TN:479484

I

__u_..mﬁ_w mmmmmmmA

L

Lender String:
*PUL,PUL,OSU.0SU

Patron: ..o DEPT;
STATUS; Bish

Maxcost: 50IFM

Title: Studies in the history of
modern mathematics /
Volume:

Issue:

Month/Year: 1994

Pages: 4794

Article Author:

Article Title: Gray, Jersmy; On the
history of the Riemann mapping
thearem

Palermo ; Sede della Societa’,
1994-

NOTICE:

THIS MATERIAL MAY BE
PROTECTED BY COPYRIGHT
LAW
(TITLE 17 U.S. CODE)

Location: LEWIS LIBRARY (SCI)
Call #: QA26 .S782 1994 -

129.49.97.145

Shipping Address
YSM - Interlibrary Loan

Room E 1332 Melville Library
Stony Brook University
100 Nicolls Road
Stony Brook NY 11794-3335

ILL - Princeton University Library
Princeton University
One Washington Road
Princeton, NI 08544-2058

Any requests for resubmission must
be received within 5 business days
to Ariel 128.112.202.154,
ilslend @princeton.edu,
or 609-258-3327

Il

TN:479434

Il

ILL# 56826661

UNAAEII

Lender String: "PUL,PUL,OS5U,05U

Patron: .......ccceeeecenines DEPT;
STATUS; Bish

Maxcost: 50IFM

Title: Studies in the history of
modern mathematics /

‘Volume:

Issue:
Month/Year: 18284
Pages: 47-94

Article Author:

Article Title: Gray, Jeremy; On the
history of the Riemann mapping
thearem

Palermo : Sede della Societa’, 1994-

NOTICE:
THIS MATERIAL MAY BE
PROTECTED BY COPYRIGHT LAW
(TITLE 17 U.S. CODE)

Location: LEWIS LIBRARY
(SCI)
Call #: QA26 .5782 1994 -

128.49.97.145

Shipping Address
YSM - Interlibrary Loan

Room E 1332 Melville Library
Stony Brook University
100 Nicolls Road
Stony Brook NY 11794-3335

ILL - Princeton University Library
Princeton University
Cmne Washington Road
Princeton, NJ 08544-2098




RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO
Serie II, Supplemento N. 34 (1994), pp. 47-94

ON THE HISTORY OF THE RIEMANN
MAPPING THEOREM

JEREMY GRAY

Introduction.

This paper traces the history of two closely related theorems
in complex function theory: the Riemann mapping theorem and the
uniformisation theorem. They are taken from their origins in the
work of Riemann, Poincaré, and Klein to their first rigorous proofs,
in a slew of papers by several mathematicians around 1910, among
whom Koebe was perhaps the most influential. Ahlfors has hailed
the first of these results as “one of the most important theorems
of complex analysis” [1953, 172] and the second as “perhaps the
single most important theorem in the whole theory of analytic
functions of one variable” [1973, 136]. As he went on to remark: the
uniformisation theorem “does for Riemann surfaces what Riemann’s
mapping theorem does for plane regions”. Despite their importance,
it remains the case, as Lipman Bers commented, that “a scholarly
history of that period is yet to be written” [Bers, 1974, 559].!

! The best accounts are the remarkably informative essays by Lichtenstein [1921]
and Bieberbach [1921] in the Enzyklopiidie der Mathematischen Wissenschaften.
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In the course of these developments it became clear that several
aspects of each problem needed greater clarification than the original
proponents had supposed. Essentially new topological ideas were
introduced to explore the intuitive notion of curve, and steadily
more rigorous existence theorems were developed in the theory of
harmonic functions. The new ideas also highlighted a running debate,
among the largely German mathematical community that pursued
these developments, about the relative merits of ideas drawn from
outside function theory (such as potential theory) and those that came
strictly from within it.

1. Riemann to Prym.

In his paper of 1851, Riemann claimed that

Two given simply connected plane surfaces can always be
mapped onto one another in such a way that each point
of the one corresponds to a unique point of the other in
a continuous way and the correspondence is conformal;
moreover, the correspondence between an arbitrary interior
point and an arbitrary boundary point of the one and the
other may be given arbitrarily, but when this is done the
correspondence is determined completely. [1851, 40].

This assertion is called the Riemann mapping theorem. It is
usually given a modern interpretation along these lines: every simply
connected domain with at least two boundary points can be mapped
conformally, one-to-one and onto the interior of the unit disc, in such
a way that the map extends to a map on the boundaries. The map,
f say, is uniquely specified by the requirements that at some point
2o in the interior of the domain, f(z9) =0 and f'(z) > 0. All of the
changes between Riemann’s version and a modern one are interesting
and will be explored in this paper. The explicit requirement that the
boundary has at least two points is made to rule out the cases where
the domain is either the plane or the sphere, counter-examples that
would have been known to Riemann himself. The observation that it
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is enough to establish the indicated equivalence between any given
domain of the stated kind and the disc was first made by Riemann
himself. But the careful specification of what a domain is was only
made in this century, when it was realised how delicate the question
can be. Similarly, awareness of the truly problematic nature of the
boundary came only with the work of Osgood and Carathéodory. It
was under Carathéodory’s influence that the uniqueness of the map
was first specified by conditions on it only at an interior point.

As Riemann explained in his later paper [1857] on Abelian
functions, his reason for proclaiming the mapping theorem was
to extend Dirichlet’s general existence theorem to functions with
singularities. The consequences of such a theorem for his theory
would be profound, for as he was already clear in 1851, the theorem
established that every such domain admits complex functions with
prescribed boundary values and prescribed points at which it becomes
infinite in allowable ways. Therefore, “[these] principles open the way
to the study of definite functions of a complex variable independent
of an expression for it” [1851, §19]. As Riemann argued, for
example, his results greatly simplified such tasks as deciding when
two expressions represented the same function. It is immediately
clear, he said (§20), that if a function is defined everywhere on a
region that covers the entire plane once or several times, and has
singularities only of finite orders and only at finitely many points,
then it is an algebraic function.

The Riemann mapping theorem itself also establishes that any
two simply connected regions (with boundaries) are equivalent for
the purposes of Riemannian complex function theory. This would be
an important step for anyone seeking to base a theory of complex
functions on topological ideas rather than algebraic ones. Nonetheless,
it is clear that the gap between Riemann’s own formulation and a
modern one is a large one. As Ahlfors wrote a century later, Riemann
wrote “almost cryptic messages to the future” and stated his mapping
theorem in a form that “would defy any attempt at proof, even with
modern methods” 2. One of the purposes of this paper is to attempt

2 Ahlfors [1953b], pp. 3, 4; quoted in Bottazzini [1986], p. 234.
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to trace the journey across this rocky traverse from Riemann’s time
to the first fully acceptable modern versions.

It is often said that Riemann’s proof rested at a crucial point
on an appeal to Dirichlet’s principle, and that for this reason it
was not widely accepted 3. Such, influentially, seems to have been
Hilbert’s view in his first paper on Dirichlet’s principle, [1905]. There
Hilbert characterised the problem in this way: a boundary curve and
a function on this curve are given. Let T be the part of the plane
bounded by this curve. Then the function f(z,y) is taken for which
the value of the integral L(f) (defined below) is a minimum. This
function is necessarily harmonic. Hilbert claimed that considerations
of this nature had led Riemann to his proof of the existence of
functions with given boundary values, but that Weierstrass was the
first to show that this approach was not reliable. According to Hilbert,
Dirichlet’s principle had then fallen into disrepute, and only Brill and
Noether continued to hope that it could be resurrected, perhaps in a
modified form.

In fact Riemann’s approach was rather different and, more to the
point, was soon shown to be fatally flawed. Riemann did not naively
apply something called Dirichlet’s principle, if this principle is taken
to be the claim that a continuous function defined on the boundary
of a simply connected region extends to a harmonic function defined
on the whole region. Rather, Riemann first asserted that if a certain
integral over a surface T,

e ([ 2) s (22

is finite, where o and 3 are two arbitrary real functions of z and y,
then by varying o by a continuous function (or one discontinuous
only at single points) which is zero everywhere on the boundary
of T , the integral attains a minimal value and moreover this
minimum is attained by a unique function if one excludes the points
of discontinuity. This unique minimizing function is harmonic. The

dr,

3 But see the discussion in Bottazzini [1986].
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condition on the integral L(a,8) is certainly not naive, even if, as
we shall see, it is inadequate to ensure the purpose.

Riemann then considered a function )\ that vanished on the
boundary, could be discontinuous at isolated points, and for which
the integral (later called the Dirichlet integral by Hilbert)

o] ((2)+())e

is finite. He let o + X = w, and considered the integral

[ dw 9B\ [dw . 0B
Q= —_— ] +| =
[G-3)(5-32)
“The totality of these functions ),” he wrote, “represents a connected
domain closed in itself, in which each function can be transformed
continuously into every other, and a function cannot approach
indefinitely closely to one which is discontinuous along a curve
without L()\) becoming infinite”. So for each )\, Q only becomes
infinite with L, which depends continuously on X\ and can never
be less than zero; consequently  has at least one minimum.
The uniqueness followed more straight-forwardly from looking at
functions of the form v + A) near to a minimum . So Riemann’s
use of the Dirichlet’s principle rests on a claim that certain boundary
behaviour is sufficient to guarantee that a certain integral, L, is
always finite, and that therefore the integral Q is also finite and
attains its minimum. ’

dT'.

It was at this point, and as an illustration of his ideas, that
Riemann proposed his mapping theorem. Riemann argued that it was
enough to show that any such region T could be mapped conformally
onto the unit disc, and outlined a proof in two stages. First, and
more generally, he let T be a Riemann surface and T that surface
rendered simply connected by suitable cuts. Suppose that o and 3 are
functions mapping T to IR for which the Dirichlet integral is finite:

L{a, B) < +o0.
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Then, Riemann claimed, there are unique functions y and v such
that:

1) p is continuous and vanishes on the boundary of 7", and
2) L(u,0) < 400, and u +vi := (a+ B1) — (u + vi) is a function of a
complex variable.

The function u + vi therefore has prescribed real part, o, on the
boundary of 77, and prescribed singularities inside 7* (those of a and
B).

For the second stage of his proof, Riemann restricted his
attention to a simply connected region T of the z-plane. To obtain
the conformal map of T to the unit disc, and to show that it extended
to the boundary, Riemann took local coordinates z — 2o defined on
a suitably small disc around an arbitrary interior point of T', and
looked at the map log(z — z9) = log p+ ¢1 defined on that small disc,
which he imagined cut along a radius. He then extended this cut to
a specified point on the boundary of 7. He extended the function
defined on the small disc by a continuous function to a function
a+ Fi on the whole of 7" with the properties that:

1) « vanished on the boundary of T,
2) «+ Bi jumped across the cut by 27 (like log), and

3) the new function agreed with the old one on the boundary of
the small disc.

The theorem established in the first stage showed that there
was then a function u + vi with suitable jumps. Clearly the function
u took every value from —oo (at 29) to O (on the boundary of T),
Riemann showed that for every real value of o the inverse images
u~!(a) were single simple closed curves. This followed from the
facts that T was simply connected and the function u was harmonic.
Consequently, he concluded, the sought-for function was

eu+m T — D.

There can be no doubt that Riemann sought to give his theory
of complex functions the greatest degree of generality, whence the
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role of the mapping theorem in his published papers. But he took
a more prudent view in his lecture courses. Some of these contain
arguments along the lines of the one just described, while others
omit it entirely®. This throws extra light on Riemann’s intentions.
When the aim is to get started, Riemann was content to rely on
the method of power series, analytic continuation, and the Cauchy
integral theorem. These methods guarantee the existence of a large
class of analytic functions, including all the familiar ones. The
purpose of the mapping theorem is not to be the sole source of
functions, but rather to give the theorist a better conceptual grasp,
and to set limits on how far the theory can be taken. Nonetheless,
it presented an approach to the definition of complex functions that
others, notably Weierstrass, were to find uncomfortable.

Historians of mathematics have described the way that other
mathematicians gradually came to distrust Riemann’s approach, and
perhaps even the results he reached as well 3. The central case of
Schwarz is described elsewhere in this volume by Rossana Tazzioli.
Here it is enough to note that Riemann’s outline of a proof was shown
to be flawed by Riemann’s former student Prym, in a short paper
[1871]. His reasoning was endorsed by Schwarz, who proceeded
to give a thorough description of an alternative, potential-theoretic
approach, and knowledge of Prym’s work seems to have faded from
history. It seems worth stressing that the Riemannian approach did
not lapse because of vague misgivings but because it was known to
be deficient.

Prym took the case of a disc and an arbitrary continuous
function, u, defined on the boundary, for which Dirichlet’s principle
implied that there was an extension to a finite and continuous
harmonic function defined on the whole of the disc. He pointed out
that all known proofs of this result relied on the claim that the
function u» was identical with its Fourier series, but that this result
was only known for functions having only finitely many maxima and
minima. In particular, he said, it was a misapprehension to think,

4 See Bottazzini and Gray, forthcoming.
3 See Bottazzini [1986].
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as Hankel did, that Riemann had proved that an arbitrary function
is representable by its Fourier series. But in any case, he said, even
when Dirichlet’s principle was true, Riemann’s approach to it might
be in error.

He considered a branch of the complex function

4 +1v = iy/—1og(R + z + iy)

defined on a disc of radius R < %, and introduced polar coordinates
p and 7 centred on the point (—R,0). In the disc p took every value
from 0 to 2R < 1 and 7 every value from —7 to n. The branch of
logarithm taken was to satisfy —log(R + z + iy) = — log p — i7. From
the explicit form for u and v in terms of polar coordinates it then
followed that the functions u and v are everywhere defined and
single-valued, even on the boundary of the disc. Since the function
u is the real part of a complex function it is certainly harmonic.
A closer examination showed that the function u was zero at the
point p = 0. Prym then considered the Dirichlet’s integral L(u,0) and
showed that it was infinite. The reason, as his formulae make clear,
is that the function u oscillates infinitely often in any neighbourhood
of the point p = 0. Consequently there is no hope that step 2 of
Riemann’s argument (L (u,0) < +o0) can be made to work.

With Prym’s criticism, and more weightily the criticisms coming
from Berlin (see the paper in this volume by Tazzioli) Riemann’s
approach using a version of Dirichlet’s principle lapsed into disrepute.
Other approaches were developed. Christoffel and Schwarz took up
the problem of representing the interior of a polygonal region on a
disc or half-plane, and showed that the conformal mapping can be
written down explicitly as an integral. Schwarz and C.A. Neumann
'showed how the methods of potential theory could be developed to
cope with a wide variety of regions bounded by analytic arcs. But
it was seemingly not felt that a general principle existed which was
adequate, even appropriate, to deal with all the cases at hand. As
late as 1894 Brill and Noether, in their survey of the history of
algebraic functions, were to dismiss Riemann’s approach as confusing.
Speaking of the application of Dirichlet’s principle, in the generality
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with which it underlies Riemann’s work, they said that “The function
idea, in such generality, incomprehensible and evaporating before
one’s eyes, no longer leads to reliable conclusions” [1894, 265]. Even
so, as Hilbert remarked, they went on to express the hope that the
simplicity of the ideas, standing as they did in organic connection
with problems of mathematical physics, might be revived, perhaps in
a modified form.

It is also worth noting that the whole problem looked different
if one took a firmly Weierstrassian view of function theory. From
that perspective, as Hurwitz explained in his address to the first
International Congress of Mathematicians [1897] an analytic function
is something defined on a set of perhaps overlapping discs, on each
of which there is given a convergent power series. So the question
is to determine which domains (in the sense of Harnack, see below)
are the domains of definition of an analytic function. Affirmative
answers were given by Mittag-Leffler [1884], and more simply by
Runge [1885] and Stickel [1893]. The question then becomes the
nature of the points on the natural boundary of a function with a
given domain 6,

Hurwitz then turned to the approach to complex function theory
pioneered by Cauchy and Riemann, which he found less elementary.
He pointed out that if the Cauchy integral theorem is to play a
central role then one must have a clear understanding of the possible
nature of a closed curve. One should not forget, he said, that this
class included the space-filling curves of Peano and Hilbert. Even
simple closed curves posed problems, and he referred to Schoenflies’s
attempts to prove the Jordan curve theorem. We shall see in Section
3 how perceptive Hurwitz’s intuition was.

2. Poincaré and uniformisation.

The theory of conformal mappings took a novel turn with the
arrival of Poincaré and problems to do with the theory of algebraic

6 See Bottazzini [1986].
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curves, as we shall now. In 1882 Poincaré, and independently Klein,
were led to proclaim a remarkable result called the uniformisation
theorem. This asserts that every algebraic curve of genus greater than
one can be obtained as the quotient of the unit disc by the action
of a suitable Fuchsian group, and therefore that there is a map from
the unit disc to the algebraic curve that parameterises the curve. The
parameterising functions are Fuchsian functions automorphic with
respect to the group ’. This astonishing and completely unexpected
result gave such curves for the first time an intrinsic geometry in the
sense of Gauss, because it makes every such curve locally isomorphic
to a patch of non-Euclidean geometry 8

The original proclamation was based on little more than counting
constants: the number of parameters that determined a Fuchsian group
and an algebraic curve were the same: 3g — 3 complex numbers, where
g is the genus of the algebraic curve. Although Klein attempted to go
further and argue that the one set of parameters varies continuously
with the other, Poincaré replied that unless the (3g — 3)-dimensional
“manifolds” in question were closed, not enough could be said to
yield the theorem even if the correspondence were continuous.

But in 1883 Poincaré stated a remarkable generalisation of the
uniformisation theorem, and gave it the outlines of a proof. He let y
be any analytic function of z which is not single-valued, and claimed
that one can always express z and y as single-valued functions of a
complex variable 2. To prove this, Poincaré considered m functions
y1,92,...,ym Of z. The value of each y; would be known at a point
z when its value was known at some initial point zy and a path
from o to = was specified. He supposed that the point z was one
coordinate of a point moving on a Riemann surface having infinitely
many leaves. To study this surface he proposed to construct what
today is called its universal cover, which topologically is a disc. His
method was to construct a new Riemann surface by opening out
the loops on the surface which corresponded to non-trivial analytic
continuations of any of the m functions y,y»,..., ym. To obtain this

7 See Gray [1986, Ch 6].
8 See Gray [1992 LNP 432].
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surface he took the arbitrary point z¢ as the starting point for all
loops drawn on the surface. As one then traced a loop starting and
finishing at zy, the values of the m functions y;,y2,...,y, varied.
For each loop he asked whether the values of any of the functions
were different at the start and the end of the loop. If any were, he
said the loop was of the first sort (la premiére sorte), else it was of
the second sort. Among the loops of the second sort, some could
be continuously shrunk to a point without ever losing their defining
property; they were said to be of the first type (la premiére espeéce).
Those that could not be shrunk in this manner he said were of the
second type. Poincaré then said that the initial and final points of a
Riemann surface corresponding to these functions had a point for
each loop of the first sort and for each loop of the second type
and the second sort. Each loop of the first type and the second sort
yields only one point on the new Riemann surface. Because all the
non-trivial loops have been opened out, the new Riemann surface is
simply connected, and is topologically a disc, as Poincaré remarked.

He then showed how to draw infinitely many non-intersecting
circles C, in the surface such that each C, spanned a disc containing
the circle C,_; and every point of the surface was contained in such
a disc. Poincaré then looked for a suitable Green’s function. He took
the elliptic modular function ¢ which is holomorphic except at 0,
1, and oo and which maps the plane with the points 0, 1, and co
removed onto the upper half plane. He then defined a new function
1 by the formula

6 (L) - v

xz+6

¢<am+[3>+\/__1'

XT+6

P(z) =

where f3,x, and § are constants, which is defined and holomorphic
except at

g 6 6-8
T =— -, T=—— n = '
o y a—7'
Moreover, 8 and § are chosen so that ¢ <§ v/—1 and %(0) = 0.
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_z—v/-1
Note that ¢(z) = ————m V1

of the unit disc. Without loss of generality, y,, = y. Then defining the

1 . P . . .
function ¢ to be log|—|, Poincaré obtained a function ¢ which was

maps the upper half plane to the interior

essentially positive, logarithmically infinite at certain points, and was
harmonic.

He then introduced functions u, satisfying Au, = 0, which
vanished along C,, and which were holomorphic inside C, except at
the point O where they became logarithmically infinite. It followed
that each function u, was positive everywhere inside its boundary

|

contour C, . Consequently, so were ;
Up+1—uyp, and t — uy,,
and so he deduced that the series
w=ur+ W —u))+...+ Une — Ug) ...

converges, because the u,’s increase with n and are bounded above
by the function ¢. The demonstration fails when the function t is
infinite, and Poincaré gave a separate argument to show how it can
be modified.

Poincaré then showed that the function u is continuous, and that
the series defining it converges uniformly. Moreover, it satisfies the
equation Au =0 away from the point O (where it is logarithmically
infinite). To prove this, Poincaré assumed that there was a function
U7 which solved the Dirichlet problem for any contour ¢ in a small
region of the Riemann surface, in that U agreed with the function u
on the contour ¢ and was harmonic inside c. But U was the limit of
the functions u,, so U = u and therefore the function is harmonic. A
separate argument ensured that u was harmonic at the points O;. So
Poincaré assumed that the Dirichlet problem was always solvable, i.e.
that there always exists an harmonic function on a simply connected
domain having prescribed continuously varying values on an arbitrary
boundary. It is remarkable that this part of his proof was not to be
questioned.
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Because the function v is harmonic it has an harmonic conjugate
v making u +iv a holomorphic function. The functions z and z,
defined by the equations

—(u+i —(tntuy,
(uw)’ =e(u Up)

z=e€ Zn
are then well-defined and Poincaré showed that 2z, is one-to-one
inside C, and that z is one-to-one everywhere. It followed that
the functions y; are uniformised by z, because the surface S was
constructed in such a way that they have a unique value at each
point of S.

Poincaré added two notes which show that he was aware of the
central weakness in his approach. He excluded singular points from
the Riemann surface, banishing them to its boundary. In particular, he
noted that the points where the modular function is not holomorphic
are singular. They spawn infinitely many points on the boundary of
the Riemann surface S. For this reason his proof was to be criticised
by Hilbert, in the course of presenting the topic as the 228 of his
23 mathematical problems. Hilbert stressed that it was extremely
desirable to check that the uniformising map was indeed surjective.
Poincaré was to endorse this criticism when he took up the question
again in 1907, and give two ways of dealing with it. He added that
his original method left it uncertain whether the conformal map of
S mapped it onto the unit circle or merely onto a part of it. “The
problem,” he said, “is none other than the Dirichlet problem applied
to a Riemann surface with infinitely many leaves”.

The connection between the Riemann mapping theorem and the
uniformisation theorem is a subtle one, and was well described by
Bieberbach [1915, 127 ff]. An algebraic curve such as 22 +w? =1
may be uniformised for example by

The Riemann surface in w and 2 is mapped by ¢ onto the schlicht
t-plane, and w and z are single-valued functions of ¢. But other
uniformisations are possible, for example, z = sin¢ and w = cos ¢,
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mapping an infinitely branched Riemann surface onto another schlicht
plane. Poincaré established a general uniformisation theorem for
domains branched over the points 0, 1, and co. Each solution of
a uniformisation problem is necessarily a solution of the Riemann
mapping problem. Moreover, given two solutions of a uniformisation
problem, the uniformising functions in the one case may themselves
be uniformised by the solutions from the other case. (In the above
example, one may set ¢t = sin¢.) The ultimate goal of the theory of
uniformisation was to show that over any Riemann surface there
sits exactly one of three simply connected surfaces (the sphere, the
plane, and the disc) branched in a way described by the uniformising
parameters. In this sense, the Riemann mapping theorem is naturally
a special case of the uniformisation theorem.

3. Harnack to Osgood.

29

The year after Poincaré’s paper appeared, C.A. Neumann
published the second edition of his book of lectures on Riemann’s
theory of Abelian integrals, [1884]. This book directed attention back
to one of Riemann’s own principal uses of his mapping theorem: to
establish the existence of Abelian integrals on a Riemann surface. In
it, Neumann revised Riemann’s account of how a simply connected
surface is obtained from a given Riemann surface of genus g by
cutting it open along 2g curves. He then showed how his own earlier
approach to the Riemann mapping theorem in terms of an iterative
process based on potential theory could be used to establish the
existence of a complex funcq on which jumped by a constant across
each cut and for which the real part of each jump was prescribed
°. Because the curves may be chosen at will, this extension of
Riemann’s theorem did not have to confront difficult questions about
the boundary, and later readers, even if accepting its validity rather
too readily, were right to locate it along side Schwarz’s work. For

? Neumann’s treatment did not specify any condition on the normal derivative
along the cuts.
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Schwarz’s alternating method left the nature of the boundary vague.
It was to be made up piecewise by analytic arcs (the situation at
the vertices was only dealt with by Picard) but Schwarz did not
investigate the kind of curves that could arise in this way. On
the other hand, Carathéodory was to praise Schwarz in Schwarz’s
Festschrift volume [1914, 20] for separating out the interior part
and the boundary part of the Riemann mapping theorem. Poincaré’s
méthode de balayage [1890] similarly made certain simplifying
assumptions about the boundary but left the extent of the method
unresolved. In the next few years attention was to be directed first to
finding more rigorous proofs of the Riemann mapping theorem valid
for any boundary, and second to the nature of the boundary itself. So
for example, in a note [1891] Painlevé showed that it was enough
to insist that the boundary have an everywhere continuously varying
tangent.

Throughout the 1880s and 1890s, the running was made by
those developing the methods of potential theory. The mathematician
who first published a satisfactory proof for solving a suitable version
of Dirichlet’s problem was Harnack [1887]. In this book Harnack
first reviewed the attempts by Schwarz and Neumann to solve the
Dirichlet problem for a variety of domains (including Neumann’s
new account [1887]) and noted the limitations that these authors had
been unable to remove on the nature of the boundary. He admitted
that he, too, had been unable to extend their methods, and so he
had turned to a different approach using Green’s functions. While
this method could be applied to two- and three-dimensional problems
alike, nonetheless Harnack found that some planar questions could
be resolved by the theory of conformal mappings, and so in his book
he confined his attention to potential theory in two dimensions. He
gave a thorough account of the existence theory for functions with
prescribed singularities, from which it was possible to derive the
general theorems in Riemann’s paper on Abelian functions and also
Poincaré’s uniformisation theorem. In the final section of the book
he showed how his ideas led to a proof of the Riemann mapping
theorem.

£9

Harnack’s book was generally cited favourably by subsequent
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mathematicians, usually for what has become known as Harnack’s
theorem [1887, 67]. This involves a sequence of harmonic functions
u,, defined on a surface F. The function v, restricts to a continuous
function U, on the boundary of F. Harnack assumed that a uniform
continuity held: for every arbitrarily small § there was, at each point s
of the boundary, a finite domain which contained interior points of F
and was partly bounded by a piece of the boundary of F containing s,
such that the values each function u, took on this domain (including
its boundary) varied by less than §. For this, he remarked, it is
necessary that the functions U,, be continuous. A preliminary theorem
then asserted that: if the sum U = XU, converges uniformly, then the
sum u = Zu, converges at every interior point of the surface F to
a harmonic function. From this what became known as Harnack’s
theorem followed: if a sequence of harmonic functions u, all have
the same sign (say, positive) and the sum u = Zu, converges at an
interior point of the surface F, then it converges at every interior
point of the surface F' to a harmonic function. Alternatively, if a
sequence of harmonic functions u, tend from below to the values of
a function u, then v is an harmonic function.

Harnack explained more carefully than any previous author
what it is for a domain to be connected: any two points can be
joined by a finite polygonal arc which can be covered by overlapping
discs all lying in the interior of the domain. Later authors were
to tease apart the concepts of domain (every point has a disc-like
neighbourhood lying entirely in the domain) and connectedness
(here, path-connectedness). Boundary points were then defined as
those points every neighbourhood of which contained some points
belonging to the domain and some that did not. Harnack then claimed
that the boundary of a simply connected domain has a continuous
boundary, although the boundary may be nowhere differentiable and
may have corners and cusps. Implicitly it need not even be rectifiable.
One could even add to a boundary an arbitrary number of incisions,
lines drawn inwards from boundary points, which would be traversed
twice by any circuit of the boundary.

On the basis of his theorem and this analysis of the boundary
Harnack then established the existence of a Green’s function for
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every bounded region with an arbitrary boundary. He accepted that
Neumann’s approach established the existence of a unique harmonic
function for polygonal regions with no re-entrant angles agreeing
with a given continuous function on the boundary. If the given
function on the boundary is always finite but has isolated jump
discontinuities then there is still a harmonic function agreeing with
the given one at points on the boundary where the given function
is continuous. Harnack then used an approximative argument which
he attributed ultimately to Schwarz to deal with the general simply
connected domain, in which the domain is steadily approximated by
polygonal regions. He used his theorem from p. 67 (see p. 62 above)
to establish that the sequence of harmonic functions converged to a
harmonic function on the given domain. He then patched together
arbitrary bounded domains out of simply connected pieces. To prove
the Riemann mapping theorem (and its extension to non-simply
connected domains) Harnack then used his Green’s function approach
to establish the existence of a suitable harmonic function and thence
a complex function mapping the given bounded domain onto a circle
(if simply connected) or a domain bounded by several circles (if not).

Harnack’s work was read carefully by several authors and
his theorem widely accepted. His attention to the nature of the
boundary, in particular his idea of incisions was also perceptive, and
surfaced in the work of his most prominent successor, the American
mathematician W.E. Osgood. Osgood did not accept all of Harnack’s
approach, finding that the boundary behaviour was even subtler than
had been suspected. One might reconstruct Osgood’s initial problem
this way. Harnack had seemingly shown that the harmonic function
on the interior extends to a continuous map of the boundaries.
When the boundary is not a simple closed Jordan curve Harnack’s
approximation argument might fail, if the incisions cluster together
awkwardly. The claim the Riemann mapping theorem made about
boundary behaviour has perhaps to be restricted to simple closed
Jordan curves. Osgood was aware that Jordan had shown that the
straight-forward claim that a simple closed curve (defined as the
image of interval under a continuous function from R to IR? divides
the plane into two different regions, is something that has to be
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proved. When he proved that if such a curve is rectifiable it has
zero area, he implicitly at least opened the way to showing than
non-rectifiable Jordan curves might be very strange indeed. Thus
primed, Osgood set to work.

In 1900 while “on the Atlantic” he wrote a short paper for the
first issue of the Transactions of the AMS in which he established
the existence of a Green’s function for any simply connected plane
domain, T, other than the entire plane of complex numbers. By the
term “Green’s function” he meant a single-valued function vanishing
on the boundary and harmonic in the interior except for one point
where it had a logarithmic pole (like log(1/r) as r — 0). Finally, on
the boundary the value of the function 4 was to be zero. The novelty
of Osgood’s paper resides in its insight into the possible nature of
the boundary. He was at pains to point out that his proof did not
require that the boundary curve be a Jordan curve. He pointed out
that his proof was valid even for the region of the upper half-plane
bounded by the real axis to which has been added unit verticals at
every point of a perfect nowhere dense set. (Osgood had given an
example of such a set in an earlier paper, [1898, lecture VI]). Let T’
be the region of the upper half plane from which these lines have
been removed. As Osgood noted, if the point set on the real axis has
positive content (as it does in his example) then the boundary of T
likewise has positive content. If this is not awkward enough, there
are points, A , of the boundary which have the property that every
neighbourhood of such a point A contains points of 7', yet there is
no continuous curve approaching the point A that lies entirely in
the interior of T. Osgood therefore defined the condition that as a
point (z,y) approaches the boundary the sequence of function values
f(z,y) tends to zero with care. He interpreted it to mean that if the
sequence (p,) of points in the interior of T has the point A as its
unique limiting point, then llm u(p,) = 0. Osgood’s boundary is an
example of a set with prirr?e oénds, and it is original with him. It
does not seem to have been discussed previously by those working
on Cantor’s problem of characterising the continuum. Carathéodory,
writing in 1912-13, attributed the term and perhaps the concept to
Schoenflies in 1908, seemingly unaware of its appearance in the
American’s paper.
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Osgood’s proof was succinct. He divided the plane into suitably

-small squares of width 1/n, let C, be the union of such squares lying

inside T , and let u, be a Green’s function on C,. Then he showed
by Harnack’s theorem that u, converged to an harmonic function on
T. If T was finite, then the sequence u, was dominated by a Green’s
function for a region C containing T. If T was infinite, Osgood had
an argument modelled on Poincaré’s use of the modular function.
Osgood remarked (p. 314) that his argument made it “probable” that
the uniformisation theorem extended to the singular points on the
boundary, but evidently he was still uncertain. He also indicated that
his theorem was still true when 7" and its boundary together were
mapped by stereographic projection to the entire Riemann sphere.

So Osgood established the existence of Green’s functions
on arbitrary domains, and thereby resolved the Riemann mapping
theorem on the interior of any simply connected domain. The next
year, 1901, Osgood finished his article for Klein’s Enzyklopddie der
Mathematischen Wissenschaften. There [1901, 56] he distinguished
between two types of simply connected domains. The first type had
boundaries that were (simple) Jordan curves (they may be called
Jordan domains); the second did not. He observed that if the boundary
was a curve with a continuously varying tangent then it was certain
that the conformal map on the interior extended to a continuous map
on the boundary. However, he had established the existence of a
Green’s function for all Jordan domains so he said it was probable
that there would still be an affirmative solution to the Riemann
mapping problem. For domains of the second type, as he remarked,
it did not make sense to ask about behaviour on the boundary.

That Osgood was fully aware of the problems posed by the
boundary of even a Jordan domain is shown by one of his most
remarkable discoveries, made in 1902. This is the existence of
simple closed Jordan curves of finite area. Jordan had discussed the
result that now carries his name (the Jordan curve theorem) in his
Traité d”analyse (1% ed. 1887, 2nd ed. 1893). Jordan had outlined a
proof, which began by passing from the curve to an arbitrarily close
polygonal approximation, but this was justly criticised by Schoenflies
on the grounds that Jordan had assumed the truth of the theorem for
polygonal curves (which is not obvious if the number of sides is not
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known to be finite) and had gone on to omit many details. As a
result, others offered proofs: Veblen, who gave the first, Schoenflies
himself, and most lucidly Brouwer in 1909 1°,

Osgood gave his instructive example of a simple closed Jordan
curve of finite area by means of successive approximations. To obtain
the first curve he took a diagonal AB of the unit square, S;, and
extended it outside the square to divide the complement of the square
into two regions (coloured blue and yellow for water and land) 1
The square S; was itself divided into three regions: canals of water,
dykes of land, and nine squares (numbered 1 to 9) of undecided
matter, coloured white. There were eight short segments where water
and land met, they were coloured red by Osood and formed part of
the Jordan curve he was constructing. The boundary of the water
from A to B was then traversed by a moving point in a uniform way
such that the eight red arcs were parameterised by values of ¢ such

h
that 2 — 1 o

T <t< n=12...,8.
The widths of the\canals and dykes was chosen so that their
total area was some value o < 1.

(0,0) (1,0)

Fig. 1

10 See D.M. Johnson [1979, 163-177].
1 The figures are taken from Sagan’s informative discussion, [1993].
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The construction was then repeated in each square of undecided
matter, so that the eight red arcs in square 1 were parameterised by
values of ¢ for which

2n—1 _%IL_

=1,2,...,8.
7 StS mE Ll

The whole of the water still forms a single connected region, as
does the land. The width of the new canals and dykes was chosen
as follows: Osgood let &; + & +... be a convergent sgries with value
X < 5. At the first stage the area of the canals was —21— =g;. In each

€
of the nine squares the area of the canals was -—93, so that the total

area of new canal was &;.

(0,0) . (1,0)

Fig. 2

This construction was then repeated indefinitely. The curve was
completed by adding all of its limit points, and observing that such
points always lie in the interior of white squares. It follows that they
can each be assigned unique parameter values. A little more work
then showed that the curve so obtained is continuous, and from its
construction the curve is a one-to-one map of the open unit interval.
The curve is therefore a Jordan curve. Its exterior area is 1 — 2J,
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being the difference between the area of the unit square and that of
the final collection of canals and dykes.

The curve so obtained enjoys a number of other unusual
properties. It is not rectifiable, for rectifiable Jordan curves had been
shown by Jordan himself to have zero area [Cours?, 107]. In any
neighbourhood of any point that is not an interior point of a red
segment, the curve has infinitely many points around which it wraps
infinitely often. It would be possible, Osgood observed, to adapt
the construction so that the red segments shrank to zero and the
resulting curve nowhere had a tangent. Modifying the construction
still further by letting the canals and dykes have breadths tending to
zero, and suitably changing the parameterisation, Peano’s space-filling
curve would be obtained. By starting with a region bounded by
the unit circle and whose boundary lies inside an annulus, the
above construction could be made to yield a closed Jordan curve
of positive exterior area, bounding completely a simply connected
region contained within the unit circle. The interior of the region so
bounded has different interior and exterior areas.

4. Poincaré and Koebe.

In 1907 Poincaré and Koebe independently proved the
uniformisation theorem by rigorous methods. Poincaré published his
proof in Acta Mathematica. There he began by reviewing his earlier
paper and the attempts by others to overcome or else avoid the
problems which it raised. Then he outlined his new approach. He
characterised the problem, as he had done earlier, as a Dirichlet
problem for a Riemann surface with infinitely many leaves. Then
he set out, first to make more precise and more supple the concept
of a Riemann surface, by enlarging Weierstrass’s notion of an
analytic element to include ramification points. Then he constructed a
Green’s function for his surface, using his méthode de balayage and
simplifying it using Harnack’s theorem. From the Green’s function he
then deduced the existence of a function that mapped the Riemann
surface conformally into the unit disc. He then compared the different
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functions that could be used to this end, and showed that they
are all linearly related. He could then show, following earlier work
of Osgood, that the conformal representation was indeed onto the
interior of the disc.

His definition of a Riemann surface, D, implied that it was
covered by a countable number of open discs, D,, each the domain
of a convergent power series. For such a surface he proceeded as
follows. He defined a function that was positive at all but one point,
O, of the first disc, Dy, where it was logarithmically infinite, and
which was zero on the boundary of Dy. He extended this function
to the rest of D by defining it to be zero outside Dy, so it is
continuous away from O, but its derivatives are not continuous on
the boundary of Dy. He then defined a function wu, inductively,
using his méthode de balayage. In this way he obtained at stage n+ 1
a function that was generally positive on the domain consisting of all
the discs contiguous with the discs encountered at stage n. The points
of discontinuity in the derivatives are the boundary points of the
domain of definition of u,4;. The function was harmonic everywhere
it was positive except at O. To apply Harnack’s theorem it was
therefore enough to ensure that there was a point, P, of the domain
D at which the sequence of function values u,(P) did not increase
indefinitely. The sought-for convergence was ensured by introducing
a suitable majorising function, which Poincaré found amongst the
classes of Fuchsian functions he had studied at the start of his career.
It followed that the sequence (u,) tended to a Green’s function on D.

From the Green’s function, which is harmonic inside D except
at the point O, Poincaré could obtain by repeated use of Harnack’s
theorem the function called v in his memoir of 1883, and thence the
function z = e~®*®) that mapped the domain D into the unit disc. He
also showed that if instead of the arbitrarily chosen point O he had
begun with another, O’ say, and had been led to a function 2/, say,
then the functions z and 2z’ would be connected by a linear relation

of the form ‘
, a2z —pe'®

o pz— e
where o = ¢e* is the value of z at the point O, and o' is the value
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of the function 2’ at the point O.

It remained to make sure what the memoir of 1883 had left
obscure: the function z mapped the domain D onto the interior of
the unit disc. Poincaré gave two proofs of this result, one following
Osgood’s and one of his own; they will not be discussed here. The
memoir then proceeded to analyse the cases when a given simply
connected region is to be represented conformally not on a circle
but on the whole plane, and showed how these cases could be
distinguished.

Poincaré’s paper came out at the same time that Koebe began
his work. Koebe was a student of Schwarz’s in Berlin, and wrote his
doctoral dissertation in 1905. He then embarked on a lengthy series
of papers which quite deliberately and successfully brought him to
the attention of the leading German mathematicians. He published at
length in the Gdttingen Nachrichten, making sure his papers were
presented by Hilbert and Klein, in the Journal fiir Mathematik, in
Mathematische Annalen, and the Comptes Rendus. In these papers
he solved the problem of uniformising algebraic and analytic curves,
the Riemann mapping theorem and its generalisation to non-simply
connected domains, and then turned to rescue the old continuity
method of Klein and Poincaré !2. He responded rapidly to the work
of anyone else who strayed into the area: Poincaré, the Finnish
mathematician Johansson, Hilbert, and others. Doubtless as a result of
all this activity he was invited to speak to the International Congress
of Mathematicians in Rome on the subject, quite an honour for a
young man.

In the second of these papers, [1907b] he observed that
Poincaré’s original method had the defect that “certain points of
the domain must be excluded which cannot necessarily be excluded
in the nature of the problem”. He then outlined his own approach
to the uniformisation theorem for analytic curves. The main result
he established is that the interior of any Riemann surface over a
simply connected domain in the plane may be mapped one-to-one
and conformally onto one of three regions on the sphere: the entire

12' For an account of the implications for the theory of manifolds, see Scholz [1980].
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sphere, the sphere minus a point, or a disc. So his proof of the
uhiformisation theorem includes the Riemann mapping theorem as a
special case. The paper concludes with a very interesting comment.
After noting the work of Runge on the representation of a function
by a series of rational functions, Koebe wrote

The idea of an analytic domain (analytisches Gebilde)
with an independent variable is connected by Weierstrass
with the representation of infinitely many uniformly
convergent series with rational terms. Each series represents
only one part of the domain, and among the series there is
always at least one defined on the neighbourhood of any
given point of the interior. The fundamental problem is to
find a selection of these uniformly convergent series of
rational functions which represents the whole domain. Here
it is shown that this can always be done. In this way a
problem which one might say belongs to the Weierstrassian
mode of analysis is solved by principles which belong to
the Riemannian circle of ideas. (1907b, 210)

Koebe also took note of some other entrants in what he plainly
saw as a competition to establish the uniformisation theorem. One
was T. Brodén, who had published a book on the subject in 1905.
It is doubtful if Koebe had seen this book. Another, more serious,
contender, was the Finnish mathematician Severin Johansson, who
had published a version of his doctoral thesis [1905] and then
reworked parts of it for two papers in the Mathematische Annalen
[1906a, b]. Koebe observed that the chain of reasoning in the [1906b]
was flawed.

In his [1907c] Koebe compared his approach with that of
Poincaré. He noted that he avoided the use of modular functions
entirely, unlike Poincaré, Johansson, and Osgood, which he felt had
led to a notable simplification of the argument. Like Poincaré, he
had relied on Schwarz’s methods, and he had made a modest use
of Harnack’s theorem, upon which Poincaré had relied heavily. The
comparison inspired Koebe to give a new proof of his theorems the
next year, completely avoiding Harnack’s theorem. Johansson for his



72 JEREMY GRAY

part observed that he had been unaware of Brodén’s work until Klein
had shown him a copy, when he found it unoriginal. It contained
little, he remarked, other than a proof along the lines of Poincaré’s
[1883] together with a proof that the map thus obtained is indeed
onto the unit disc, which he (Johansson) had proved in his thesis.

Koebe’s energy drove him to give several proofs of his results.
When Hilbert revived Dirichlet’s principle by establishing a rigorous,
and somewhat different, minimising principle, Koebe responded with
an explanation of how these ideas lay close to his own. When others
gave simpler proofs using techniques drawn only from complex
function theory, Koebe showed that he too could operate in that
way. Knowing that Fricke was at work on improving the original
approach to the uniformisation theorem due to Poincaré and Klein (the
continuity method) Koebe showed how that too could be rigorised,
thus entering Brouwer’s territory and seemingly extending Brouwer’s
proof of the invariance of dimension. It would therefore be difficult
to summarise his work, and it seems better to be selective.

No-one disputed the rigour of Koebe’s methods. His division of
the uniformisation theorem into two parts was also accepted. The first
part is topological and asserts the existence of a simply connected
covering surface for any Riemann surface. The second part is analytic
and asserts that the map from this covering surface to exactly one
of three surfaces (the sphere, plane, or disc) is analytic. Indeed, his
proofs of the uniformisation theorem were usually taken as definitive;
Fricke acknowledged “with the greatest thanks” not only Koebe’s
papers but “the many hours of conversations on a whole series of
points” that had helped him write his [1912]. The chief response of
several authors despite, or perhaps because of Koebe’s work, was
the desire to give short direct proofs of what seemed buried under
the torrent of his papers, many of them very long. In particular, it
seemed worthwhile to rescue the Riemann mapping theorem, as we
shall see below. '

. As a sample of Koebe’s methods, one could do worse than

select Koebe’s distortion theorem (Verzerrungssatz) proved by him
in his [1909] and again in his [1910]. There he stated it this way:
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If f(z) is a one-to-one analytic function of z on |z| < 1, and 2z; and
zp are two points in |z| < ¢ < 1, then there is a real constant Q > 0
independent of f such that

1| fie
Q < f'(z2)

Koebe proved it by a series of lemmas concerning functions f(z) of

z on |z| < 1 which are of the form fi(z) = 1 + f(z), where f(z) is an
analytic function of z on |z| < 1. The first azsserted that the maximum
modulus M, of fi; on the circle |z| = p is less than some quantity
that depends on p but not the function f. From this it followed that
if the function f(z) was one-to-one and 0 < ¢ < 1, then there were
two real constants g; and g, independent of the function f(z) such
that |z| = ¢ implies g; < |f(2)| < g2. The distortion theorem itself
followed (not completely directly) from this lemma and the Cauchy
integral theorem applied to the derived function f'(z). A special case
of the distortion theorem would be when z; =0 and f'(0) = 1, when
it asserts the existence, for all such functions f, of a real non-zero

constant ) such that L < |f'(2)| < Q. Just as the Schwarz lemma

gives information about the function f(z), Koebe’s distortion theorem
is informative about the derivative of a large class of functions.

< Q.

A more artificial example would be Koebe’s proof that the
simply connected cover of a Riemann surface (with a Fuchsian group
of covering transformations) can mapped conformally and one-to-one
onto the unit disc and that the map so obtained extends to the
boundaries. His proof was based on an exhaustive argument using
Green’s functions. Each partial domain was mapped by a function of

1 . _— .
the form u, =log — + c,+ a regular function vanishing at the origin.
The difference un+1 — u, is everywhere analytic , and from the fact
that the boundary values are non-negative it follows that

Cn < Cp+l.

To obtain an upper bound for the sequence of ¢,’s Koebe employed
a majorising argument. He then set lim, ¢, = c. Knowing that this
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sequence was bounded he could then deduce the uniform convergence
of the sequence of functions u, to a function u. After this, the
theorem (a special case of the Riemann mapping theorem) followed
in the by-then standard way. The point of this manoeuvre was spelled
out in a footnote (p. 208): it enabled one to avoid Harnack’s theorem
“which I had used in earlier work . . . . but which seemed to me
with the benefit of a certain hindsight to be an essential completion
if not, perhaps a conceptual simplification.” This is true, but later
workers were to object more radically to the continued presence
of potential-theoretic ideas in a fundamental theorem of complex
function theory.

As for people’s response to Koebe’s work, Osgood’s response
to the the proof of the uniformisation theorem may stand for many
among that generation. Osgood (like Fubini [1908]) adopted Koebe’s
new argument about Green’s functions. He summarised Koebe’s
papers (“a task”, he drily noted, “of some labor”), in second edition
of his Funktionentheorie, vol 1, and in a paper [1913]. To prove
the algebraic case, Osgood explained, Koebe began by taking the
Riemann surface F corresponding to the algebraic function, cutting
it up to obtain a simply connected region Fi, and the successively
joining copies of F; along the cuts in the usual way to obtain a
sequence of surfaces ®,, among which ®; = F;. Each domain ®,
can be mapped onto a plane region by a one-to-one, continuous, and

conformal map F,(z) onto the extended t-plane from which some’

slits have been removed corresponding to the boundary curves of @,.
An arbitrary point of ®; may be mapped to ¢t = co in the extended
t-plane. The existence of such a map was shown by standard Green’s
function arguments.

The extension of this process to the region @ which is the limit
of the regions ®, is naturally much more delicate and profound. The
functions

fa(2) = 220 f,(0)=0

1
Fro(2)

also map the interiors of the domains F, in a one-to-one, continuous,
and generally conformal way onto the finite part of the t-plane.
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Moreover,

0 =0, f,0=1

Koebe showed that it was possible for each n to find a sequence of
functions f, (z) which converged uniformly on ®,. Osgood simply
regarded this as a consequence of Montel’s theorem (Montel, [1907]).
Koebe gave a whole series of names, but not references, going back
via Arzeld and Montel to Ascoli (with the date this time, 1883)
while still indicating some originality for himself. The indices n; are
independent of n, and the limiting function

f) = Jim 2

is uniquely defined at each point of ® and maps ® onto a single-leaved
region of the t-plane with a discrete boundary. The proof hinged on
the distortion theorem, which Osgood stated in this form: a function
which maps a circle |z| < p one-to-one onto a region of the extended
plane not containing oo in its interior and which satisfies f(0) =0 and
f'(0) = 1, remains finite in the circle |z| < _Ic%’ where k is a constant
independent of the choice of function f. The constant was later called
Koebe’s constant (the name is due to Osgood, Funktionentheorie?,

1 .
727), and shown to be greater than or equal to 71 by Bieberbach
[1916]). More precisely,

P p
Izl g —k—z—) lmphes ’f(z)l S I’

and

2| < 2%2’ implies |f'(2)| < 4k.

The distortion theorem enabled Osgood, following Koebe, to prove
that the functions fy, () remain finite.

Such a summary is entirely fair to Koebe, and indicative of the
importance attached to his work. It is also true, as others pointed out,
that Koebe’s distortion theorem is of independent interest. A further
proof of it was given by Study and Blaschke, following Osgood and
using the Cauchy integral theorem, in their [1912]. We shall see below
that the theorem was particularly appreciated by Bieberbach. But it
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is indicative of the stir occasioned by Koebe’s work that a special
meeting of the Deutsche Mathematiker Vereinigung was held (in
Karlsruhe, 27 September 1911) to discuss recent work on automorphic
functions, and a report published the next year in the Jahresbericht,
21, 153-166. Brouwer spoke on his proof of the invariance of
dimension under a one-to-one, continuous map, with reference to the
Fuchsian case. Koebe replied that he had been able to extend this
to other cases, and gave a Schottky-type example, where, he said,
Poincaré’s methods could not work. He then gave his own report on
the uniformisation theorem for both analytic and algebraic curves.
Bieberbach reported briefly on single-valued automorphic functions,
and Hilb on many-valued ones. Klein summed up, expressing the
view that “one must learn to calculate with single-valued automorphic
functions as easily as one can calculate with elliptic functions”, and
referred in the spirit to his old paper on Primformen [1889].

5. Hilbert and Courant.

There can be little doubt that an important stimulus was
Hilbert’s - mention of the uniformisation problem among the 23
problems he singled out on the occasion of the International Congress
of mathematicians in Paris in 1900 and his own related work in
the years immediately following. In the course of his address on
mathematical problems at the Paris ICM, 1900, Hilbert held out the
hope that his approach to Dirichlet’s principle could be extended
to more general boundary value problems, such as those where a
condition on the derivative is specified, or where it is not a potential
function that is involved, but, say, the minimal surface equation. He
also reminded his audience of another problem intimately connected
to the Riemann mapping theorem: the uniformisation problem. His
comments formed part of the tenth and last of his commentaries in
the oral address, and the 22" of the 23 in the written paper. The
problem may well have been this prominent because Hilbert was
then actively at work on the problem himself.

In his [1904] Hilbert first restored Dirichlet’s principle, at least
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for boundaries that had smoothly varying tangents and curvature and
where the function given on the boundary is itself differentiable. In
his [1905] Hilbert gave the details of the proof for any region that
could be approximated by a net of rectangles. As he said, the main
advantage of the proof was that it used only the minimum property,
thus rescuing not the conclusions so much as the original transparency
of the proof. This was, as he pointed out, further evidence for the
point raised in the 19'h of his Paris problems that certain problems
in the calculus of variations seemed to have solutions which were
much more differentiable (even to the point of being analytic) then
was to be expected.

In his [1909] Hilbert took the occasion of Poincaré’s visit
to Gottingen in April (where he gave a series of six lectures) to
apply his new methods directly to the Riemann mapping theorem
for any domain. The domain could have finitely or infinitely many
leaves, finite or infinitely many branch points, and arbitrary boundary
curves and boundary points. He modified the approach of Harnack
and Osgood by looking at functions which were infinite at a single

interior point of a given domain like P and he modified the
T

Dirichlet integral slightly (in a way not to be described here). He
then showed that among all functions defined on a domain that are
continuously differentiable except at one interior point, where they
are infinite in the specified way, there is one minimising the value of
the (Hilbert)-Dirichlet integral. This function is harmonic except at
the origin and can then taken as the real part of a complex function
mapping the domain conformally onto a canonical domain in the
(z,y) plane. Which domain depends, in a way Hilbert described, on
the original domain.

Hilbert published his lecture in the Géttingen Nachrichten on 17
July 1909. Koebe, who had heard the lectures, could not let such an
opportunity of his own slip by. The very next paper in the Gottingen
Nachrichten after Hilbert’s is one by Koebe, dated 31 July, [1909b],
in which he showed how to pass directly from Hilbert’s construction
to one that yields a Green’s function (one with a logarithmic infinity).

Although they lie askew to the subject of this paper, mention
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should briefly be made of Hilbert’s student Courant, who published
two papers closely related to his mentor’s work. The first [1912]
was based on his inaugural dissertation at Gottingen in 1910 and
showed how to achieve the conformal representation of certain
multiply connected regions on disc-like domains and how to solve
the uniformisation theorem for algebraic functions by automorphic
functions of Schottky type. The second [1913] simplified Hilbert’s
proof of the Hilbert-Dirichlet principle by showing that it was enough
to use rectangles because the sought-for minimising function is also
a minimum among all piecewise twice differentiable functions.

6. Carathéodory, Bieberbach, and others.

Courant was not the only doctoral student at Gottingen to take
up the Riemann mapping theorem around 1910. So did Bieberbach
and Carathéodory. It was also discussed in Study and Blaschke’s
book [1912]. All sought to give proofs of the Riemann mapping
theorem entirely within the spirit of complex function theory. They
did not dispute that the results had been proved, by Koebe and others.
But while Carathéodory discretely noted that the role played by
Harnack’s theorem could be played by Schwarz’s lemma [1912, 109],
Bieberbach more forcefully commented [1915, 95] that he would not
discuss Hilbert’s work, “Nor shall we describe the potential-theoretic
methods that Riemann’s successors developed as a substitute for
Dirichlet’s principle. We shall rather deal entirely with purely function
theoretic methods.”

Carathéodory was a former student of Klein’s who was
encouraged by Klein and Hilbert to work on questions in complex
function theory. The result was his series of several papers on
the Riemann mapping theorem. In his paper of 1912 Carathéodory
divided the Riemann mapping problem into two parts: the interior
problem; and the existence of a continuous extension of that map
to the boundaries. In the first of the papers of 1913, Carathéodory
gave two reasons why the Riemann mapping theorem had once again
become worth studying: there had been an important realisation that
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the sensible way to specify the sought-for conformal map so that
(were it to exist) it would be unique, was to specify the both value
it took at an internal point and also the sign of the derivative there.
Riemann had spoken about points on the boundary, but it is exactly
the behaviour of the map on the boundary that is hard to understand.
This realisation led various mathematicians to contemplate a process
of pushing out the conformal map from the interior to the boundary
(as we saw with Osgood and Poincaré, and as was still more the case
with Koebe’s and Bieberbach’s approach). Caratheodory’s second
reason was the advent of Lebesgue’s theory of integration, and in
particular consequences drawn from it by Fatou in a paper of 1906.
As we shall see, Koebe disputed the significance of this point.

In the first of his papers, Carathéodory solved the interior
problem, i.e. the Riemann mapping problem for an arbitrary simply
connected domain having at least two boundary points. His is the
first truly function theoretic proof. He eliminated Osgood’s use of
Harnack’s theorem by an appeal to Schwarz’s lemma, which he was
the first to call by this name, and which he located in Schwarz’s
Gesammelte Abhandlungen, vol 2, p. 109. He stated it this way: if
f(z) is an analytic function, regular on |z| < 1, for which f(0) =0,
and |f(2)| < 1 then |f(2)| < |z| for all |z| < 1 unless f(z) = ez, in
which case |f(z)| = |z|. He gave this result the simplest proof he said
he knew: the function f(z)/z is regular and analytic on |z| < 1, so it
takes its maximum value on {z| < p < 1 on the boundary, so

|f(2)/z| < 1/p

whence
|f)] < lz2]/p
whence, in particular
[f(2)] < 2|

and equality can only hold when f(z) = e*>.

Carathéodory based his solution on the resolution of the
following question: Let (G,) be a sequence of infinitely many
domains in the u-plane that all contain u = 0 as an interior point, and



80 JEREMY GRAY

all lie in the disc |u| < M, and let f,(z) be a sequence of analytic
functions that represent the domains G, conformally on the interior
of the unit disc in such a way that the points v =0 and z = 0 always
correspond and f'(0) is always real and positive. What necessary and
sufficient conditions must the domains G, satisfy for the functions
fa(2) to converge with increasing n to a limit function and what then
will be the properties of this function? He was proud of the fact
that his solution relied entirely on purely function-theoretic methods,
rather than those of potential theory.

Carathéodory began by following Poincaré in reducing the proof
of the claim that the interior problem has a unique solution satisfying
the constraints on f(0) and f'(0) to a simple application of Schwarz’s
lemma. He then turned to the above question about G, and f,. Using
Montel’s theorem, Carathéodory showed that the limit function was
everywhere a conformal and one-to-one map of some domain G onto
the interior of the unit disc.

What could be said about I'? Carathéodory showed that any
closed domain H lying inside T" and containing the point u =0
necessarily lay inside all G, for some suitably large n. Moreover,
if T,, was another domain such that any closed set it contained
also necessarily lay inside all G, for some suitably large n, then
I} lay inside T, so I" was the largest domain with this property.
Carathéodory called it the kernel [Kern] of the sequence of domains
(G,) and observed that its definition was entirely set-theoretical
(we should say topological). Plainly, the limit function f(z) of the
previous paragraph provides a conformal representation of the interior
of the unit disc onto the kernel K. This concludes his solution of
the Riemann mapping problem by purely function-theoretic means.
Carathéodory then extended the theorem to cover domains given as
branched coverings, to domains bounded, for example, by simple
closed Jordan curves, and to domains with much worse boundaries,
such as one described by Brouwer 3.

In the first paper of 1913 he proved the conjecture of Osgood’s,

13 In which one originally disc-shaped domain is wrapped infinitely many times
around a fixed disc.

ON THE HISTORY OF THE RIEMANN MAPPING THEOREM 81

that the conformal map extends to a homeomorphism of the
boundaries if and only if the boundary is a simple Jordan curve. In
Caratheodory’s opinion, when Osgood made his conjecture a proof
might have seemed unattainable. That a proof could now be given,
he went on, was due to the far-reaching discovery of the Lebesgue
integral and the theorems that Lebesgue had been able to prove with
its help.'* Carathéodory began proving two lemmas. The first relied
on this theorem of Fatou’s: given a single-valued analytic function
defined and bounded on the interior of the unit disc, there is an
everywhere dense set of points p on the boundary of the disc with
the property that as z tends to p along a radius, f(z) converges to a
definite value.’> Carathéodory deduced the corollary that if f is not
constant then it takes at least three values on any boundary arc. He
assumed first of all that the function is not constant. On the circle of
radius p the function

6

pe
F(p,6) = / Foe®)d = / PACNR
0 ¥4

()
f(2)

1z
theorem, this quantity is also bounded by M, say, for |z|] < 1.
Conscquently,

is well-defined because is analytic. Moreover, by Schwarz’s

@) |F(p+Ap,0) — F(p,8)] <2MAp,
and
@) |F'(pf + A8) — F(p,0)| < |MAp|,

Consequently, lin% F(p, 6) = F(9) exists for every 6 and the convergence
p—

is uniform, so F(§) is continuous and (ii) implies that it even
satisfies a Lipschitz condition (it has a bounded differential quotient
everywhere).

14 Lebesgue [1902].
15 Fatou [1906].
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A Poisson integral argument then showed that at every point 6
at which F(9) was differentiable, as z = re'® tended to e along the
radius, f(z) tended to F'(0). It is a theorem of Lebesgue’s that a real
function with bounded differential quotient is differentiable almost
everywhere and (up to a constant) equals the indefinite integral of
its derivative. Evidently the function () is such a function, so the
function f(z) converges almost everywhere to a definite value on the
boundary, thus proving the first half of the theorem. To prove the
corollary, Carathéodory assumed that along the arc 6, < 6 < 6, the
function f(z) took only two values, o and 3. Then the function

if(2) -«
B~
takes the values O and 7 only. A Poisson integral argument then
showed that the real part of g(z) is analytic along the arc §; < 6 < 6,
and so, by the Schwarz reflection principle, the functions g(z) and
f(z) are analytic, which contradicts the assumption on the number of
values of f(z).

g(2) =

Caratheodory’s second lemma was that if the boundary of the
domain contains a free arc, then a conformal map of this domain
onto a disc necessarily maps this arc continuously onto a piece of
the unit circle and leaves the end-points distinct. (A free arc is one
for which a sufficiently small circle around any point of the arc is
divided by the arc into two sectors one of which lies wholly in the
domain). He derived this result from the Schwarz reflection principle.

Carath€odory then considered regions bounded by a simple
closed Jordan curve. He referred to Brouwer for the proof that such
a curve divides the plane into two parts, of which one (called the
interior) is finite.!® He thought of the finite part as lying in the
plane of the complex variable u, let O be an arbitrary point of the
interior, and let f be the unique conformal map of the interior onto
the interior of the unit disc, sending the point O to the point z =0
and having a real positive derivative there. He then showed (by a
Fatou-type argument) that the conformal map associates to each point

16 Brouwer [1909].
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A of the Jordan curve a point A; on the boundary of the unit disc
with the property that to any sequence (u,) of points tending to A
the corresponding sequence of points (z,) tends to A;. It follows that
the map of the boundaries is continuous. Next Carathéodory showed
that the map on the boundaries is one-to-one. This followed from
his observation about free arcs. Thus he established that a conformal
map between a type one domain and the disc extends to an invertible
continuous map of the boundaries. (Such a map is necessarily a
homeomorphism).

In his third paper [1913b] he discussed what can happen when
the boundary is not such a curve. This paper is often taken to
inaugurate the theory of prime ends, although, as we have seen, the
origins of such a theory are to be found in the work of Osgood and,
as Carathéodory was happy to acknowledge, related ideas were to
be found in the book by Study and Blaschke. Carathéodory began
by following Harnack in defining carefully what a simply connected
domain is (one in which every two points can be joined by a finite
polygonal arc lying entirely in the domain and such that every closed
polygon lying in the domain encloses only points of the domain).
Again like Harnack he restricted his attention to bounded domains. A
boundary cut (Querschnitt) in the domain was a Jordan arc joining
any two boundary points; an incision (Einschnitf) a Jordan arc from
a boundary point and otherwise lying in the domain. A careful
discussion of connectedness followed. Then Carathéodory defined a
chain of boundary cuts g, as cuts with no points in common such
that ¢, separates ¢,_; from g,;. The domain bounded by ¢, that
contains g¢,,; he called g,. This chain of domains g, defined an end,
a concept that he defined axiomatically (following the suggestion, he
said, of E. Schmidt). Informally, the end E, defined by a chain of
domains g, is the intersection of every domain H that contains the
interior of some g,. A sequence of points was said to converge to an
end when only finitely many points of the sequence lie outside the
domains g, that define the end.

It followed that an end F, is a subset of an end E; if every
series of points converging to the end E, also converges to the
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end E;."” Ends were said to lie outside one another when there
was no sequence of points converging to both of them. So ends
that lie outside one another have no common subset. On the other
hand a sequence of ends E, with the property that each E,,; is
a subset of E, has a non-trivial intersection. So an end consists
either of isolated points or else is a perfect, connected set. Finally,
Carathéodory defined a prime end to be an end which has no end as
a subset. He showed that every end defined by a chain of boundary
cuts converging to a point is a prime end, that two distinct prime
ends lie outside one another, and that two ends which do not lie
outside one another either have a common point in the interior of the
domain or have at least one prime end in common. It follows that
prime ends cannot contain interior points of the domain.

Thus prepared for every topological subtlety, Carathéodory
proceeded to give the first thorough investigation of the boundaries
of two conformally equivalent domains, one of which, for simplicity,
is the unit circle. He showed that any sequence of subdomains
converging to a prime end is mapped to a sequence of discs
converging to a point on the unit circle, and that the converse is
also true. So the map of the interiors provided by the Riemann
mapping theorem extends to a one-to-one map of prime ends on
the boundaries. This was the final resolution of a problem originally
raised by Riemann. In its mixture of ideas drawn from topology and
complex function theory it is in many ways closer to the spirit of
the original than had been many of the intervening papers.

Such success rapidly drew a response from others in the area.
Koebe wrote a short, three-page, note [1913] disputing the need for
Lebesgue’s theory. Instead he showed how to generalise a theorem
of Schwarz to the same effect. This theorem is the result that an
analytic function defined on some domain and constant on an arc in
the interior of the domain is necessarily constant. The generalisation
was to an arc on the boundary of the domain, and asserted that

17 Carathéodory used the word divisor (Teiler) for subset, perhaps becauseTeil means
part, perhaps because it means divisor, and in Riemann surface theory divisors are
subsets.
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if f is an analytic function and such that f tended to a constant
as z tended to an arc in the boundary then f was a constant.
A similar result was claimed independently by Osgood and Taylor
in their [1913]. In Koebe’s view, the matter was very simple and
the introduction of Lebesgue’s ideas appeared to be a significant
complication. Carathéodory himself published a short note [1913]
showing that a special case of Fatou’s theorem could be proved
without Lebesgue’s theory, but he generally remained of the opinion
that progress required it.

Bieberbach in Berlin wrote a short paper [1913] to show
how Carathéodory’s reliance on Schwarz’s lemma was in his view
excessive, and how the theory could be simplified and extended by
using only Montel’s theorem. The next year he wrote a paper [1914]
simplifying Carathéodory’s work by invoking another maximum
principle. This principle picked out among all (suitably normalised)
regular mappings of a given simply connected domain the one that
minimised the area of the image and asserted that this minimising
function was also the one that mapped the domain conformally onto
a disc. He argued that the minimising function could be shown to
exist by invoking the solution to the Riemann mapping theorem, and
said that an independent proof of this fact would be worth having.
But, granting its truth for the moment, the principle could be used to
simplify Carathéodory’s work, as he proceeded to show. Reversing
his criticisms of only a year before, he now showed how the theory
could be freed of any reliance on Montel’s theorem. One claim that
he made for this work was that it showed one way in which the
ideas of Ritz could be made of practical use.

Koebe found once again that he could not resist the opportunity
provided by Carathéodory’s papers to go back to some old ideas of his
own and extend them [1912]. He was led in this way to offer what he
called his ‘squeezing method’ (Schmiegungsverfahren) for solving the
Riemann mapping theorem by nothing more than the repeated taking
of square roots. This was to prove his most acceptable presentation,
being in some sense entirely elementary. Carathéodory incorporated
these criticisms into his paper for the Schwarz Festschrift [1914],
which was to remain his final account until the newer methods of
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Perron were introduced.

The heart of Bieberbach’s monograph on the subject of conformal
mappings was also closely based on Koebe’s Schmiegungsverfahren,
which he described this way. The domain G to be mapped conformally
onto the unit disc D may be assumed to have at least two boundary
points. It can therefore be mapped onto a 2-leaved Riemann surface
with these two points as branch points, which can in turn be mapped
onto a schlicht plane in such a way that a piece of the plane does
not lie in the image. By a further map if need be it can therefore
be assumed that the initial domain @ lies inside the unit disc and
has the origin, z =0 as an interior point. The method then proceeds
iteratively, squeezing out the image until it covers the interior of D.

Let the point z = o be one of the boundary points of G nearest

to the origin. Consider a piece of a 2-leaved Riemann surface R;
- that has z = ¢ as its sole branch point, that is spread out over D and
whose boundary covers the unit circle twice. The domain G will be
thought of as lying entirely in one leaf of this surface. The quadratic

map
= /éw A—w
A 1— Aw

maps the domain G onto a new domain G; that also lies in D. By
the Schwarz lemma applied to the inverse function, every boundary
point of G lies further out than the corresponding boundary point of
G.

This process, continued indefinitely, maps the domain G into
(the interior of) the unit disc. To show that the boundary points of
G are mapped onto the unit circle, Bieberbach observed that the
sequence of radii a, such that |z| < a, is the largest disc lying
entirely in G, is certainly increasing. Indeed, it followed from his use
of the Schwarz lemma that =1 > 1. On the other hand, because

Gy lies in D,a, < 1. So lim ana; 1, and the limiting map is onto D.

That limiting map of G onto D is the pointwise limit of the
maps f, : G, — D, followed from a more delicate convergence
argument using Bieberbach’s observation about areas. The map is not
a constant because the limit of the sequence ¢'(0) was shown to be
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non-zero. Another delicate argument showed that the functions f,(z)
and therefore f(z) are one-to-one and analytic; indeed, they are not
far from being constant functions.

The last thing to check is that the map of G to D is onto, or
equivalently that the inverse map from D to G is onto. Bieberbach
remarked that it would be possible to show this by repeated
application of the Schwarz lemma, but that it seemed preferable to
use Koebe’s distortion theorem. That theorem establishes upper and
lower bounds on the quotient of the derivative of a map at two
points. Since integrating a derivative yields arc length, Bieberbach,
by fixing one point as 0 and letting the other vary, could interpret the
distortion theorem as giving upper and lower bounds on the ratio of
the lengths of an arc and its image. So if the inverse map from D to
G is not onto then some path can be found that shrinks indefinitely
as n increases while its image is bounded. This contradicts the
consequence of the distortion theorem, and so the Riemann mapping
theorem is proved.

Further evidence of the nature of Koebe’s impact and the
intense discussions that were evidently going on around this time is
provided by the book Study wrote on the subject with Blaschke in
1912. They circulated the manuscript to Carathéodory, Schmidt, and
Koebe, who approved it, and it contains ideas that these authors were
often themselves only in the process of putting into print. Study and
Blaschke fixed their attention on domains (defined very carefully to
be point sets such that every point of the set lay in a disc lying
entirely in the domain) which had only finitely many branch points,
all of finite order. Their approach was essentially Koebe’s, and so
potential-theoretic but avoiding Harnack’s theorem. But where they
were most innovative was in the profusion of boundary curves they
indicated any theory would have to account for. Here they mentioned
von Koch curves, nowhere differentiable Jordan curves, various types
of spirals, and, for example, a rectangle from which the left-hand
edge has been removed together with two disjoint sets of vertical
lines as follows.
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Fig. 3

One set hangs downwards, and is attached at a discrete set
of points accumulating at the left-hand end. The segments grow in
length from right to left. The other set is similar but is attached
on the bottom edge and points upwards. The result is that the
“missing” left hand edge is in the closure of the set of all these
incisions. Thus motivated, they discussed Carathéodory’s theory of
ends. Finally, towards the end of the book they returned to what
they could have discussed earlier and gave what they described as
essentially Osgood’s proof of Koebe’s distortion theorem.

Independent of these German authors, Osgood returned to the
scene in a paper he wrote with E.H. Taylor [1913]. For the interior
Riemann mapping theorem they relied on the theory of logarithmic
potential functions and claimed to offer little novel except in the
rigour of their proofs, to which, they said, they had been led by
intuition, “an harmonic function being thought of as the temperature
in a flow of heat or the potential in a flow of electricity”. The chief
result concerned the nature of the mapping at accessible points on the
boundary. They called a point “accessible” if it could be approached
by a curve lying entirely in the domain. They showed that if A was
an accessible point of the boundary that was approached by a curve
C lying in a domain S and this domain was mapped conformally and
one-to-one onto a domain §’, then the image of the curve C is a curve
with the image of the point A as its unique boundary point, and that
if a point P travels along the curve C to the point A, then the image
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of P travels along the image of C to the image of A. It follows that
distinct accessible points are mapped to distinct accessible points and
that if the boundaries are simple Jordan curves then the conformal
map of the domains extends to a continuous one-to-one map of the
boundaries. However, even if there are inaccessible boundary points,
the map of the boundary may be one-to-one on the accessible points,
as Osgood had noted before [Funktionentheorie?, 154].

4. Conclusion.

While the study of the Riemann mapping theorem and the
uniformisation theorem did not end here, and simpler proofs were to
be given by Perron and Heims (see Ahlfors [1973]), the coincidence
of the complete resolution of the problems using only the techniques
of complex function theory and the outbreak of the First World War
make the 1910s a natural terminus. The importance of all this work
for the development of complex function theory is two-fold. On the
one hand, it led to the first rigorous proofs of two of the subject’s
most important theorems. As it unfolds one can see the gradual
acceptance of Riemann surfaces as the natural domain of definition of
a complex function, rather than (parts of) the plane. This represents
a victory, one might say, for Riemann’s stand-point over that of
Weierstrass’s. Furthermore, it enabled mathematicians to explore the
relative merits of methods drawn from potential theory and from
pure function theory. In this way they came to a deeper appreciation
of some of the early lemmas of Schwarz. On the other hand this
work was also a proving ground for potential theory in its own right.
Most importantly, the work was a focus for refining ideas in the
topology of sets of points. That the boundary of a domain (a simply
connected open set) could be as strange as Osgood and Carathéodory
had discovered was a powerful stimulus to precision in these matters.
It would be reasonable to claim that in proving the Riemann mapping
theorem and the uniformisation theorem mathematicians came to unite
geometric function theory with topology, to the mutual advantage of
both subjects.
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