in computing labels. It is
in these computations that circle packing directly
confronts geometry and the local-to-global theme
plays out. Here, very briefly, is what is involved.

• Flower: A circle cv and the circles tan-
gent to it are called a flower. The or-
dered chain cv1 , · · · , cvk of tangent cir-
cles, the petals, is closed when v is an
interior vertex of K.

• Angle Sum: The angle sum θR(v) for
vertex v, given label R, is the sum of the
angles at cv in the triangles formed by
the triples 〈cv, cvj , cvj+1〉 in its flower.
Angle sums are computed via the 
appropriate law of cosines; in the 
euclidean case, for example,

where the sum is over all faces con-
taining v .

• Packing Condition The flower of an
interior vertex v can be realized as an
actual geometric flower of circles with
radii from R if and only if θR(v) = 2πn
for some integer n ≥ 1.

It is clear that circles trying to form a packing
for K must tightly choreograph their radii. The
packing condition at interior vertices is necessary,
so a label R is called a packing label if θR(v) is a 
multiple of 2π for every interior v ∈ K. When K is
simply connected, this and a monodromy argu-
ment yield a corresponding packing P , and the 
labels are, in fact, radii. When K is multiply con-
nected, however, the local packing condition alone
is not enough, and global obstructions become the
focus. Here are a last few pieces of the ecology.

• Miscellany: A packing is univalent if
its circles have mutually disjoint inte-
riors. A branch circle cv in a packing P
is an interior circle whose angle sum is
2πn for integer n ≥ 2; that is, its petals
wrap n times around it. A packing P is
branched if it has one or more branch
circles; otherwise it is locally univalent.
(Caution: Global univalence is assumed
for all circle packings in some parts of
the literature, but not here.) Möbius
transformations map packings to pack-
ings; a packing is said to be essentially
unique with some property if it is
unique up to such transformations. In
the disc, a horocycle is a circle inter-
nally tangent to the unit circle and may
be treated as a circle of infinite hyper-
bolic radius.

You are now ready for the internal art of circle
packing. Someone hands you a complex K. Do there
exist any circle packings for K? How many? In which
geometry? Can they be computed in practice? What
are their properties? What do they look like?

Let’s begin by explicating certain extremal pack-
ings shown in Figure 3. The spherical packing in (a)
illustrates the K-A-T Theorem using the combina-
torics of the soccer ball. However, our development
really starts in the hyperbolic plane; Figure 3(b) 
illustrates the key theorem (the outer circle represents
the boundary of D).

Key Theorem. Let K be a closed disc. There exists
an essentially unique circle packing PK for K in D
that is univalent and whose boundary circles are
horocycles.

The proof involves induction on the number of
vertices in K and simple geometric monotonici-
ties, culminating in a result which deserves its own
statement. Here RK is the hyperbolic packing label

θR(v) =
∑

〈v,u,w〉
arccos

(
(R(v)+ R(u))2 + (R(v)+ R(w ))2 − (R(u)+ R(w ))2

2(R(v)+ R(u))(R(v)+ R(w ))

)
,

K P

Figure 2. Compare packing P to its complex K.
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for the packing PK , so this result justifies the 
adjective “maximal” that I will attach to these 
extremal packings.

Discrete Schwarz Lemma [DSL]. Let K be a closed
disc and R any hyperbolic packing label for K.
Then R(v) ≤ RK(v) for every vertex v of K; equal-
ity for any interior vertex v implies R ≡ RK .

Our Key Theorem is easily equivalent to the 
K-A-T Theorem, but its formulation and proof set
the tone for the whole topic. The next step, for 
example, is to extend the Key Theorem to open discs
K by exhausting with closed discs Kj ↑ K . When we
apply the monotonicity of the DSL to the maximal
labels Rj for these nested complexes, a funda-
mental dichotomy emerges:

as j →∞
{

either Rj (v) ↓ r (v) > 0 ∀v ∈ K
or Rj (v) ↓ 0 ∀v ∈ K.

In the former case, a geometric diagonalization ar-
gument produces a univalent hyperbolic packing
PK for K, its label being maximal among hyperbolic
labels as in the DSL. In the latter case, the maximal
packings of the Kj may be treated as euclidean
and rescaled, after which geometric diagonalization
produces a euclidean univalent circle packing PK
for K. Archetypes for the dichotomy are the max-
imal packings for the constant 6- and 7-degree
complexes, the well-known penny-packing, and the
heptagonal packing of Figure 3(c), respectively. We
can now summarize the simply connected cases.

Discrete Riemann Mapping Theorem [DRMT]. If
K is a simply connected surface, then there exists
an essentially unique, locally finite, univalent cir-
cle packing PK for K in one and only one of the
geometries P, C, or D. The complex K is termed
spherical, parabolic, or hyperbolic, respectively,
and PK is called its maximal packing.

For complexes Kwhich are not simply connnected,
topological arguments provide an infinite universal
covering complex K̃. By the DRMT, K̃ is parabolic or
hyperbolic (the sphere covers only itself) and has a
maximal packing P̃ in G (i.e., C or D, respectively).
Essential uniqueness of P̃ implies existence of a dis-
crete group Λ of conformal automorphisms of G
under which P̃ is invariant. G/Λ defines a Riemann
surface S, and the projection π : G �→ S carries the
metric of G to the intrinsic metric of constant cur-
vature on S, euclidean or hyperbolic, as the case may
be. Some quiet reflection and arrow-chasing shows
that π (P̃) defines a univalent circle packing PK for
K in the intrinsic metric on S. In other words, we
have found our maximal circle packing PK for K.

Discrete Uniformization Theorem [DUT]. Let K be
a triangulation of an oriented surface S . Then there
exists a conformal structure on S such that the

resulting Riemann surface supports a circle pack-
ing PK for K in its intrinsic metric, with PK univa-
lent and locally finite. The Riemann surface S is
unique up to conformal equivalence, and PK is
unique up to conformal automorphisms of S .

The DUT is illustrated in Figure 3(d) for a torus hav-
ing just 10 vertices. I have marked a fundamental
domain and its images under the covering group.
The 10 darkened circles form the torus when you
use the dashed circles for side-pairings.

This theorem completes the existence/unique-
ness picture for extremal univalent circle pack-
ings. It is quite remarkable that every complex has
circle packings. From the pure combinatorics of K
one gets not only the circle packing but even the
geometry in which it must live! This highlights cen-
tral internal themes of the topic:

combinatorics ↔ geometry
local packing condition ↔ global structure

You can see that the DUT opens a wealth of ques-
tions. It is known that the “packable” Riemann 
surfaces, those supporting some circle packing,
are dense in Teichmüller space, but they have yet
to be characterized, and the connections between
K and the differential geometry of S remain largely
unknown.

Extremal packings only scratch the surface; in
general a complex K will have a huge variety of 
additional circle packings if we are allowed to 
manipulate boundary values and/or branching.
When K possesses a boundary, it has been proved
that given any hyperbolic (respectively euclidean) 
labels for the boundary vertices of K, there exists a
unique locally univalent hyperbolic (respectively 

(a) (b)

(c) (d)

Figure 3. Maximal circle packing sampler.



1380 NOTICES OF THE AMS VOLUME 50, NUMBER 11

euclidean) packing P having those labels as its
boundary radii. In a similar vein, necessary and
sufficient conditions for finite sets of branch cir-
cles have been established in many cases. The most
I can do here is illustrate a variety of packings for
a single complex. I’ve done this in Figure 4, using
a K with good visual cues. The maximal packing is
at the top; then below it, left to right, are a univa-
lent but nonmaximal hyperbolic packing, euclidean
and spherical packings with prescribed boundary
angle sums, and…the last one? At the heart of this
last owl is a single branch circle, one whose petal
circles wrap twice around it. We will refer back to
these images later.

Pretty as the pictures are, the real gems in this
topic are the elementary geometric and monoto-
nicity arguments. Challenge yourself with some of
these:

• Distinct circles can intersect in at most two
points! Amazingly, Z-X. He and Oded Schramm
proved that this is the key to the uniqueness for
parabolic maximal packings.

• In hyperbolic geometry the central circle in a
flower with n petals has hyperbolic radius no larger
than − log(sin(π/n)) .

• The important Rodin/Sullivan Ring Lemma: for
n ≥ 3 there exists a constant cn > 0 such that in any
closed univalent flower of circles having n petals,
no petal can have radius smaller than cn times that
of the center. By Descartes’s Circle Theorem, the
best constants are all reciprocal integers, beginning
with c3 = 1, c4 = 1/4, c5 = 1/12. I’ll let the reader
compute c6.

• Figures 5(a) and (b) show hexagonal spirals. 
The first, created by Coxeter from the “quad” shown
in Figure 1(d), is linked to the golden ratio. The 
second, along with a whole 2-parameter family of
others, results from an observation of Peter Doyle:
for any parameters a, b > 0 , a chain of six circles
with successive radii {a, b, b/a,1/a,1/b, a/b} will
close up precisely around a circle of radius 1 to
form a 6-flower.

• The spherical packing of Figure 5(c), which
has the same complex as the packing in Figure 3(a),
was generated using 〈2,3,5〉 “Schwarz” triangles;
if you look closely at one of the twelve shaded cir-
cles, you will see that its five neighbors wrap twice
around it.

• And what of Figure 5(d), the snowflake? Some-
times a pretty picture is just a pretty picture.

The internals of the topic that I have outlined
here are wonderfully pure, clean, and accessible,
and those who prefer their geometry unadulterated
should know that pictures and computers are not
necessary for the theory. On the other hand, the
pictures certainly add to the topic, and the fact that
these packings are essentially computable begs
the question of numerical algorithms, which are an-
other source of packing pleasure. There are many,
many open questions; let me wrap up with one of
my favorites: He and Schramm proved that if K is
an open disc which packs D, i.e., is hyperbolic,
then it can in fact pack ANY simply connected
proper subdomain Ω ⊂ C. Consider the combina-
torics behind the packing of Figure 3(c) on page
1379, for example. Can you imagine your favorite
horribly pathological domain Ω filled—every nook
and cranny—with a univalent packing in which
every circle has seven neighbors? How does one
compute such packings?

(a)

(b) (c)

(d)

Figure 4. Owl manipulations.

(a) (b)

(c) (d)

Figure 5. Geometric gems.
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Dust Off the Theory
Whatever internal richness a new topic develops, the
drive of mathematics is towards the broader view.
Where does it fit in the grand scheme? What are the
analogies, links, organizing principles, applications?
What does this topic need and what can it offer?

The tools we have used so far—basic geometry and
trigonometry, surface topology, covering theory—
are hardly surprising in the context, but perhaps you
wondered about references to the Schwarz Lemma,
Riemann Mapping Theorem, and Uniformization.
The claim is, quite frankly, that one can look to ana-
lytic function theory as a model for organizing circle
packings. Let’s jump right in.

Definition. A discrete analytic function is a map
f : Q �→ P between circle packings which preserves
tangency and orientation.

The study of circle packings P for Kmay now be
posed as the study of the discrete analytic functions
f : PK �→ P; namely, for each vertex v of K define
f (Cv ) = cv, where Cv and cv are the circles for v in
PK and P, respectively. For first examples look to
Figure 4, where the maximal packing is the common
domain for four discrete analytic functions, fa, fb,
fc, fd , mapping to the packings (a), (b), (c), (d), 
respectively.

With this definition we immediately inherit a won-
derful nomenclature: fa from Figure 4 is a 
discrete analytic self-map of D, and fb is a discrete
conformal (Riemann) mapping; the discrete analytic
function from the packing of Figure 3(a) to that of
Figure 5(c) is a discrete rational function with twelve
simple branch points. A map from the penny-pack-
ing to the Doyle spiral of Figure 5(a) or (b) is a dis-
crete entire function, in fact, a discrete exponential
map. Among my favorite examples are 
the discrete proper analytic self-mappings of D, the
discrete finite Blaschke products. And there are
many others: discrete disc algebra functions; dis-
crete versions of sine and cosine; a full family 
of discrete polynomials; and, when K is compact,
discrete meromorphic functions, though these are
quite challenging and the theory is just in its infancy.

The whole panoply of function-theory machinery
also opens to us. In particular, the names attached to
the theorems in the last section make perfect sense.
One comes to recognize the DSL as the hyperbolic
contraction principle; analytic self-maps of the 
hyperbolic plane are hyperbolic contractions. Like
its classical counterpart, it plays a central role on 
the way to DRMT and DUT. The hyperbolic/parabolic
dichotomy for infinite complexes is just the classi-
cal “type” problem and yields, for example, the 
Discrete Liouville Theorem: a parabolic complex K
can have no bounded circle packing. Other notions
from the classical theory also enter: discrete versions
of extremal length, harmonic measure, random walks,
maximum principles, analytic continuation, cover-

ing theory, and the list goes on. And if you are look-
ing for a derivative, there is a natural analogue for 
its modulus in the sharp function, defined at circle
Cv by f #(Cv ) = radius (f (Cv ))/radius (Cv ).

Ultimately, we find in circle packing a remark-
ably comprehensive analogue of classical analytic
functions and the associated theory. And the 
parallels are not stretches; they almost formulate
themselves, just as the Thurston finite Riemann
mapping of Figure 6 is so clearly a discrete con-
formal map. The inevitable question, of course:
Does the topic provide more than analogy? more
than nomenclature?

This is where Thurston’s startling conjecture
enters our tale, for he saw in the rigidity of circle
packings a direct link to conformality. According
to Thurston, if one cookie-cuts a region Ω, as in Fig-
ure 6, using increasingly fine hexagonal packings,
one obtains discrete mappings which converge to
the classical Riemann mapping F : D �→ Ω . The
conjecture was soon proved by Burt Rodin and
Dennis Sullivan in the seminal paper of this topic.
Their result has now been extended to more gen-
eral (i.e., nonhexagonal) and multiply connected
complexes, to all three classical geometries, and to
nonunivalent and branched packings. The Thurston
model holds: given a class of functions, formulate
the discrete (i.e., circle packing) analogues, create
instances with increasingly fine combinatorics, 
appropriately normalized, then watch as the dis-
crete versions converge to their classical models.
Of course there are details, for example, geomet-
ric finiteness conditions on valence and branching,
but putting these aside we have this

• Metatheorem: Discrete analytic func-
tions converge under refinement to their
classical analytic counterparts.

Thus discrete Blaschke products converge to
Blaschke products, discrete polynomials to poly-
nomials, discrete rational functions to rational
functions, and so forth. I cannot show these in 
static pictures, but we can nonetheless capture the
intuition quite succinctly: A classical analytic func-
tion is said to “map infinitesimal circles to

ΩP
K

Figure 6. A Thurston “finite” Riemann mapping.
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infinitesimal circles”; a discrete analytic function
does the same, but with real circles.

Fortunately for our pictorial tale we can bring this
same intuition to bear in a more directly geometric
way. A Riemann surface is one having a conformal
structure, which is, loosely speaking, a consistent
way to measure angles. A conformal map between
Riemann surfaces is one which preserves this mea-
surement (magnitude and orientation). (When things
are appropriately formulated, conformal maps are
just analytic maps and vice versa.) The discussion in
the box above illustrates construction and refine-
ment of discrete conformal maps from a Riemann

surface to plane rectangles. A formal statement of the
limit behavior is somewhat involved, but we have

• Metatheorem: Discrete conformal
mappings converge under refinement to
their classical counterparts.

Any lingering doubts the reader may have about
connections with analyticity should be put to rest
by the fact that the K-A-T Theorem actually implies
the Riemann Mapping Theorem for plane domains.
The last critical piece involves elementary (though
by no means easy) geometric arguments of He and
Schramm which replace the original quasiconfor-
mal methods in Rodin/Sullivan.

K
S

n = 0 n = 4

P4P0

This is a toy problem in discrete conformal geometry; your materials are shown above. S is a piecewise affine (p.w.a.)
surface in 3-space constructed out of ten equilateral triangles; the cartoon K shows how these are pasted together
and designates four boundary vertices as “corners”. S is not “flat”; it has two interior cone points with cone angles
π and 3π. The p.w.a. structure on S brings with it a canonical conformal structure, so S is in fact a simply 
connected Riemann surface. By the Riemann Mapping Theorem there exists an essentially unique conformal map
F : S �→ R , where R is a plane rectangle and F maps the corner vertices of S to the corners of R. Question: What
are the shapes of the ten faces when they are mapped to R?

Here is the parallel discrete construction. Mark each equilateral face of S with arcs of circles as in the triangle
labelled “n = 0”. These arcs piece together in S to define an in situ packing Q0. By using prescribed boundary angle
sums, Q0 can be computationally flattened to the packing P0 shown below, which has rectangular carrier and the 
designated vertices as corners. In our terminology, f0 : Q0 −→ P0 is a discrete conformal mapping, and it carries 
the ten faces of S to ten triangles in the plane.

Clearly, this “coarse” packing cannot capture the conformal subtleties of S . Therefore, we use a simple “hex-
refine” process which respects the p.w.a. structure of S : namely, break each equilateral face into four equilateral
faces half its size. Applying n such refinement steps gives an in situ circle packing Qn in S , and flattening Qn to
get a rectangular packing Pn yields a refined discrete conformal mapping fn : Qn −→ Pn. With four stages of re-
finement, for example, each face of S looks like the triangle labelled “n = 4”. Its rectangular flat packing P4 is shown
below with the ten faces outlined.

As with Thurston’s conjecture for plane regions, it can be proven that the discrete mappings {fn} converge on
S to the classical mapping F . In other words, as you watch successive image packings Pn , you are seeing the ten
faces converge to their true conformal shapes.
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That Special Something
Every topic exhibits, at least to its adherents, some
special character that sets it apart, even as it finds
its place in the larger scheme. Will it make a lasting
imprint on mathematics? Does it represent a para-
digm shift? The true believer always holds out hope.

The synergy among mathematics, computation,
and visualization that began with Thurston’s 1985
talk infuses circle packing with an experimental
character that I believe is unique in mathematics.
Let me speak in the context of CirclePack, a graph-
ically based software package for creating, manip-
ulating, storing, and displaying packings interac-
tively on the computer screen. CirclePack handles
arbitrary triangulated surfaces, simply or multiply
connected, with or without boundary, in any of the
three geometries. Packings range from 4 to
1,600,000 circles (the current record in one of Bill
Floyd’s tilings); those up to roughly 10,000 circles
now qualify as “routine”, since packing times of a
few seconds give an interactive feel. Multiply con-
nected packings are manipulated in their intrinsic
metrics and are displayed in the standard geo-
metric spaces as fundamental regions with 
associated side-pairings, as with the torus of
Figure 3(d). Nearly all the images in this paper come
directly from CirclePack and are typical of what one
views on-screen during live experiments.

It is true that nearly every topic has come under
the influence of computing in one way or another,
even if only in sharing its algorithmic philosophy.
What distinguishes circle packing is the depth of
the interactions among the mathematics, compu-
tations, and visualization—the central results have
involved all three.

• Mathematics: This is discrete complex analy-
sis, so it touches not only function theory but also
potential theory and brownian motion, Möbius and
conformal geometry, number theory, Fuchsian and
Kleinian groups, Riemann surfaces and Teichmüller
theory, not to mention applications. This is core
mathematics, and the key geometric tools are here:
topology, boundary conditions, group actions,
branching, and, of course, conformality, in the form
of the packing condition. And these tools are not
tied to preconceived roles. You want to double a
complex across a boundary? slit two surfaces and
paste them together? mix boundary conditions?
try some fractional branching? puncture a torus 
or carry out a Dehn twist? Go ahead! You may miss
familiar tools—no complex arithmetic, no power 
series, no functional composition—but much of
complex analysis is fundamentally geometric, and
you can see it in action.

• Computation: Space prevents me from giving
the numerics of circle packing its due. Thurston’s
algorithm works directly on the geometry, manip-
ulating the distribution of curvature among the
circles. In the computations of the ten-triangle 

pattern in the box on page 1382, for example, there
is a remarkably stationary flow in the computations: 
comparing Figure 7 to the packing P4 there, you
can almost see the curvature streaming from points
of excess to points of shortage. There is also a
markov model of Thurston’s algorithm, plus there
are alternative algorithms by Colin de Verdière and
by Bobenko and Springborn. Every improvement in
algorithms seems to be associated with new geo-
metric insights; curvature flow, for example, has a
classical interpretation and may aid in parallelizing
packing computations. Perhaps the main open ques-
tion concerns a provable algorithm that works di-
rectly in spherical geometry; at this time spherical

Figure 7. Curvature flow.

(a) (b)

(c) (d)

Figure 8. “If it is triangulated, circle pack it!”
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packing is done in the hyperbolic plane and pro-
jected to the sphere.

• Visualization: It is the images and interac-
tions with them that really set circle packing apart.
You come to anticipate the unexpected in every
experiment: some surprise symmetry or monoto-
nicity, a classical behavior borne out, a new twist
begging explanation, the odd outright mystery. A
few examples are shown in Figure 8.

• The “cat’s eye” of (a), mere play with edge-flips
(Whitehead moves), led to lattice dislocation 
graphs used by physics colleagues in studies of 2D
quenching.

• Thurston’s version of K-A-T actually involved
circle patterns with prescribed overlaps between cir-
cles, tangency being just one option. In CirclePack
one can specify not only such overlaps but also 
inversive distance packings, raising some chal-
lenging new existence and uniqueness questions;
(b) is our owl with randomly prescribed inversive
distances.

• Use of overlaps in “square grid” packings was
initiated by Oded Schramm and picked up by those
involved with integrable systems. Alexander

Bobenko and his collaborators have
extended these ideas into the study of
discrete minimal surfaces and related
topics; one of their gorgeous images
is shown in (c).

• Circle packing powers the visu-
alization of millions of knot and link
projections in Thistlethwaite and

Hoste’s KnotScape program; here the (3,7) torus
knot is shown (with the circles that give it shape).
Circle packing has been used to find graph sepa-
rators, to generate grids, and to study Whitehead
moves, hence the motto of Figure 8.

I would argue that CirclePack is to a geometer
what a moderately well-equipped laboratory is to
an organic chemist (only safer). The potential for
open-ended experiments is unique, and yet the
machinery is accessible to people at all levels; who
knows, a few experiments and you or your students
might be hooked!

New Kid on the Block
The new topic has linked itself to a rich classical vein
which it has exploited shamelessly: definitions, the-
orems, examples, philosophy. But former colleagues
are beginning to feel used—time for the new kid to
step up and contribute.

Much as I would love to tour various applications
in discrete function theory, it is probably better to
settle on a single, more directly geometric exam-
ple. 2D tiling is well known for its mixture of com-
binatorics and geometry, and there is a new theme
which grew directly out of circle packing experi-
ments called “conformal” tiling. One reverses tra-
dition by starting with the combinatorics and ask-
ing, With what tile shapes and in which geometry
can these combinatorics be realized? Let me recount
the story of the “twisted pentagonal” tiling. This
will necessarily be very brief, but Notices readers
are known to enjoy a challenge.

The twisted pentagonal subdivision is one of
many conceived by Cannon, Floyd, and Parry in on-
going work on Thurston’s Geometrization Con-
jecture; my thanks to Bill Floyd for the combina-
torial data.

We begin with the cartoon in Figure 9, which
shows a rule for breaking one pentagon into five
by adding edges and vertices. Your task, starting
with one pentagon, is to repeatedly apply this sub-
division rule: at the first stage you get 5 pentagons,
then these are subdivided into 25, and these into
125, etc. The combinatorics quickly get out of hand,
and circle packing is brought in initially just to get
useful embeddings: at each stage, a barycenter
added to each pentagon gives a triangulation which
can then be circle-packed, giving shape to the 
pentagons. The first three stages are shown in
Figure 9 with their circles.

Figure 9. Three stages of subdivision.

Figure 10. An infinite, subdivision-invariant pattern T.
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The pictures are an immediate help, for after a
few additional stages you come to realize that the
“subdivision” rule can be replaced by a corre-
sponding “expansion” rule. There is, in fact, an es-
sentially unique infinite combinatorial tiling T
which is subdivision-invariant: i.e., if you simulta-
neously subdivide all the pentagons, the result is
again combinatorially equivalent to T. This T is
suggested by Figure 10.

If you caught the spirit of our ten-triangle ex-
ample in the box on page 1382, you might try the
same treatment here. Pasting regular euclidean
pentagons together in the pattern of T yields a
simply connected p.w.a. Riemann surface S . Rie-
mann himself would have known that there is a con-
formal homeomorphism f from S to one of C or
D. The images of the faces under f form a so-called
conformal tiling T with the combinatorics of T. Is
this tiling parabolic or hyperbolic? (i.e., does it lie
in C or in D?) What are the shapes of its tiles? Does
the pattern have internal structure? Before circle
packing, there was no way to approach such ques-
tions, so they weren’t asked!

Now we have a method. As you might have sus-
pected, Figure 10 was created using circle packing;
it is a rough approximation of T by “coarse” circle
packings like those of Figure 9. Your first instinct
might be to improve conformal fidelity via refine-
ment, as we did in the box on page 1382. The key
experiments, however, turn out to be of quite a
different nature. Stare at T for a moment—per-
haps let your eyes defocus. The longer you look, the
more certain you become of some large-scale pat-
tern. Let me help you pull it out. As T is invariant
under subdivision, so must it be invariant under ag-
gregation (unsubdividing). On the left in Figure 11
are the outlines of the first four stages of aggre-
gation; that is, each of the outlined aggregates is
combinatorially equivalent to a subdivision of its
predecessor.

Do you see a hint of a pattern now? A little work
in PostScript to dilate, rotate, and overlay the out-
lines leads to the picture on the right in Figure 11.
The scale factor turns out to be roughly the same
from one stage to the next, suggesting that the tiling
is parabolic. More surprising, you find that the 
corners of the outline from one stage seem to line
up with corners of the next: each edge at one stage
is replaced by a zig-zag of three edges at the next.
Motivated by these very images, Cannon, Floyd,
Parry, and Rick Kenyon have confirmed all these
observations. In fact, a wealth of mathematics con-
verges in these images: This tiling turns out to be
associated with one of Grothendieck’s dessins d’en-
fants on the sphere. Hence there exists a rational
function with algebraic coefficients whose iterates
encode the subdivision rule. That iteration gives an
associated Königsfunction k, an entity right out of
nineteenth-century function theory, and T is just

the cell decomposition of C defined by k−1([0,1]).
And with the scaling confirmed, renormalization
(as started on the right in Figure 11) suggests a 
limit tiling in the pattern of T which would have
perfect scaling, fractal pentagonal tiles, and a 

Figure 11. Outline, scale, rotate, and overlay the aggregates.

Figure 12. Circle packing for conformal structure.
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fractal subdivision rule. Such is the story of the
twisted pentagonal tiling. It is clear that our dis-
crete experiments have faithfully captured some
truth in classical conformal geometry.

There are many other combinatoric situations
where similar experiments can be run. At the risk
of leaving some mysteries for the reader, I have
shown a few in Figure 12. The two images at the top
are straight out of classical function theory. On
the left, circles (not shown) recreate the “Klein”
surface in an image made famous over 100 years
ago in Fricke/Klein. On the right is the more illu-
sive “Picard” surface; we can now approach this and
other surfaces whose triangulations are not geo-
desic. If you are into number theory, the topic
known as dessins d’enfants, children’s drawings,
alluded to earlier, tightly binds combinatorics,
meromorphic functions, and number fields. Its
structures are equilateral, like the ten-triangle ex-
ample in the box on page 1382, so the topic is a nat-
ural for discrete experimentation; the middle im-
ages in Figure 12 show genus 0 and genus 2 dessin
examples, respectively. Likewise, the notion of con-
formal welding used in complex analysis and in
the study of 3-manifolds is now an experimental re-
ality. The bottom images in Figure 12 show a toy
example, where two owls have been welded to-
gether, along with a more serious example pro-
duced by George (Brock) Williams.

Note how the tables have turned. We are now
starting with combinatorics. Circle packing then 
imposes a discrete conformal structure, that is, a
geometry manifesting key characteristics of con-
formality—notions such as ‘type’, extremal length,
moduli of rings, harmonic measure, and curvature.

Then one can search for, perhaps even prove, 
parallel classical results. In summarizing the intu-
ition, it seems only fair to let the discrete side 
take the lead: A discrete conformal structure on a 
surface is determined by a triangulation; a classi-
cal conformal structure is determined in the same
way, but with “infinitesimal” triangles.

I cannot leave this section without mentioning
a point of closure in the theory provided by results
of He and Schramm. They have made a major 
advance on a classical conjecture concerned with
the conformal mapping of infinitely connected 
regions, the so-called Kreisnormierungsproblem,
by applying methods which they developed in 
circle packing. And exactly whose conjecture was
this? None other than P. Koebe himself: he proved
the finitely connected case and then applied his
classical methods to establish the K-A-T Theorem!

Reaching Out
It is an article of mathematical faith that every topic
will find connections to the wider world—eventually.
For some, that isn’t enough. For some it is real-time
exchange between the mathematics and the appli-
cations that is the measure of a topic.

The important roles complex analysis tradition-
ally played in the physical sciences—electrostatics,
fluid flow, airfoil design, residue computations—
are largely gone, replaced by numerical partial 
differential equations or symbolic packages. But 
the core of complex analysis is too fundamental to
go missing for long. Surfaces embedded in three-
space are becoming pervasive in new areas of 
science, image analysis, and computer visualization,
and conformal geometry is all about such surfaces.
With new tools to (faithfully) access conformality,
perhaps complex analysis has new roles to play.

I would like to illustrate briefly with brain-
flattening work that has garnered recent exposure
outside of mathematics. The work is being carried
on by an NSF-sponsored Focused Research Group:
Chuck Collins and the author (Tennessee); Phil
Bowers, Monica Hurdal, and De Witt Sumners
(Florida State); and neuroscientist David Rottenberg
(Minnesota).

The first image in Figure 13 shows the type of
3D data which is becoming routinely available
through noninvasive techniques such as MRI 
(magnetic resonance imaging), in this case, one
hemisphere of a human cerebrum. Our mental 
processing occurs largely in the cortex, the thin 
layer of neurons (grey matter) on the brain surface.
Neuroscientists wishing to apply surface-based
techniques need to map the cortex to a flat do-
main—hence the topic of “brain-flattening”. As you
can see, the cortex is an extremely convoluted 
surface (the shading here reflects the mean cur-
vature), and it is well known that there can exist
no flat map which preserves its areas or surface 

Figure 13. A 3D cortical hemisphere and three flat maps.
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distances. However, by the 150-year-old Riemann
Mapping Theorem there does exist a conformal
flat map. Using standard techniques, one can 
produce a triangulation which approximates the
cortical surface from the volumetric data. Figure 13
illustrates three discrete conformal flat maps 
based on such a triangulation (180,000 vertices):
clockwise from upper right are spherical, hyper-
bolic, and euclidean flat maps.

It is not our goal to discuss the potential scien-
tific value in these maps (though I will mention that
our neuroscience colleagues have a surprising 
affinity for the hyperbolic maps; perhaps these
are reminiscent of the view in a microscope). How-
ever, there are some points that do bear on our
story.

• First, one does not have to believe that con-
formality per se has any relevance to an application
to exploit its amazing richness—existence and
uniqueness first, then companion notions such as
extremal length and harmonic measure.

• Second, approximation of true conformality
may be superfluous if its companion structures 
appear faithfully at coarse stages, as seems often
to be the case with circle packing.

• Finally, the structures take precedence over
technique; circle-packing experiments can con-
tribute to a topic even if other methods replace it
in practice. What would be nice to hear at the end
of a neuro consult is, “You know, we need to hire
another conformal geometer.”

Conclusion
Of course, a mathematical topic itself never con-
cludes; the tradition is “definition-theorem-proof-
publication” as new contributions add to the line. 
A mathematical tale, on the other hand, must have
closure, and the storyteller is allowed to put some
personal spin on the story (if not a moral).

I have related this tale in the belief that it has
some touch of universality to it. We are drawn to
mathematics for a variety of reasons: the clarity of
elementary geometry, the discipline of computation,
the challenge of richly layered theory and deep
questions, the beauty of images, or the pleasures
of teaching and applying the results. I feel that I have
seen all these in circle packing, and perhaps you
have glimpsed parallels with your own favorite
topic.

Personally, it has been a pleasure to watch an old
friend, complex function theory, emerge in a form
with so much appeal: new theory, new applica-
tions, stunning visuals, an exciting experimental
slant. For me circle packing is quantum complex
analysis, classical in the limit. The discrete results
and their proofs are pure mathematics, the pic-
tures and software being not only unnecessary,
but for some, unwanted. Yet the experimentation
and visualization, the very programming itself, are

at the research frontier here. In this regard, circle
packing illustrates the growing challenge mathe-
matics faces to incorporate new modes of research
into its practices and literature.

Of course circle packing, like any mathematical
topic, has many potential storylines. In that spirit,
let me end our mathematical tale in a very tradi-
tional way, namely, in the hope that it nourishes
others who can pass along their own stories in
their own words.

Reader’s Guide
Once: [12], [26], [28], [1], [30]. Birth: [25], [2], [35],
[36], [13]. Internal: [27], [5], [4], [9], [21], [3], [22], [10].
Dust: [19], [18], [34] (survey), [31]. Special: [32], [20]
(survey), [15], [7], [17], [29], [6], [23]. New Kid: [33]
(survey), [21], [19], [11], [8], [37], [14], [16]. Reach
Out: [24]. (You can download a more complete 
bibliography and CirclePack from my website:
http://www.math.utk.edu/~kens.)
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About the Cover

Conformal maps by packing circles
This month’s cover illustrates how one of

the simplest possible conformal maps can be
approximated by the technique of circle pack-
ing explained in Kenneth Stephenson’s arti-
cle.  In constructing it, the very detailed recipe
to be found in “A circle packing algorithm” by
Charles Collins and Stephenson (Computa-
tional Gemetry 25 (2003)) was followed.

Both circle configurations are associated to
the same triangulation, which is also shown—
vertices correspond to circles, and edges cor-
respond to circles that touch. The corners are
left out for technical reasons.

—Bill Casselman

(notices-covers@ams.org)
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