
Learning
MATLAB

Learning
MATLAB

Tobin A. Driscoll
University of Delaware
Newark, Delaware

Society for Industrial and Applied Mathematics

Copyright ©2009 by the Society for Industrial and Applied Mathematics (SIAM)

10 9 8 7 6 5 4 3 2 1

All rights reserved. Printed in the United States of America. No part of this book
may be reproduced, stored, or transmitted in any manner without the written
permission of the publisher. For information, write to the Society for Industrial
and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA
19104-2688 USA.

Cover photo by John Pelesko and Tobin Driscoll. Photo taken in the Modeling,
Experiment, and Computation Lab at the University of Delaware
(www.math.udel.edu/MECLAB).

Trademarked names may be used in this book without the inclusion of a trademark
symbol. These names are used in an editorial context only; no infringement of
trademark is intended.

Maple is a registered trademark of Waterloo Maple, Inc.

Mathematica is a registered trademark of Wolfram Research, Inc.

MATLAB and the Optimization Toolbox are registered trademarks of The
MathWorks, Inc. For MATLAB product information, please contact The MathWorks,
Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000,
Fax: 508-647-7001, info@mathworks.com, www.mathworks.com.

Windows is a registered trademark of Microsoft Corporation in the United States
and/or other countries.

Word is a trademark of Microsoft Corporation in the United States and/or other
countries.

Library of Congress Cataloging-in-Publication Data

Driscoll, Tobin A. (Tobin Allen), 1969-
Learning MATLAB / Tobin A. Driscoll.

p. cm.
Includes index.
ISBN 978-0-898716-83-2
1. Mathematics--Data processing. 2. MATLAB. I. Title.
QA76.95.D75 2009
620.001'51--dc22 2009008516

is a registered trademark.

To Jen, Luke, and Adam,

who are my greatest teachers.

�

“matlabbook”
2009/5/27
page vii

�

�

�

�

�

�

�

�

Contents

List of Figures ix

List of Tables xi

Preface xiii

1 Introduction 1
1.1 The fifty-cent tour . 2
1.2 Graphical versus command-line usage 3
1.3 Help . 3
1.4 Basic commands and syntax 4
1.5 Saving and loading work 6
1.6 Things about MATLAB that are very nice to know,

but which often do not come to the attention of beginners . . 7
Exercises . 8

2 Arrays and Matrices 11
2.1 Building arrays and matrices 12
2.2 Referencing elements . 14
2.3 Matrix operations . 18
2.4 Array operations . 20
2.5 Sparse matrices . 23
Exercises . 25

3 Scripts and Functions 27
3.1 Using scripts effectively . 28
3.2 Functions and workspaces 29
3.3 Conditionals: if and switch 31
3.4 Loops: for and while . 32
3.5 Debugging and profiling . 33
Exercises . 34

4 More on Functions 37
4.1 Function handles and anonymous functions 37
4.2 Subfunctions and nested functions 39

vii

“matlabbook”
2009/5/27
page viii

�

�

�

�

�

�

�

�

viii Contents

4.3 Errors and warnings . 41
4.4 Input and output arguments, revisited 41
Exercises . 42

5 Graphics 45
5.1 Data plots versus function plots 45

5.1.1 ez plots . 46
5.1.2 Two-dimensional data plots 48
5.1.3 Three-dimensional data plots 49

5.2 Annotation . 50
5.3 Handles and properties . 51
5.4 Color . 52
5.5 Saving and exporting figures 53
5.6 Other common graphics techniques 55
Exercises . 56

6 Advanced Techniques 59
6.1 Memory preallocation . 59
6.2 Vectorization . 60
6.3 Masking . 63
6.4 Scoping exceptions . 64
6.5 Strings . 65
6.6 Cell arrays . 67
6.7 Structures . 70
Exercises . 72

7 Scientific Computing 75
7.1 Linear algebra . 75
7.2 Iterative linear algebra . 78
7.3 Rootfinding . 79
7.4 Optimization . 80
7.5 Data fitting and interpolation 81
7.6 Integration . 84
7.7 Initial-value problems . 85
7.8 Boundary-value problems 86
7.9 Time-dependent partial differential equations 88
Exercises . 90

Afterword 93

Index 95

“matlabbook”
2009/5/27
page ix

�

�

�

�

�

�

�

�

List of Figures

1.1 Initial MATLAB desktop window. (Microsoft® Windows® XP
version shown.) . 2

3.1 Debugging tools in the MATLAB Editor. 33

5.1 A partial graphics object hierarchy. Except for the group/series
case, each name is a graphics object type as well as a low-level
command name. 46

5.2 Result of an ezplot command. 47
5.3 Semilog plot of U.S. census data, and an extrapolation. 49

7.1 Example of a least-squares fit to data. 82
7.2 One-dimensional interpolation. 83
7.3 Solution of the Allen–Cahn equation by bvp4c. 88
7.4 Method of lines result for a PDE in one dimension. 89

ix

“matlabbook”
2009/5/27
page x

�

�

�

�

�

�

�

�

“matlabbook”
2009/5/27
page xi

�

�

�

�

�

�

�

�

List of Tables

2.1 Matrix/array information commands. 12
2.2 Commands for building arrays and matrices. 14
2.3 Relational operators. 17
2.4 Functions from linear algebra. 20
2.5 Dimension-reducing functions. 23

5.1 2D plotting commands. 49
5.2 3D plotting commands. 50
5.3 Common colors in RGB and as string abbreviations. 52
5.4 Shading models for surfaces. 53

6.1 CPU times, in milliseconds per factorization, for n×n Gaussian
eliminations using three different levels of vectorization. 62

xi

“matlabbook”
2009/5/27
page xii

�

�

�

�

�

�

�

�

“matlabbook”
2009/5/27
page xiii

�

�

�

�

�

�

�

�

Preface

The purpose of this book is to introduce the essentials of the MATLAB®

software environment and to show how to start using it well.
MATLAB began life as a friendly interface to numerical libraries for linear

algebra. Every variable in MATLAB was a matrix, which made it easy to learn
how to solve certain core problems and interact with the results. Over time, as
interest in MATLAB shifted from pedagogy to larger and more complex appli-
cations, the limitations and annoyances of programming with only a text-based
interface to matrices became apparent. In accordance, MATLAB added higher
dimensionality, many more data types, graphical and object-oriented interfaces,
and loads of additional technical and helper functions.

The result has been spectacularly, perhaps uniquely, successful both com-
mercially and in terms of educational influence. Few successes are unqualified,
however, and one price of the success of MATLAB has been the loss of its initial
simplicity and unity of concept. Upon starting MATLAB version 4 in 1992, one
got a simple prompt demanding that the user start defining variables and running
functions on them. Upon starting MATLAB 7 in 2008, one gets four tabbed win-
dows, six main menus, and a dozen or so clickable buttons. The prompt is still
there, but it is now just one familiar face in a crowd.

This observation is not meant as a Luddite screed against the perils of
progress! Yet complexity has made the job of getting to know MATLAB more
difficult—or so it would seem, given the cornucopia of books now available that
have as their primary purpose the aim of teaching it.

Why do I add another book to this pile? Mainly because of the thickness,
or rather the slenderness, of the volume you now hold. I offer you a guide on a
human scale, rather than the scale of MATLAB. One of the jobs of this book is to
get out of the way in a timely manner. You won’t find a lot of application areas in
this guide; nor will you find mathematical properties or descriptions of numerical
algorithms. You will find, in places, some practical but editorial advice based on
my 16 years of MATLAB programming experience.

You wouldn’t expect to learn how to play piano without sitting at a keyboard.
The same is true for learning MATLAB! You are well advised to enter the examples
yourself, read online help about a newly introduced function, and, above all, try the
exercises. Because I do assume that you are an active reader, I list some commands
simply by name and with a brief description, with the idea that you will look up
the details online if interested.

xiii

“matlabbook”
2009/5/27
page xiv

�

�

�

�

�

�

�

�

xiv Preface

The first four chapters cover the most essential material. Chapter 5 is a bare-
bones introduction to the big subject of graphics, which is also fairly indispensable.
Chapter 6 covers some advanced topics, and Chapter 7 introduces commands useful
in scientific computation. The version of MATLAB referred to in this book is 7.7
(Release 2008b). Virtually everything presented will work in older versions, but
the probability of finding exceptions increases as the version number decreases,
particularly if it gets below 7.

No prior knowledge of MATLAB should be necessary to read this book,
though a working knowledge of programming is a big help. Mathematically, you
should have a fair understanding of calculus and the mechanics of matrix algebra.
If some of the linear algebra terminology is unfamiliar to you, it can probably be
safely skipped until you have seen the relevant mathematics elsewhere.

This book could not have come to be without a lot of help. In particular I must
thank Nick Trefethen, who made many instructive comments, and an anonymous
reviewer, who did likewise. Thanks go especially to the Mathematical Sciences
Department at the University of Delaware, for giving graduate students the oppor-
tunity to take a summer workshop on MATLAB, and me the opportunity to teach it
since 2001. (The workshop was initially partially supported by a Group Infrastruc-
ture Grant from the National Science Foundation.) The Delaware students, who
persevered through early drafts and suffered as test subjects for difficult exercises,
deserve credit as well. Finally, I give thanks to my wife Jen, who never once
showed anything less than enthusiasm and support for a book about MATLAB.

Toby Driscoll

“matlabbook”
2009/5/27
page 1

�

�

�

�

�

�

�

�

Chapter 1

Introduction

The MATLAB software package is used for computation in engineering, science,
and applied mathematics. It offers a powerful programming language, excellent
graphics, and a large standard library.

The focus in MATLAB is on computation, not mathematics: symbolic ex-
pressions and manipulations are not possible, except through the optional Symbolic
Toolbox, which is not covered in this book. All variables must have values, and
all results are numerical and potentially inexact, thanks to the rounding errors in-
herent in computer arithmetic. The emphasis on numerics is typical for most work
in scientific computation.

Compared to other numerically oriented languages, such as C++ and Fortran,
MATLAB is usually found to be much easier to use. However, its execution speed
can be slower. This gap is not always as dramatic as popular lore has it, and it can
often be narrowed or closed with good MATLAB programming. Moreover, one
can link other types of code into MATLAB, or vice versa, and MATLAB has some
optional support for parallel computing. Still, MATLAB is usually not the tool of
choice for high-performance computing.

Whatever you think of these or other limitations of MATLAB, they have
not held back its popularity: a recent search for “matlab” on the books section of
Amazon.com turned up 8,543 results! Rapid code development and interaction
with data often trump execution speed, and the integrated graphics and expert
routines that come with MATLAB can be decisively helpful. Even for speed-
hungry users, MATLAB can be a valuable environment in which to explore and
fine-tune algorithms before creating production code in another environment.

Successful computing languages and environments reflect a distinctive set
of values. In MATLAB, those values include an emphasis on experimentation
and interaction with data and algorithms; syntax that is compact, friendly, and
interactive (rather than tightly constrained and verbose); a kitchen-sink mentality
for providing functionality; and a predilection for vectors, matrices, and arrays.

1

“matlabbook”
2009/5/27
page 2

�

�

�

�

�

�

�

�

2 Chapter 1. Introduction

Figure 1.1. Initial MATLAB desktop window. (Microsoft® Windows® XP
version shown.)

1.1 The fifty-cent tour
When you start MATLAB, you get a multipaneled desktop, as seen in Figure 1.1.
The layout and behavior of the desktop and its components are highly customizable.
The component that is the heart of MATLAB is called the Command Window,
located in the middle by default. Here you can give MATLAB commands typed at
the prompt, shown as>>. Unlike Fortran and other compiled computer languages,
MATLAB is an interpreted environment—you give a command, and MATLAB
tries to execute it right away, then awaits another.

At the left you can see the Current Directory window. In general MATLAB
is aware only of files in the current directory (folder) and on the list known as its
path, which can be customized. Commands for working with the directory and
path include cd, what, which, addpath, and editpath (or you can choose
Set path . . . from the File menu). You can add files to a directory on the path and
thereby add commands to MATLAB; we will return to this subject in Chapter 3.

At the top right is the Workspace window. The Workspace shows you what
variable names are currently defined and some information about their contents.
At start-up it is, naturally, empty. This represents another break from compiled
environments: variables created in the workspace persist for you to examine and
modify, even after code execution stops.

Below the Workspace window is the Command History window. As you
enter commands, they are recorded here. This record persists across different
MATLAB sessions, and commands or blocks of commands can be copied from here

“matlabbook”
2009/5/27
page 3

�

�

�

�

�

�

�

�

1.3. Help 3

or saved to files. Thus the Command History is very useful if you realize belatedly
that you need to save some or all of what you have been doing interactively.

As you explore MATLAB, you may encounter some toolboxes. These are
individually packaged sets of capabilities that provide in-depth expertise on par-
ticular subject areas. There is no need to issue a command to load them—once
installed, they appear on the path and are available automatically.

1.2 Graphical versus command-line usage
Originally, MATLAB was entirely a command-line environment, and it retains a
bias in that direction.1 But it is possible to access a great deal of the functionality
from graphical widgets such as menus, buttons, and so on. These interfaces are
especially useful to beginners, because they lay out the available choices clearly. In
particular, take time to right-click (or Control-click on a Mac®) on various objects
to see what you might be able to do with them.

As a rule, graphical interfaces can be more natural for certain types of inter-
active work, such as annotating a single graph, whereas typed commands remain
better for complex, precise, repeated, or reproducible tasks. Much of the time, you
can choose whichever mode of operation suits you. For instance, you can write
a function that customizes any figure’s appearance, but you can also save aspects
of a current figure’s style as a template just by pointing and clicking. Moreover,
you can create your own graphical interfaces and even distribute them with your
code as a package for non-MATLAB users. In the end, an advanced MATLAB
user should be able to exploit both modes of operation. That said, the focus of this
book is on typed commands. In many, perhaps most, cases these have graphical
interface equivalents, even if I don’t explicitly point them out.

1.3 Help
MATLAB is huge. Nobody can tell you everything that you personally will need
to know; nor could you remember it all anyway. It is essential that you become
familiar with the online help. There are two levels of help:

• If you need quick help on the syntax of a command, type help in the com-
mand window. For example, help plot shows directly in the Command
Window all the ways in which you can use the plot command. Typing
help by itself gives you a list of categories that themselves yield lists of
commands.

• Typing doc followed by a command name brings up more extensive help in
a separate window. For example, doc plot is better formatted and more
informative than help plot. In the left panel one sees a hierarchical,
browsable display of all the online documentation. Typing doc alone or

1You can still run MATLAB entirely in this mode by starting it with the -nojvm option, which
can be convenient when connecting to a remote server, for example.

“matlabbook”
2009/5/27
page 4

�

�

�

�

�

�

�

�

4 Chapter 1. Introduction

selecting Help from the drop-down menus brings up the window at a root
homepage.

Starting in MATLAB 7.7, the Command Window includes a function browser
whose icon is , sitting next to the prompt. Clicking on it yields a searchable,
hierarchical listing of available functions, with help available on one more click.
Merely pausing after typing the name of a function and its opening parenthesis
brings up a context-sensitive box with syntactic suggestions, as well.

The Getting Started with MATLAB manual is a good place to get a more
leisurely and thorough introduction than the one to follow here. Depending on
your installation, the documentation may be available in PDF form for printing
and offline reading, or you can find it on the Web at: www.mathworks.com/access/
helpdesk/help/pdf_doc/matlab/getstart.pdf

Complementary to the online help is MATLAB Central, found on the Web at
www.mathworks.com/matlabcentral. It includes a discussion forum and the File
Exchange, which consists of code contributions by MATLAB users and friends.
It’s a good place to check when you suspect that you may be trying to reinvent
the wheel.

1.4 Basic commands and syntax

If you type in a valid expression and press Enter, MATLAB will immediately
execute it and return the result, just like a calculator.

>> 2+2
ans =

4

>> (6.02e23)ˆ2
ans =

3.6240e+047

>> sin(pi/2)
ans =

1

>> 1/0

ans =
Inf

>> exp(i*pi)
ans =

-1.0000 + 0.0000i

“matlabbook”
2009/5/27
page 5

�

�

�

�

�

�

�

�

1.4. Basic commands and syntax 5

Notice some of the special expressions here: pi for π , Inf for ∞, and i for√−1. You may also use j for the imaginary unit. (Both names can be reassigned,
however, and are commonly used as integers. It’s safer always to use 1i or 1j to
refer to the imaginary unit.) Another special value is NaN, which stands for not a
number. NaN is used to express an undefined value. For example,

>> Inf/Inf
ans =

NaN

NaN can be tricky to use: two NaN values are unequal by definition, for instance.
You can assign values to variables with alphanumeric names:

>> x = sqrt(3)
x =

1.7321

>> days_since_birth = floor(now) - datenum(1969,05,06)
days_since_birth =

12810

>> 3*z
??? Undefined function or variable ’z’.

Observe that variables must have values before they can be used. When an expres-
sion returns a single result that is not assigned to a variable, this result is assigned
to ans, which can then be used like any other variable:

>> atan(x)
ans =

1.0472

>> pi/ans
ans =

3

In floating-point arithmetic, you should not expect “equal” values to have a
difference of exactly zero. The built-in number eps, often called unit roundoff
or machine precision in numerical analysis, bounds the maximum relative error
in representing real numbers and doing arithmetic on your particular machine.2

2Like all other names, eps can be reassigned, but doing so has no effect on the precision.

“matlabbook”
2009/5/27
page 6

�

�

�

�

�

�

�

�

6 Chapter 1. Introduction

>> eps
ans =

2.2204e-16

>> exp(log(10)) - 10
ans =

1.7764e-15

>> ans/10
ans =

1.7764e-16

Here are a few other demonstration statements.

>> % Anything after a % sign is a comment.
>> x = rand(100,100); % ; to suppress output
>> s = ’Hello world’; % single quotes enclose a string
>> t = 1 + 2 + 3 + ...
4 + 5 + 6 % ... continues a line

t =
21

Once variables have been defined, they exist in the workspace. You can see what’s
in the workspace from its desktop window, or by typing who or whos:

>> who

Your variables are:

ans s t x

1.5 Saving and loading work
If you enter save myfile, all defined variables will be saved to a file called
myfile.mat in the current directory. This file format is particular to MATLAB.
You can also select a subset of variables to be saved by typing their names after
the file name. If you later enter load myfile, the saved variables are returned
to the workspace, overwriting any presently defined values assigned to the same
names.

If you highlight commands in the Command History window, right-click,
and select Create M-File you can save the typed commands to a text file. This
can be very helpful for recreating what you have done. Another way to save both
input and output is to use the diary command with a file name. This causes all

“matlabbook”
2009/5/27
page 7

�

�

�

�

�

�

�

�

1.6. Things about MATLAB that are very nice to know 7

subsequent commands and results to be recorded in a text file on disk. A more
sophisticated version of the same idea is called publishing, which is discussed in
section 3.1 on page 28.

MATLAB is also capable of loading and saving other common file formats,
such as formatted text files, spreadsheet files, and common graphics and video
files. To load such a file, it’s often easiest to double-click it in the Current Directory
window, and follow the resulting prompts.

1.6 Things about MATLAB that are very nice to
know, but which often do not come to the
attention of beginners

Don’t worry if everything in this list doesn’t make sense yet—come back to it
again later.

(a) Use the up-arrow key to cycle through previous commands. If you type
specific characters first, only commands matching the typed characters will
be recalled.

(b) If a computation is taking too long, interrupt it by pressing Ctrl-C (after
making sure the Command Window is active in the operating system).

(c) Even when MATLAB displays only 4–5 digits of a result, it’s storing about
15 significant digits. (You can see them all by typing format long.) By
copying or retyping a displayed result, you throw away a lot of information.
Wait until the end of the calculation to round off results.

(d) MATLAB has great debugging tools. Run your code step by step to uncover
errors. Run someone else’s code step by step to understand it thoroughly.

(e) The M-Lint code checker makes some good suggestions.

(f) The previous two items alone are sufficient reasons to use the built-in
MATLAB Editor for writing code. Open it by entering edit.

(g) If the execution of your code is too slow to suit, use the Profiler to find the
slowest steps. Colleagues will be amazed at how you always home in on the
bottlenecks.

(h) If you want to share code or use it on a different machine, first use the
depfun command on it to find the files it depends on. Or, check out the
section of online help on “directory reports.”

(i) Don’t use a screen or window capture function to paste figures into a docu-
ment or presentation. The results look cheesy and amateurish. Instead, have
a look at section 5.5.

(j) After you have properly exported a figure to a graphics file, save that figure
again in the native FIG format. You may want to make changes to it someday.

“matlabbook”
2009/5/27
page 8

�

�

�

�

�

�

�

�

8 Chapter 1. Introduction

(k) Plot legends are helpful and can be generated automatically. Better still are
curves with labels right next to them—also very easy to create.

(l) Anonymous functions are really powerful. Trust me on this, and go learn
about them, beginning in section 4.1.

Exercises
1.1. Evaluate the following mathematical expressions in MATLAB:

(a) tanh(e) (b) log10(2) (c) log2(10)

(d)
∣∣∣sin−1(− 1

2

)∣∣∣ (e) 123456 mod 789 (f) Arg(1+ i
√

2)

1.2. MATLAB ships with some interesting data. For example, try the following:

load usapolygon, plot(uslon,uslat)

Use who or the Workspace browser to find out where the data comes from.

1.3. What is the name of the built-in function that MATLAB uses to

1. compute a Bessel function of the second kind?
2. test the primality of an integer?
3. multiply two polynomials together?
4. plot a vector field?
5. report the current date and time?

1.4. Find a function on the MATLAB Central File Exchange that enables you to
delete the most recently created graphics object from the command line.

1.5. MATLAB ships with some built-in capability for working with images
(especially if you have the Image Toolbox available). After all, an image
is usually represented as either one array or three arrays of pixel intensity
values. Use the commands

>> load durer
>> image(X)
>> colormap(map)

to see a reproduction of a mathematically themed work of art. Then use the
online documentation to find out more about the matrix that appears in this
artwork.

About the MATLAB Treasure Hunt on the next page: I load a briefcase with a
reward and secure it using a three-digit luggage lock. Teams or individuals work
to find the last answer in the hunt and try it as the combination of the lock. The
first team to open the lock keeps the bounty.

“matlabbook”
2009/5/27
page 9

�

�

�

�

�

�

�

�

Exercises 9

A MATLAB Treasure Hunt

Follow the directions. You may use only MATLAB and its local online help.

Find the largest prime factor of 20830123: α =

Find the complete elliptic integral of the first kind,
K(1−1/α2), rounded to three significant digits: β =

Find the remainder after the largest possible positive 32-bit
integer in MATLAB is divided by 100β: γ =

Find the maximum element in a γ ×γ symmetric Clement
matrix, rounded to the nearest integer: δ =

Find the number of minutes that elapsed between January
20, 1961 at 12:51 PM, and July 16, 1969 at 9:32AM. Divide
by 100δ, and round to the nearest integer: ε =

“matlabbook”
2009/5/27
page 10

�

�

�

�

�

�

�

�

“matlabbook”
2009/5/27
page 11

�

�

�

�

�

�

�

�

Chapter 2

Arrays and Matrices

The heart and soul of the MATLAB software is linear algebra. In fact, “MAT-
LAB” was originally a contraction of “matrix laboratory.” More so than any other
language, MATLAB encourages and expects you to make heavy use of arrays,
vectors, and matrices.

Some jargon: An array is a collection of numbers, called elements or en-
tries, referenced by one or more indices running over different index sets. In
MATLAB, the index sets are always sequential integers starting with 1. The di-
mension of the array is the number of indices needed to specify an element. The
size of an array is a list of the sizes of the index sets.

A matrix is a two-dimensional array with special rules for addition, multi-
plication, and other operations. It represents a mathematical linear transformation.
The two dimensions are called rows and columns. A vector is a matrix for which
one dimension has only the index 1: a row vector has only one row, and a column
vector has only one column.

Although an array is more general and less mathematical than a matrix, the
terms are often used interchangeably. What’s more, in MATLAB there is really
no formal distinction. The commands in this chapter are sorted according to the
array/matrix distinction, but MATLAB will let you mix them freely as long as
the syntax is defined. The idea—here, as elsewhere—is that MATLAB keeps the
language simple, natural, and succinct. It’s up to you to stay out of trouble.

11

“matlabbook”
2009/5/27
page 12

�

�

�

�

�

�

�

�

12 Chapter 2. Arrays and Matrices

2.1 Building arrays and matrices

The most straightforward way to construct a small array is by enclosing its elements
in square brackets. Use spaces or commas to separate columns, and use semicolons
or new lines to separate rows:

>> A = [1 2 3; 4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 9

>> b = [0;1;0]
b =

0
1
0

Information about size and dimension is stored with the array:3

>> size(A)
ans =

3 3

>> size(b)
ans =

3 1

>> nd = [ndims(A), ndims(b)]
nd =

2 2

Notice that there is really no such thing as a one-dimensional array in MATLAB.
Vectors are technically two-dimensional, with a trivial dimension. The distinction
between row and column vectors is often, but not always, important. Table 2.1
lists more commands for obtaining information about an array.

Table 2.1. Matrix/array information commands.

size size in each dimension
length size of longest dimension (especially for vectors)
ndims number of dimensions
find indices of nonzero elements

3Because of this, array sizes are not usually passed explicitly to functions as they are in Fortran.

‘‘matlabbook’
2009/5/27
page 13

�

�

�

�

�

�

�

�

2.1. Building arrays and matrices 13

Arrays can be built out of other arrays, as long as the sizes are compatible:

>> [A b]
ans =

1 2 3 0
4 5 6 1
7 8 9 0

>> [A;b]
??? Error using ==> vertcat
All rows in the bracketed expression must have the
same number of columns.

>> B = [[1 2;3 4] [5;6]]
B =

1 2 5
3 4 6

One important special array is the empty matrix, which is entered as [].
Direct bracket constructions are suitable only for small matrices. For larger

ones, there are many useful functions, some of which are shown in Table 2.2. For
example:

>> [eye(3) diag([1 2 3])]
ans =

1 0 0 1 0 0
0 1 0 0 2 0
0 0 1 0 0 3

>> [zeros(2,3) ones(2,4)]
ans =

0 0 0 1 1 1 1
0 0 0 1 1 1 1

These and similar functions are sufficient to create most useful arrays, removing the
need for a doubly nested loop in row and column indices. An especially important
array constructor is the colon operator:

>> i1 = 1:8
i1 =

1 2 3 4 5 6 7 8

>> i2 = 0:2:10
i2 =

0 2 4 6 8 10

“matlabbook”
2009/5/27
page 14

�

�

�

�

�

�

�

�

14 Chapter 2. Arrays and Matrices

>> i3 = 1:-.5:-1
i3 =

1.0000 0.5000 0 -0.5000 -1.0000

The format is first:step:last. The result is always a row vector, or the
empty matrix if last is less than first.

Table 2.2. Commands for building arrays and matrices.

: linearly spaced vector
eye identity matrix
zeros all zeros
ones all ones
diag diagonal matrix (or, extract a diagonal)
toeplitz constant on each diagonal
triu upper triangle
tril lower triangle
rand, randn random entries
linspace linearly spaced vector
cat concatenate along a given dimension
repmat duplicate a vector across a dimension

2.2 Referencing elements
It is frequently necessary to access one or more of the elements of a matrix. Each
dimension is given a single index or vector of indices. The result is a block extracted
from the matrix. The colon is often a useful way to construct array indices. Here
are some examples, using the definitions above:

>> A(2,3) % single element
ans =

6

>> b(2) % one index for a vector
ans =

1

>> b([1 3]) % multiple elements
ans =

0
0

>> A(1:2,2:3) % a submatrix
ans =

2 3
5 6

‘‘matlabbook’
2009/5/27
page 15

�

�

�

�

�

�

�

�

2.2. Referencing elements 15

In many situations, one wants to specify indices relative to the beginning or end
of the array, or to include all possible indices. A few examples show how this is
done:

>> B(1,2:end) % first row, all but first column
ans =

2 5

>> A(1:end-1,end) % all but last row, last column
ans =

3
6

>> B(:,3) % all rows of column 3
ans =

5
6

>> b(:,[1 1 1 1]) % multiple copies of a column
ans =

0 0 0 0
1 1 1 1
0 0 0 0

A colon by itself as an index is understood to mean “all entries in this dimension.”
Observe from the last example above that an indexing result need not be a subset
of the original array.

It’s quite natural to access elements of a vector using a single subscript.
However, any array is trivially equivalent to a vector, because it is stored linearly
in memory, varying over the first dimension, then the second, and so on. (Think of
the columns of an array being stacked on top of each other.) Hence a single subscript
can be used for any array, automatically “flattening” it. See the documentation on
sub2ind and ind2sub for more details.

>> A
A =

1 2 3
4 5 6
7 8 9

>> A([1 2 3 4])
ans =

1 4 7 2

“matlabbook”
2009/5/27
page 16

�

�

�

�

�

�

�

�

16 Chapter 2. Arrays and Matrices

>> A(:)
ans =

1
4
7
2
5
8
3
6
9

The output of access by a single index is in the same shape as the index. The idiom
A(:), however, is always a column vector.

Subscript referencing can be used on either side of assignments. An array
is resized automatically if you delete elements or make assignments outside the
current size as shown below. (Any new undefined elements are set to zero.)

>> C = rand(2,5)
C =

0.2610 0.6103 0.0642 0.2259 0.0736
0.8007 0.8741 0.1214 0.6702 0.0380

>> C(1,:) = ones(1,5)
C =

1.0000 1.0000 1.0000 1.0000 1.0000
0.8007 0.8741 0.1214 0.6702 0.0380

>> C(:,4) = -1 % expand scalar into the submatrix
C =

1.0000 1.0000 1.0000 -1.0000 1.0000
0.8007 0.8741 0.1214 -1.0000 0.0380

>> C(:,2) = [] % delete elements
C =

1.0000 1.0000 -1.0000 1.0000
0.8007 0.1214 -1.0000 0.0380

>> C(3,3) = 3 % grow the array and fill with zeros
C =

1.0000 1.0000 -1.0000 1.0000
0.8007 0.1214 -1.0000 0.0380

0 0 3.0000 0

Automatic resizing and scalar expansions can be highly convenient, but they can
also cause hard-to-find mistakes and even subtle performance penalties (see sec-
tion 6.1).

“matlabbook”
2009/5/27
page 17

�

�

�

�

�

�

�

�

2.2. Referencing elements 17

Table 2.3. Relational operators.

== equal to ˜= not equal to
< less than > greater than
<= less than or equal to >= greater than or equal to

Adifferent kind of array indexing is logical indexing. Logical indices usually
arise from a relational operator (see Table 2.3). The result of applying a relational
operator is a logical array, whose elements are 0 and 1 with interpretation as “false”
and “true.” Using a logical array as an index selects those values where the index is
1. A logical index can be used to select in just one dimension, or (more commonly)
used as a single index in the flat-indexing model.

>> B = floor(5*rand(2,4))
B =

0 1 2 1
3 2 0 4

>> B>2
ans =

0 0 0 0
1 0 0 1

>> B(ans)
ans =

3
4

>> B(B==0) = NaN
B =

NaN 1 2 1
3 2 NaN 4

A less direct way of accomplishing the same thing is to use find, which returns
the flat-index locations of nonzeros in any array, including a logical one:

>> find(B>2)
ans =

2
8

>> B(ans)
ans =

3
4

‘‘matlabbook’
2009/5/27
page 18

�

�

�

�

�

�

�

�

18 Chapter 2. Arrays and Matrices

The disadvantage of find in this context is that you cannot easily refer to the
complementary set of elements, whereas the ˜ operator does complementation for
logical arrays.

You can also create logical indices by hand, but you must explicitly cast them
as such. Note carefully the difference between these two cases:

>> b = [1 2 3];
>> b([1 1 1]) % first element, three copies
ans =

1 1 1

>> b(logical([1 1 1])) % every element
ans =

1 2 3

2.3 Matrix operations

The arithmetic operators +,-, *, ˆ are interpreted in a matrix sense:

>> A = [1 2 3; 4 5 6; 7 8 9];
>> D = [0 0 1; 0 0 1; 0 0 1];
>> A - 3*D
ans =

1 2 0
4 5 3
7 8 6

>> Asq = Aˆ2
Asq =

30 36 42
66 81 96
102 126 150

>> b = [0; 1; -1];
>> B = [1 -1 1; 1 1 1];
>> Ab = A*b
Ab =

-1
-1
-1

>> AB = A*B
??? Error using ==> mtimes
Inner matrix dimensions must agree.

“matlabbook”
2009/5/27
page 19

�

�

�

�

�

�

�

�

2.3. Matrix operations 19

>> BA = B*A
BA =

4 5 6
12 15 18

The apostrophe or single-quote mark ’ produces the complex-conjugate
transpose (i.e., the Hermitian or adjoint) of a matrix:

>> zero = A*B’-(B*A’)’
zero =

0 0
0 0
0 0

>> inner = b’*b
inner =

2

>> outer = b*b’
outer =

0 0 0
0 1 -1
0 -1 1

A special operator, the backslash \, is used to solve linear systems of equa-
tions:

>> A = magic(3);
>> x = A\b
x =

-0.2083
-0.0833
0.2917

>> b-A*x
ans =

1.0e-015 *

0
0.2220
0.2220

(The last result gives 10−15 as a factor scaling the entire vector shown.) Math-
ematically, when A is invertible and B is any matrix of compatible size, A\B is
equivalent (given exact arithmetic) to A−1B. Similarly, B/A is equal to BA−1 if
defined.

‘‘matlabbook’
2009/5/27
page 20

�

�

�

�

�

�

�

�

20 Chapter 2. Arrays and Matrices

Table 2.4. Functions from linear algebra.

\ solve linear system (or least squares)
rank rank
det determinant
norm norm (2-norm, by default)
expm matrix exponential
lu LU factorization (Gaussian elimination)
qr QR factorization
chol Cholesky factorization
eig eigenvalue decomposition
svd singular value decomposition

Several key functions related to linear algebra are listed in Table 2.4. There
are many others. See section 7.1 for tips on using some of these functions.

2.4 Array operations
Array operations act identically on each element of an array. For arrays of identical
size, the operations + and - are the same as for matrices. When the operands have
different sizes, the operation typically returns an error, with one major exception:
a scalar is silently “expanded” to match the size of a matching array operand:

>> b+2
ans =

2
3
1

>> A-3
ans =

-2 -1 0
1 2 3
4 5 6

Thus, the latter case is not interpreted in the mathematical matrix sense of A−3I

for the identity matrix I .
The operators *,’,ˆ, and / have matrix interpretations. To get elementwise

behavior appropriate for an array, precede the operator with a dot:

>> A = [1 2 3; 4 5 6; 7 8 9];
>> C = [1 3 -1; 2 4 0; 6 0 1];
>> A.*C % array multiplication
ans =

1 6 -3
8 20 0
42 0 9

“matlabbook”
2009/5/27
page 21

�

�

�

�

�

�

�

�

2.4. Array operations 21

>> A*C % matrix multiplication
ans =

23 11 2
50 32 2
77 53 2

>> A./A
ans =

1 1 1
1 1 1
1 1 1

>> 1./A
ans =

1.0000 0.5000 0.3333
0.2500 0.2000 0.1667
0.1429 0.1250 0.1111

>> (C+1i)’
ans =

1.0000 - 1.0000i 2.0000 - 1.0000i 6.0000 - 1.0000i
3.0000 - 1.0000i 4.0000 - 1.0000i 0 - 1.0000i
-1.0000 - 1.0000i 0 - 1.0000i 1.0000 - 1.0000i

>> (C+1i).’
ans =

1.0000 + 1.0000i 2.0000 + 1.0000i 6.0000 + 1.0000i
3.0000 + 1.0000i 4.0000 + 1.0000i 0 + 1.0000i
-1.0000 + 1.0000i 0 + 1.0000i 1.0000 + 1.0000i

In addition, most elementary functions, such as sin, exp, etc., act elementwise:

>> cos(pi*C)
ans =

-1 -1 -1
1 1 1
1 1 -1

>> exp(C)
ans =

2.7183 20.0855 0.3679
7.3891 54.5982 1.0000

403.4288 1.0000 2.7183

Note that in this last case the matrix exponential function eC = I +C +C2/2!+
C3/3!+ · · · , defined for square matrices, is a completely different animal! For it,
use expm, not exp.

“matlabbook”
2009/5/27
page 22

�

�

�

�

�

�

�

�

22 Chapter 2. Arrays and Matrices

Elementwise operators are often useful in functional expressions. Consider
evaluating a Taylor polynomial approximation to sin(t):

>> t = (0:0.25:1)*pi/2
t =

0 0.3927 0.7854 1.1781 1.5708

>> t - t.ˆ3/6 + t.ˆ5/120
ans =

0 0.3827 0.7071 0.9245 1.0045

This is easier and clearer than writing a loop for the calculation. (See section 6.2.)
However, because polynomials are so common, they have special status and com-
mands of their own. A polynomial is represented by a vector of its coefficients in
decreasing degree order, and it is best evaluated using polyval:

>> polyval([1/120,0,-1/6,0,1,0], t)
ans =

0 0.3827 0.7071 0.9245 1.0045

The final zero in the coefficient vector is very important here, since leaving it out
would shift all of the coefficients down in degree by one. Leading zeros, on the
other hand, have no effect.

Occasionally it is useful to do logical elementwise operations on arrays.
The |, &, and ˜ operators perform logical elementwise OR, AND, and NOT,
respectively. Note, however, that a different form of OR andAND may be preferred
in some statements, as explained in section 3.3.

>> (t>0) & (t<1)
ans =

0 1 1 0 0

Another kind of array operation works in parallel along one dimension of
the array, returning a result that is one dimension smaller:

>> C = [1 3 -1; 2 4 0; 6 0 1];

>> sum(C,1)
ans =

9 7 0

>> sum(C,2)
ans =

3
6
7

Other functions that behave this way are shown in Table 2.5.

“matlabbook”
2009/5/27
page 23

�

�

�

�

�

�

�

�

2.5. Sparse matrices 23

Table 2.5. Dimension-reducing functions.

max sum mean any
min diff median all
sort prod std

2.5 Sparse matrices

It’s natural to think of a matrix as a rectangular table of numbers. However, many
real-world matrices are both extremely large and very sparse, meaning that most
entries are zero.4 In such cases it’s wasteful, or just impossible, to store every entry.
Instead, one should take advantage of sparsity by storing only the nonzero entries
and their locations. MATLAB has a sparse data type for this purpose. The
sparse and full commands convert back and forth between the two available
internal representations:

>> A = vander(1:3);
>> sparse(A)
ans =

(1,1) 1
(2,1) 4
(3,1) 9
(1,2) 1
(2,2) 2
(3,2) 3
(1,3) 1
(2,3) 1
(3,3) 1

>> full(ans)
ans =

1 1 1
4 2 1
9 3 1

Sparsifying a standard full matrix is usually not the right way to create a
sparse matrix—you should avoid creating very large full matrices, even temporar-
ily. One alternative is to give sparse the raw data required by the format. (This
is the functional inverse of the find command.)

4For instance, the link structure of the Web can be described by an adjacency matrix in which
aij is nonzero if page j links to page i. Obviously, any page links to a negligible fraction of all
Web pages!

“matlabbook”
2009/5/27
page 24

�

�

�

�

�

�

�

�

24 Chapter 2. Arrays and Matrices

>> sparse(1:4,8:-2:2,[2 3 5 7])
ans =

(4,2) 7
(3,4) 5
(2,6) 3
(1,8) 2

Alternatively, you can create an empty sparse matrix with space to hold a speci-
fied number of nonzeros, and then fill it in using standard subscript assignments.
Another useful sparse building command is spdiags, which builds along the
diagonals of the matrix:

>> M = ones(6,1)*[-20 Inf 10]
M =

-20 Inf 10
-20 Inf 10
-20 Inf 10
-20 Inf 10
-20 Inf 10
-20 Inf 10

>> full(spdiags(M,[-2 0 1],6,6))
ans =

Inf 10 0 0 0 0
0 Inf 10 0 0 0

-20 0 Inf 10 0 0
0 -20 0 Inf 10 0
0 0 -20 0 Inf 10
0 0 0 -20 0 Inf

The nnz command tells how many nonzeros are in a given sparse matrix.
Since it’s impractical to view directly all the entries (even just the nonzeros) of a
realistically sized sparse matrix, the spy command helps by producing a plot in
which the locations of nonzeros are shown. For instance, spy(bucky) shows
the pattern of bonds among the 60 carbon atoms in a buckyball.

MATLAB has a lot of built-in ability to work intelligently with sparse ma-
trices. The arithmetic operators +, -, *, and ˆ use sparse-aware algorithms and
produce sparse results when applied to sparse inputs. The backslash \ uses sparse-
appropriate matrix algorithms automatically as well. There are also functions for
the iterative solution of linear equations, eigenvalues, and singular values that
exploit sparsity well. See section 7.2.

“matlabbook”
2009/5/27
page 25

�

�

�

�

�

�

�

�

Exercises 25

Exercises
2.1. Let A be a random matrix generated by rand(8). Find the maximum

values (a) in each column, (b) in each row, and (c) overall. Also (d) usefind
to find the row and column indices of all elements that are larger than 0.25.

2.2. A magic square is an n×n matrix in which each integer 1, 2, …, n2 appears
once and for which all the row, column, and diagonal sums are identical.
MATLAB has a command magic that returns magic squares. Check its
output at a few sizes and use MATLAB to verify the summation property.
(The antidiagonal sum will be the trickiest. Look for help on how to “flip”
a matrix.)

2.3. Are the following true or false? Assume A is a generic n×n matrix.

(a) Aˆ(-1) equals 1/A

(b) A.ˆ(-1) equals 1./A

2.4. Suppose p is a row vector of polynomial coefficients. What does this
line do?

(length(p)-1:-1:0) .* p

2.5. (a) Look up diag in the online help and use it (more than once) to build
the 16×16 matrix

D =




−2 1 0 0 · · · 0 1
1 −2 1 0 · · · 0 0
0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 −2 1 0
0 0 · · · 0 1 −2 1
1 0 0 · · · 0 1 −2




.

(b) Now read about toeplitz and use it to build D.

(c) Use toeplitz and whatever else you need to build




1 2 3 · · · 8
0 1 2 · · · 7

. . .
. . .

...
0 0 · · · 1 2
0 0 · · · 0 1


 and




1 1
2

1
3 · · · 1

8
1
2 1 1

2 · · · 1
7

...
. . .

. . .
. . .

...

1
7

1
6

. . . 1 1
2

1
8

1
7 · · · 1

2 1




.

The second case looks best in format rat.

“matlabbook”
2009/5/27
page 26

�

�

�

�

�

�

�

�

26 Chapter 2. Arrays and Matrices

2.6. Suppose A is any matrix. What does this statement do?

A(1:size(A,1)+1:end)

2.7. (a) Suppose A is a matrix whose entries are all positive numbers. Write
one line that will multiply each column of A by a scalar so that, in the
resulting matrix, every column sums to 1.

(b) Try this more difficult variation: Suppose that A may have zero en-
tries, and leave a column of A that sums to zero unchanged.

2.8. Find a MATLAB one-line expression to create the n×n matrix A satisfying

aij =
{

1 if i − j is prime,
0 otherwise.

2.9. Suppose we represent a standard deck of playing cards by a vector v con-
taining one copy of each integer from 1 to 52. Show how to “shuffle” v by
rearranging its contents in random order. (Note: One very easy answer to
this problem can be found if you look hard enough.)

2.10. Let B=bucky, and make a series of spy plots of B2, B3, etc. to see the
phenomenon of fill-in: many operations, including multiplication, increase
the density of nonzeros. Can you see why the (i,j) entry of Bn is the num-
ber of paths of length n between nodes i and j? What fill-in do you see
with inv(B)?

“matlabbook”
2009/5/27
page 27

�

�

�

�

�

�

�

�

Chapter 3

Scripts and Functions

An M-file is a plain text file containing MATLAB commands and saved with the
filename extension .m. There are two types, scripts and functions. MATLAB
comes with a good editor that is tightly integrated into the environment; start it by
typing edit. However, you are free to use any text editor. An M-file should be
saved in the path in order to be executed. Recall that the path is a list of directories
(folders) in which MATLAB will look for files. Use editpath or menus to see
and change the path.

There is no need to compile either type of M-file. Simply type in the name
of the file (without the extension) in order to run it. Changes that are saved to disk
will be included in the next call to the function or script.

An important type of statement in any M-file is a comment, which is indicated
by a percent sign %. Any text on the same line after a percent sign is ignored, unless
% appears as part of a string. Furthermore, the first contiguous block of comments
in an M-file serves as documentation for the file and will be typed out in the
command window if help is used on the file. For instance, say the following is
saved as myscript.m on the path:

% This script solves the nasty homework problem
% assigned by Professor Driscoll.

x = rand(1); % He’ll never notice.

Then at the prompt one would could obtain

>> help myscript

This script solves the nasty homework problem
assigned by Professor Driscoll.

Normally, you will want to include syntax information as well as a short description
within the documentation of your own functions.

27

“matlabbook”
2009/5/27
page 28

�

�

�

�

�

�

�

�

28 Chapter 3. Scripts and Functions

3.1 Using scripts effectively
The contents of a script file are literally interpreted as though they were typed
at the prompt. In fact, you might prefer to use MATLAB exclusively by typing
all commands into scripts and running them. This technique makes it easier to
create and revise a sequence of more than a few lines, and it helps you document
and retrace your steps later. Note too that you can create a script from lines you
have already entered by highlighting them in the Command History window of the
desktop and right-clicking on them.

Another interesting use for scripts is to publish them as HTML files (Web
pages) or in other available formats. This is a nice way to create reports based
on MATLAB results, although support for mathematical expressions is currently
rather limited. When a script is published, blocks of commented lines appear as
regular text, and code and resulting output are set off in nice formats. To get the
best results, use double percent signs at the beginning of a line to create a cell
boundary. These boundaries cause output to be created before the next block of
comments, code, and output begins.

For example, the script

%%
% A Hilbert matrix has entries that are reciprocals of
% integers.
format rat
H = hilb(4)

%%
% Although the inverse of a Hilbert matrix is difficult
% to find numerically by Gaussian elimination, an explicit
% formula is known.
invhilb(4)

%%
format short e
H*ans

will publish to look something like this:

A Hilbert matrix has entries that are reciprocals of integers.

format rat
H = hilb(4)

H =

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

“matlabbook”
2009/5/27
page 29

�

�

�

�

�

�

�

�

3.2. Functions and workspaces 29

Although the inverse of a Hilbert matrix is difficult to find numerically by Gaussian
elimination, an explicit formula is known.

invhilb(4)

ans =

16 -120 240 -140
-120 1200 -2700 1680
240 -2700 6480 -4200

-140 1680 -4200 2800

format short e
H*ans

ans =

0 0 0 0
0 0 0 0
0 0 0 -5.6843e-014
0 0 0 0

In addition, cells allow you to create titled sections, complete with a hyperlinked
table of contents. The built-in Editor is the best way to publish scripts. It will help
you to create and work with cells and to clearly show cell boundaries and titles,
and it lets you publish and view results with minimal fuss.

As a rule of thumb, call scripts only from the command line, and do not call
other scripts from within a script. For automating individual tasks that fit within a
larger framework, functions are the better choice, as explained in the next section.

3.2 Functions and workspaces
Both functions and scripts gather MATLAB statements to perform complex tasks.
The most important distinguishing feature of a function is its local workspace.
Any variables created while the function executes are available only within that
invocation of the function, unless you go out of your way to bend the rules (see
section 6.4). Conversely, the variables available to the command line—those in the
base workspace—are normally not visible within the function. If other functions
are called during a function’s execution, each of those secondary calls also sets up a
private local workspace. These restrictions on data access are called scoping, and
they make it possible for you to write complex programs that use many components
without worrying about variable name clashes. You can always see variables in the
current workspace by typing whos, or in the Workspace window of the desktop. At
the command line, the base workspace is ordinarily in context, but during function
debugging you can inspect other local workspaces.

“matlabbook”
2009/5/27
page 30

�

�

�

�

�

�

�

�

30 Chapter 3. Scripts and Functions

Each function starts with a line such as

function [out1,out2] = myfun(in1,in2,in3)

The name myfun should match the name of the file on disk. The variables in1,
etc. are input arguments, and out1, etc. are output arguments. You can have
as many as you like of each type (including zero) and call them whatever you
want. Theoretically, the only communication between a function’s workspace and
that of its caller is through the input and output arguments, though there are some
exceptions (see section 6.4). The values of the input arguments to a function are
copies of the original data, so any changes you make to them will not change
anything outside of the function’s scope.5

Here is a function that implements the quadratic formula for finding the roots
of ax2 +bx + c:

function [x1,x2] = quadform(a,b,c)

d = sqrt(bˆ2 - 4*a*c);
x1 = (-b + d) / (2*a);
x2 = (-b - d) / (2*a);

(It must be pointed out that from a numerical standpoint, this is not a good algo-
rithm; see Exercise 3.1.) With this text saved as quadform.m in the MATLAB
path, you could then immediately enter

>> [r1,r2] = quadform(1,1,1)

r1 =
-0.5000 + 0.8660i

r2 =
-0.5000 - 0.8660i

The main use of a function is to compartmentalize a specific task. Any
complex problem is decomposed into a series of smaller steps, and the scoping
rules of functions allow you to deal with each step independently. They also let
you exploit well-crafted solutions to fundamental tasks that appear over and over
in different problems. Like a good theorem, a good function invites you to inspect
the details of its construction once and then forget about them.

5Actually, the MATLAB interpreter avoids copying a function argument—that is, it “passes by
reference” using a pointer—if the function never alters the value of that argument. Furthermore,
in MATLAB 7.6 and later versions, you can force passing by reference even for modified values;
see the help on handle for details.

“matlabbook”
2009/5/27
page 31

�

�

�

�

�

�

�

�

3.3. Conditionals: if and switch 31

Another important aspect of function M-files is that many of the functions that
come with MATLAB are themselves M-files that you can read and borrow from.
This is an excellent way to learn good programming practice—and dirty tricks.

3.3 Conditionals: if and switch

Often, a function needs to branch based on run-time conditions. MATLAB offers
features for this that are similar to those in most languages.

Here is an example illustrating most of the features of if.

if isinf(x) || ˜isreal(x)
disp(’Bad input!’)
y = NaN;

elseif (x == round(x)) && (x > 0)
y = prod(1:x-1);

else
y = gamma(x);

end

The conditions for if statements may involve the relational operators of Table 2.3
on page 17, or functions such as isinf that return logical values. Numerical
values can also be used, with nonzero meaning true, but “if x˜=0” is better
form than “if x” when x is numeric. Take some care when using arrays to
construct the condition of an if statement. When the condition is not a scalar, it is
taken as true only when all of the elements are true/nonzero. To avoid confusion,
it’s best to use any or all to reduce logical arrays to scalar values.

Compound scalar conditions should be created using the operators &&
(logical AND) and || (logical OR), rather than the array operators & and |. (The
NOT operator ˜ is the same in both cases.) The double-symbol operators can be
short-circuited: if, as a condition is evaluated from left to right, it becomes obvi-
ous before the end that truth or falsity is assured, then evaluation of the condition
is halted. This feature makes it convenient to write things like

if (length(x) > 2) && (x(3)==0), disp(’xy plane’), end

that otherwise could create errors or be awkward to write.
In some situations, the isequal command is more robust than the ==

relational operator. For instance, the syntax isequal(s,’foo’) returns false
if s is not identical to the string ’foo’, whereas s==’foo’ would throw an
error if s were not of size 1×3. Usually, the former behavior is more desirable.

The if/elseif construct is preferred when only a small number of alter-
natives are present. When a large number of options are needed, it’s customary to
use instead. For instance:

“matlabbook”
2009/5/27
page 32

�

�

�

�

�

�

�

�

32 Chapter 3. Scripts and Functions

switch units
case ’length’

disp(’meters’)
case ’volume’

disp(’liters’)
case ’time’

disp(’seconds’)
otherwise

disp(’I give up’)
end

The switch expression can be a string or a number. The first matching case has
its commands executed.6 If otherwise is present, it gives a default option if no
case matches.switch

3.4 Loops: for and while

Many algorithms require iteration, the repetitive execution of a block of state-
ments. Again, MATLAB is similar to other languages in this area. It’s worth
repeating here that because i and j are very tempting as loop indices, you are
advised to always use 1i or 1j as the imaginary unit

√−1.
As an illustration of a simple for loop, consider this code for computing

10 members of the famous Fibonacci sequence:

>> f = [1 1];
>> for n = 3:10

f(n) = f(n-1) + f(n-2);
end

You can have as many statements as you like in the body of a loop. In this example,
the value of the index n will change from 3 to 10, with an execution of the body
after each assignment. Remember that 3:10 is really just a row vector. In fact,
you can use any row vector in a for loop, not just one created by a colon. For
example,

>> x = 1:100; s = 0;
>> for j = find(isprime(x))

s = s + x(j);
end

This finds the sum of all primes less than 100. For a better version, though, see
page 64.

6Execution does not “fall through” as in C.

“matlabbook”
2009/5/27
page 33

�

�

�

�

�

�

�

�

3.5. Debugging and profiling 33

Figure 3.1. Debugging tools in the MATLAB Editor.

It is sometimes necessary to repeat statements based on satisfying a condition
rather than a fixed number of times. This is done with while:

while abs(x) > 1
x = x/2;

end

The condition is evaluated before the body is executed, so it is possible to get zero
iterations. It’s often a good idea to limit the number of repetitions to avoid infinite
loops (as could happen above if x is infinite). This can be done in a number of
ways, but the most common is to use break.

n = 0;
while abs(x) > 1

x = x/2;
n = n+1;
if n > 50, break, end

end

A break immediately jumps execution to the first statement after the loop. It’s
good practice to include some diagnostic output or other indication that an abnormal
loop exit is taking place.

3.5 Debugging and profiling
MATLAB provides a debugging mode that lets you pause execution anywhere
inside an M-file function. It’s a great way to fix faulty code or to understand how
a code works. A screenshot of the debugging tools is shown in Figure 3.1.

To enter debugging mode, you set breakpoints in one or more functions.
In the Editor, you click on the dash next to a line number to do this, or you can
use the Debug menu to create conditional breakpoints. When MATLAB stops at

“matlabbook”
2009/5/27
page 34

�

�

�

�

�

�

�

�

34 Chapter 3. Scripts and Functions

a breakpoint, you can inspect and modify all the variables currently in scope—in
fact, you can execute anything at all from the command line. You can then continue
function execution normally or step by step. See help debug for all the details.

Another common need is to make working code run faster. The most efficient
way to do so is to locate which parts are taking the most time to execute. These lines
are then obvious candidates for optimization. You can find such lines by profiling,
which keeps track of time spent on every line of every function. Profiling is also
one way to determine function dependencies (who calls whom). Get started by
typing profile viewer.

Exercises
3.1. Write a function quadform2 that implements the quadratic formula dif-

ferently from quadform above (page 30). First compute

x1 = −b− sign(b)
√

b2 −4ac

2a
,

which is the root of largest magnitude, and then use the identity x1x2 = c/a

to find x2. Apply both quadform and quadform2 to find the roots of
x2 − (107 +10−7)x +1. Do you see why quadform2 is better?

3.2. The degree-n Chebyshev polynomial is defined by

Tn(x) = cos
[
ncos−1(x)

]
, −1 ≤ x ≤ 1.

These satisfy T0(x) = 1, T1(x) = x, and the recursion relation

Tn+1(x) = 2xTn(x)−Tn−1(x), n ≥ 1.

Write a function chebeval(x,N) that evaluates all of the Chebyshev
polynomials of degree less than or equal to N at all of the points in column
vector x. The result should be an array of size length(x) by N+1.

3.3. One way to compute the exponential function ex is to truncate its Taylor
series expansion around x = 0,

ex = 1+x + 1

2!x
2 + 1

3!x
3 +·· · .

Unfortunately, many terms are required for accuracy if |x| is large. But
a special property of the exponential is that e2x = (ex)2. This leads to a
scaling and squaring method: Divide x by 2 repeatedly until |x| < 1/2, use
the Taylor series (16 terms should be more than enough), and square the
result repeatedly. Write a function expss(x) that performs these three
steps. (The functions cumprod and polyval can help with evaluating
the Taylor expansion.) Test your function on x values −30, −3, 3, 30.

“matlabbook”
2009/5/27
page 35

�

�

�

�

�

�

�

�

Exercises 35

3.4. Let x and y be column vectors describing the vertices of a polygon, given
in order. Write functions polyperim(x,y) and polyarea(x,y) that
compute the perimeter and area of the polygon. For the area, use a formula
based on Green’s theorem:

A = 1

2

∣∣∣∣∣
n∑

k=1

xkyk+1 −xk+1yk

∣∣∣∣∣ .

Here n is the number of polygon vertices, and by definition, xn+1 = x1 and
yn+1 = y1. Test your functions on a square and an equilateral triangle.

3.5. Suppose a data source produces a series of characters drawn from a set
of M distinct symbols. If symbol k is produced with probability pk , the
first-order entropy of the source is defined as

H1 = −
M∑

k=1

pk log2 pk .

Essentially H1 is the number of bits needed per symbol to encode a long mes-
sage; that is, it measures the amount of information content, and therefore
the potential success of compression strategies. The value H1 = 0 corre-
sponds to the case of only one symbol being produced—no information—
while if all M symbols have equal probability, then H1 = log2 M .

Write a function [H,M] = entropy(v) that computes entropy for
a vector v. The probabilities should be computed empirically by finding
the unique entries (using unique), then counting the occurrences of each
symbol and dividing by the length of v. Try your function on some built-in
image data by entering load clown, v = X(:);.

“matlabbook”
2009/5/27
page 36

�

�

�

�

�

�

�

�

“matlabbook”
2009/5/27
page 37

�

�

�

�

�

�

�

�

Chapter 4

More on Functions

The previous chapter covered the bare minimum on MATLAB functions. Here are
some more advanced concepts and tools that at some point you will probably find
very useful.

4.1 Function handles and anonymous functions
One way to look at a function is as an algorithm or process. Sometimes, though, we
might prefer to look at a function as data. For instance, the mathematical problem
of definite integration could be seen as a map from inputs in the form of an interval
[a,b] and a function f (x) to the value of

∫ b

a
f (x)dx. As you might expect, this

is a classical problem in computing, and there are many algorithms available to
approximate this map. Thus we can find ourselves in the situation of writing or
using a function that accepts another function as data. MATLAB likes to call these
function functions, and you can get a list of them by typing help funfun.
Other common problems that involve operation on functions as data are finding
roots, optimization, and solving differential equations.

MATLAB requires you to use a special construct called a function handle
to distinguish between the invocation of a function and the abstraction of that
function as data. For example, the built-in fzero attempts to find a root of a
function supplied as its first input argument, starting from a guess in the second
argument. We cannot call it to find a root of sin(x) by typing

>> fzero(sin,3) % error!

because the MATLAB interpreter would first try to call the built-in sin function
with no inputs, which is an error. Instead, you must create a function handle by
using the @ prefix, as in

37

“matlabbook”
2009/5/27
page 38

�

�

�

�

�

�

�

�

38 Chapter 4. More on Functions

>> fzero(@sin,3)
ans =

3.1416

Any callable function in scope can be converted into a handle, including built-ins
and your own M-file functions.

Often, you need a function definition that combines built-in operations in
an elementary way. The best tool for this situation is an anonymous function.
An anonymous function lets you simultaneously define a function and create a
handle to it.7 For instance, to create a representation of the mathematical function
sin(x)+ cos(x), you would enter

>> sincos = @(x) sin(x) + cos(x);

Now sincos is a function of one argument, and the syntaxes sincos(pi/4)
and sincos(rand(2)) are perfectly acceptable. It is also straightforward to
create an anonymous function of multiple arguments, as in

>> w = @(x,t,c) cos(x-c*t);

There is no need to assign the anonymous function to a named variable, however,
as in this syntax:

>> fzero(@(x) sin(x)+cos(x), 0)
ans =

-0.7854

When you define an anonymous function, the variable names following the
@ symbol are inputs to the function. If the same names are defined in the current
workspace, those values are unavailable within the anonymous definition. How-
ever, other values defined in the current workspace at the time of definition are
available to the anonymous function definition. Furthermore, any such values used
within the definition are “baked in” to the anonymous function: they remain fixed,
even if the values are later changed or the defining workspace goes out of scope.

This feature can be amazingly convenient. A prototypical situation is that
you have an M-file function bigfun(a,x,b) that accepts parameters a and b in
addition to a variable x of interest. Syntactically, many function functions accept
only a function of one variable as data. Hence you define an anonymous function
wrapper such as

>> f = @(x) bigfun(0.5,x,b_value);

that locks in particular parameter values and accepts only one input variable. For
example, consider again fzero, which finds a root of a function of one vari-
able. Suppose you wish to find a solution of e−ax = x for multiple values of the
parameter a. An anonymous function makes this a snap:

7Before anonymous functions became available, inline functions offered some of the same
capability in older versions of MATLAB. Inline functions are less useful in several ways, however,
and offer no real advantages.

“matlabbook”
2009/5/27
page 39

�

�

�

�

�

�

�

�

4.2. Subfunctions and nested functions 39

>> for a = 1:0.25:2, fzero(@(x) exp(-a*x)-x, 0), end
ans =

0.5671
ans =

0.5212
ans =

0.4839
ans =

0.4528
ans =

0.4263

In the body of the loop, the variable a is assigned each of the values 1, 1.25, 1.5,
1.75, 2 in turn. Each time, a new anonymous function is created to lock in that
value of a and create a function of x alone, which is fed to fzero.

4.2 Subfunctions and nested functions
A single M-file may hold more than one function definition. The function header
line at the top of a file defines the primary function of the file. Two other types
of functions can be in the same file: subfunctions and nested functions.

A subfunction is mostly a convenient way to avoid directory and name
clutter. The subfunction begins after the end of the primary function, with a new
function header line. Every subfunction in the file is available to be called by
the primary function and the other subfunctions. In all respects, it behaves like a
primary function in a separate file, including the use of a private variable workspace.
As a silly example of a function using a subfunction, consider a new version of
quadform.m:

function [x1,x2] = quadform(a,b,c)
d = discrim(a,b,c);
x1 = (-b + d) / (2*a);
x2 = (-b - d) / (2*a);

end % quadform()

function D = discrim(A,B,C)
D = sqrt(Bˆ2 - 4*A*C);

end % discrim()

The end line is optional for single-function files, but it is a good idea when sub-
functions are involved, and it is mandatory when using nested functions. Changes
made toa, b, or c insidediscrimwould not propagate into the rest of quadform,
nor would any other variables in the primary function be available to discrim.

Outside of the defining file, subfunctions are not visible—only the primary
function can be called. However, it is possible to exploit a major and useful

“matlabbook”
2009/5/27
page 40

�

�

�

�

�

�

�

�

40 Chapter 4. More on Functions

exception to this rule. Suppose you want to investigate the eigenvalues of a certain
matrix A(x)—specifically, you wish to find the smallest x such that the maximum
real part of the eigenvalues equals 1. Here is a simple approach using fzero to
reach the target value:

function x0 = findx
x0 = fzero(@objective,[0 10]);

end

function r = objective(x)
B = diag(ones(499,1),1); A = B-B’;
A(1,1) = x;
e = eig(A); r = max(real(e)) - 1;

end

The subfunction objective is passed as a handle to fzero, which is able to
use the handle to access and call the subfunction, even though it would be out of
scope if fzero were to try to invoke it directly by name.

A nested function is similar to a subfunction, but it is defined within the
scope of a parent function. It behaves differently from a subfunction in one very
important respect: its variable workspace can overlap that of its parent. Any
variable used in both the nested function and its parent is shared.

One reason for using a nested function is to create lasting side effects. Con-
sider again the eigenvalue example just above. Because fzero is a “black box”
with a standardized syntax, it can return only the value of x we seek. It cannot tell
us, for example, the imaginary part of the eigenvalue whose real part equals 1, nor
can it tell us any other information about the eigenvalues. To get that information,
we would have to repeat much of the objective function once again, which
makes for messy code and extra computation time. Reorganizing the computation
using a nested function, however, allows us to pass extra information out of the
objective calculation:

function x0 = findx
function r = objective(x)

A(1,1) = x;
e = eig(A); r = max(real(e)) - 1;

end

B = diag(ones(499,1),1); A = B-B’;
e = []; % create a shared variable for side effect
x0 = fzero(@objective,[0 10]);
plot(e,’x’)

end

“matlabbook”
2009/5/27
page 41

�

�

�

�

�

�

�

�

4.4. Input and output arguments, revisited 41

The line e = []; is critical. Giving the variable e a definition in the parent
workspace allows it to be shared between the nested objective and its parent,
so that at the termination of fzero, the value of e is the same as what it was
at the end of the most recent eigenvalue computation. Notice that we also passed
static information about the variable A into the nested function, potentially saving
otherwise wasted time over the previous version.

Variable sharing with nested functions is a technique best used cautiously.
Experience shows that reliance on common workspaces can lead to code that is
easily broken and confusing to read. There are situations like this one, however,
in which the technique offers possibilities that are hard to duplicate otherwise.

4.3 Errors and warnings
MATLAB functions may encounter statements that are impossible to execute, in
a way that could not have been predicted until the execution is to take place. For
example, the statement A*B is syntactically valid but meaningless in context when
A and B are defined as matrices of incompatible sizes. In such a situation, an error
is thrown: execution halts, a message is displayed, and control is returned to the
prompt, with the output arguments of the function ignored. You can throw errors in
your own functions with theerror statement, called with a string that is displayed
as the message. Similar to an error is a warning, which displays a message but
allows execution to continue. You create such messages using warning.

Sometimes you would like the ability to recover from an error in a subroutine
and continue with a contingency plan. This can be done using the try/catch
construct. For example, the following will continue asking for a statement until
you give it one that executes successfully:

done = false;
while ˜done

state = input(’Enter a valid statement: ’,’s’);
try

eval(state);
done = true;

catch me
disp(’That was not a valid statement! Look:’)
disp(me.message)

end
end

Within thecatchblock you can find the most recent error message usinglasterr,
or (as is preferred in recent MATLAB versions) by inspecting the exception object
me, as shown above and explained in the help pages for MException.

4.4 Input and output arguments, revisited
Good programming practice dictates that you check the input arguments to a func-
tion for validity. This is an especially good idea in a weakly typed language such

“matlabbook”
2009/5/27
page 42

�

�

�

�

�

�

�

�

42 Chapter 4. More on Functions

as MATLAB, where valid syntax can lead to meaningless results. There are a
number of helper functions for checking inputs, as demonstrated in the following
fragment:

function [x,y] = myfun(a,b,c)

assert(isnumeric(a), ’First input must be a number.’)
assert(numel(a)==1, ’First input must be a scalar.’)
assert(˜any(isinf(b)), ’Second input must be finite.’)
assert(˜any(isnan(b)), ’No NaNs allowed in second input.’)
assert(ischar(c), ’Third input must be a string.’)

If the first expression given to assert is not true, an error is thrown with the
message and is given as the second argument.

Although a function’s header spells out the number and names of the input and
output arguments, these are not enforced at the time of function invocation. Instead,
execution proceeds as long as possible until something undefined or otherwise
illegal happens. This fact allows you to accept different numbers of input arguments
in different situations. One common use of variable-length argument lists is to give
default values to missing inputs, as in the following fragment:

function shirt(neck,sleeve,color,cuff)

if nargin < 4
cuff = ’button’;
if nargin < 3

color = ’blue’;
end

end

The value of nargin is always set at run-time to the number of input arguments
with which the function was actually called. In the syntax above, default values
are assigned to the third and fourth arguments if they are missing. (The inputs
are place-sensitive, however, so there is no way to specify a cuff without also
specifying a color in this setup.) If the function is called with just zero or one
inputs, execution will continue unless and until a code reference is made to neck
or sleeve, which are not given defaults.

For a different take on allowing flexibility in the number of input arguments,
see section 6.6.

Exercises
4.1. Write a function plusone(f,x) that, given a function f and value x,

returns f (x)+1.

“matlabbook”
2009/5/27
page 43

�

�

�

�

�

�

�

�

Exercises 43

4.2. Write a function trap(f,a,b,n) that computes the trapezoidal rule ap-
proximation to

∫ b

a
f (x)dx,

h

2

[
f (x0)+2f (x1)+2f (x2)+·· ·+2f (xn−1)+f (xn)

]
,

where h = (b − a)/n and xi = a + ih. Test your function on sin(x) +
cos(x) for 0 ≤ x ≤ π/3. For a greater challenge, write a function simp for
Simpson’s rule,∫ b

a

f (x)dx ≈ h

3

[
f (x0)+4f (x1)+2f (x2)+·· ·+4f (xn−1)+f (xn)

]
.

This formula requires n to be even. You may choose to check the input for
this.

4.3. Write a function bisect(f,a,b,tol) that employs the bisection
method for finding a value of x such that f (x) = 0. The first input is a
handle to a function computing f . Assuming that f is continuous and
that f (a)f (b) < 0, the function has at least one root in the interval (a,b).
Define m = (a + b)/2, and if f (m) �= 0, then either f (a)f (m) < 0 or
f (b)f (m) < 0, so the root is either in (a,m) or (m,b). Continue the pro-
cess until the root is contained in an interval of length less than 2*tol, and
stop. The best code takes care not to evaluate the given f more often than
necessary.

4.4. Write a function newton(f,fprime,x0,tol) that implements New-
ton’s iteration for rootfinding on a scalar function:

xn+1 = xn − f (xn)

f ′(xn)
.

The first two inputs are handles to functions computing f and f ′, and the
third input is an initial root estimate. Continue the iteration until either
|f (xn+1)| or |xn+1 −xn| is less than tol.

4.5. Modify newton from the previous exercise so that it works on a system
of equations F(x). The function fprime now returns the Jacobian matrix
J, and the Newton update is written mathematically as

xn+1 = xn −J−1F(xn),

although in numerical practice one does not compute the inverse of the
Jacobian but solves a linear system of equations in which F(xn) is the right-
hand side.

4.6. Many simple financial instruments that have regular equal payments, such
as car loans or investment annuities, can be modeled by the equation

F = P

(
(1+ r)t −1

r

)
,

“matlabbook”
2009/5/27
page 44

�

�

�

�

�

�

�

�

44 Chapter 4. More on Functions

where P is the regular payment, r is a fixed interest rate (say, r = 0.05 for
5% interest), t is the number of payment intervals elapsed, and F(t) is the
accumulated value of the instrument at time t . This equation is not easily
solved for r .

Write a script or function that finds r when P = 200, t = 30, and F

takes the values 10000,15000, . . . ,40000.

“matlabbook”
2009/5/27
page 45

�

�

�

�

�

�

�

�

Chapter 5

Graphics

Graphical display is one of the greatest strengths of the MATLAB software, and
one of its most complicated subjects. The basics are quite simple, but you also get
complete control over practically every aspect of each graph, and with that power
comes some complexity.

Graphical objects are classified by type, the most important of which are
shown in Figure 5.1. The available types lie in a strict hierarchy: each data-
relevant object, such as a line or surface, must lie in an axes, which in turn
lies in a figure window, descended from a virtual root. Of the command names in
Figure 5.1, the most useful is figure, which by itself opens a new figure window.
The others, such as line and surface, are considered low-level functions and
are not usually called directly. Instead you use friendlier functions that create these
object types inside the most recently created or clicked-on axes. Similarly, a group
or series graphics object is typically a collection of more primitive objects that are
created and bundled together by a convenient routine.

Each rendered graphics object has properties that you can set at creation time
or after the fact to control its appearance. You can also add axes labels, titles, and
other annotations to the graph. Most graphical modifications can be done either via
the command line or by using the GUI (graphical user interface). In particular, the

Edit Plot button, which has the icon , enables you to double-click or right-click
virtually any graphical object to change its attributes. While there are examples
of making changes in which one method is clearly preferred, for the most part the
choice is a matter of personal comfort.

5.1 Data plots versus function plots
Ultimately, any plot comes down to the display of numerical values. The source
of those values, however, dictates how you generate or use them. In many

45

“matlabbook”
2009/5/27
page 46

�

�

�

�

�

�

�

�

46 Chapter 5. Graphics

Figure 5.1. A partial graphics object hierarchy. Except for the
group/series case, each name is a graphics object type as well as a low-level
command name.

applications, the source is observed data or discrete values of an unknown function,
such as the solution of a differential equation. In this case, you conceptually want
to display a fixed set of points in the plane or space, possibly with additional visual
information such as colors or connecting lines. The “traditional” and better-known
plotting functions in MATLAB follow this model.

Sometimes, though, the source of displayed data is one or more explicitly
known mathematical functions. Here one would like to work with the functions
themselves and keep the possibility of evaluating them as needed to generate the
points that make a nice-looking plot. MATLAB has a number of functions, all
starting with the letters ez, for plots made in this way. The ez functions are the
ones that work the most like the default plotting functions in Mathematica® and
Maple® and a symbolic scientific calculator. However, keep in mind that once
points are generated and rendered, the original source of them is forgotten and
becomes irrelevant—so, for instance, zooming in on part of a plot will not refine
the graph, as it does in many symbolic packages.

5.1.1 ez plots

The command ezplot makes two-dimensional (2D) plots of explicit, implicit,
or parametric functions. These are represented mathematically by y = f (x),
F(x,y) = 0, or the pair x = f (t), y = g(t), respectively. You must supplyezplot
with one or more function handles to define the plot, and define a range for the
variables, as in these examples:

‘‘matlabbook’
2009/5/27
page 47

�

�

�

�

�

�

�

�

5.1. Data plots versus function plots 47

−0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

x = exp(−t) cos(8 t), y = exp(−t) sin(8 t)

Figure 5.2. Result of an ezplot command.

>> ezplot(@sin, [0 2*pi])
>> ezplot(@(x,y) x.ˆ4+y.ˆ4-1, [-1 1]), axis equal
>> x= @(t) exp(-t).*cos(8*t);
>> y= @(t) exp(-t).*sin(8*t);
>> ezplot(x,y,[0 3])

The results of the last command are shown in Figure 5.2. Note that all of the
anonymous function definitions must use array operators such as .ˆ and .*. The
axis equal command used in the second example makes the coordinates have
a one-to-one aspect ratio, so that circles don’t look like ellipses. The ezpolar
command also makes a curve in the plane, given a function that defines r as a
function of θ . The ezplot3 command plots parametric space curves and can
animate “walking” along the curve:

>> ezplot3(@cos, @sin, @(t) exp(-t/8), [0 40], ’animate’)

One way to visualize a function of two variables is to use a contour plot,
in which a family of curves F(x,y) = c is plotted in the x-y plane for multiple
choices of c. There are two ez variants for this:

>> ezcontour(@(x,y) 4*x.ˆ2-x.*y+y.ˆ2, [-1 1 -2 2])
>> ezcontourf(@(x,y) sin(3*x-y).*sin(x+2*y), [-pi pi])

The second form fills each intercontour region with a different solid color for a
more dramatic plot.

For an explicit surface z = F(x,y), or a parametric surface in which x, y,
and z each is a function of parameters (u,v), use ezsurf. A wireframe plot is
produced if you use ezmesh.

“matlabbook”
2009/5/27
page 48

�

�

�

�

�

�

�

�

48 Chapter 5. Graphics

>> ezsurf(@(x,y) x.ˆ2-y.ˆ2-1, [-1 1 -1 1])
>> x=@(u,v) cosh(u).*cos(v); y=@(u,v) sinh(u).*cos(v);
>> z=@(u,v) sin(v); ezmesh(x,y,z, [-1 1 0 2*pi])

In both types of plots, color is used as an additional cue to indicate the value of the
z coordinate.

You can find many more details and options in the online documentation
than are covered here.

5.1.2 Two-dimensional data plots

For discrete data in two dimensions, use plot. For example, MATLAB comes
with U.S. census data from 1790–1990:

>> load census
>> plot(cdate,pop)

The plot simply connects dots at the points defined by the values in the two co-
ordinate vectors. You can change the line style graphically after the fact or at the
time of creation, as in

>> plot(cdate,pop,’ro’) % red circles
>> plot(cdate,pop,’k:’) % black dotted lines
>> plot(cdate,pop,’ys-’) % yellow squares and lines

The default is for any new plot to replace the existing one. To add curves to the
current axes instead, use hold on.

This particular data set looks a bit better when the vertical axis is logarith-
mically scaled:

>> semilogy(cdate,pop,’p-’)

Here you can see the data very nearly represents exponential growth at least up to
1860. We can add a crude exponential extrapolation from the 1900 data as follows:

>> t = 1900:10:2030;
>> hold on
>> semilogy(t, exp(-20.44+0.01306*t), ’k--’)

The result is shown in Figure 5.3. Note that the axes limits that frame the data are
chosen automatically to be “nice” numbers. If instead you want to minimize the
whitespace, use axis tight to make the frame as small as possible.

Other useful 2D plotting commands are given in Table 5.1. See a bunch
more by typing help graph2d. Also explore the figure window buttons and
menus, which should be fairly self-explanatory, and try right-clicking on objects
to modify their appearance.

“matlabbook”
2009/5/27
page 49

�

�

�

�

�

�

�

�

5.1. Data plots versus function plots 49

1750 1800 1850 1900 1950 2000 2050
10

0

10
1

10
2

10
3

Figure 5.3. Semilog plot of U.S. census data, and an extrapolation.

Table 5.1. 2D plotting commands.

figure Open a new figure window.
subplot Create multiple axes in one figure.
semilogx, semilogy, loglog Scale axes logarithmically.
axis, xlim, ylim Set axes limits.
legend Create legend for multiple curves.
print Send to printer.

5.1.3 Three-dimensional data plots

Plots of surfaces and the like for functions z = f (x,y) operate on the connect-
the-dots principle, but the details are more difficult. The first step is to create a
grid of points in the x-y plane where f is evaluated to obtain the “dots” in three
dimensions. This is most easily done using meshgrid.

Here is a typical example:

>> x = pi*(0:0.02:1);
>> y = 2*x;
>> [X,Y] = meshgrid(x,y);

These arrays define the coordinates of a 2D grid, as can be seen by using

>> plot(X,Y,’k.’)

With this grid definition, we can define some height data in the z direction by array
operations:

>> Z = sin(X.ˆ2+Y);
>> surf(X,Y,Z)

“matlabbook”
2009/5/27
page 50

�

�

�

�

�

�

�

�

50 Chapter 5. Graphics

Table 5.2. 3D plotting commands.

surf, mesh, waterfall Create surfaces in three dimensions.
colorbar Show color scaling.
plot3 Plot curves in space.
pcolor Show top view of a colored surface.
contour, contourf Create contour plot.

The array Z is actually an array of values of f (x,y) = sin(x2 + y) evaluated on
the grid. Finally, surfmakes a solid-looking surface in which color and apparent
height describe the given values of f . An alternative command mesh is similar to
surf but makes a “wireframe” surface. The most common 3D plotting commands
are shown in Table 5.2.

Because of mathematical conventions, the output of meshgrid is an end-
less source of confusion. The problem is that for the graph of a function f (x,y),
the first variable is interpreted as horizontal and the second variable as vertical. In
an array, A, however, the first index dimension is vertical (row) and the second
is horizontal (column).8 The function meshgrid and the 3D plotting functions
adopt the graphical convention. Hence, using the definitions above, the grid point
(x(i),y(j)) would be found in the arrays above as (X(j,i),Y(j,i)). You
might choose to avoid this issue by using ndgrid, which adopts the array con-
vention, instead of meshgrid, but then all calls to surf and its ilk need to have
transposes on all the arrays, or the graph itself will have x and y transposed.

It’s also useful to realize that, while the data must be given at points on
a mesh, the mesh has to be logically rectangular, not literally rectangular. For
instance, you can plot data on the unit disk as follows:

>> [R,T] = meshgrid(0:.02:1, pi*(-1:.05:1));
>> X = R.*cos(T); Y = R.*sin(T);
>> pcolor(X,Y,X.ˆ2-Y.ˆ3), axis equal

Any surface parameterized by two variables defined on a rectangle can be visualized
in the same way.

5.2 Annotation
Graphs of data usually need labels and maybe a title. For example:

>> ezplot(@(t) exp(-t/5).*sin(t), [0 6*pi])
>> xlabel(’time’)
>> ylabel(’amplitude’)
>> title(’Damped oscillator’)

8An additional complication, ignored by the plotting routines, is that the vertical direction
meaning “increasing” is reversed in the two interpretations. For plots that represent a matrix, use
axis ij to reverse the vertical axis.

“matlabbook”
2009/5/27
page 51

�

�

�

�

�

�

�

�

5.3. Handles and properties 51

These can also be added and edited by enabling the Edit Plot button and double-
clicking the axes. You can also add legends, text, arrows, or text/arrow combina-
tions, to help label data. See the Insert menu on the figure window.

MATLAB supports a limited subset of TEX processing in text strings, includ-
ing axes labels and titles. This is an easy way to get Greek letters, superscripts,
and symbols.

>> xlabel(’time \tau’)
>> legend(’{\it e}ˆ{-\tau/5} sin(\tau)’)

You can get even more elaborate mathematical annotation by requiring a LATEX
interpreter for your string, as explained in the documentation. This route can be
effective for a stand-alone figure; ironically, though, it may not produce results that
blend well with a LATEX document, since such documents are usually customized
with respect to fonts and macros. Instead, you might consider the excellent psfrag
package for LATEX, which allows you to replace strings in an EPS figure with
arbitrary boxes of processed text from within your document.

5.3 Handles and properties
Every rendered object has an identifier or handle. The functions gcf, gca,
and gco return the handles to the active figure, axes, and object (usually the
most recently drawn or clicked-upon). The handle of a figure is always the figure
number; other handles have arbitrary values.

Properties can be accessed and changed at the command line by the functions
get and set, or graphically (see the Plot Edit Toolbar, Plot Browser, and Property
Editor in the figure’s View menu). Here is just a taste of what you can do:

>> h = plot(t,sin(t))
>> set(h,’color’,’m’,’linewidth’,2,’marker’,’s’)
>> set(gca,’pos’,[0 0 1 1],’visible’,’off’)

Handles also make it easy to change entire batches of objects at once. For example,
the following code makes all of the blue lines in the current figure have width equal
to 3:

>> h = findobj(gcf,’type’,’line’,’color’,’b’);
>> set(h,’linewidth’,3)

Because of handles, plots in MATLAB can be created in a basic form and
then modified to look exactly how you want. However, it can be useful to change
the default property values that are initially used to render an object. You can
do this by resetting the defaults at any level above the target object’s type in the
hierarchy of Figure 5.1. For instance, to make sure that all future text objects in
the current figure have font size 10, enter

>> set(gcf,’defaulttextfontsize’,10)

“matlabbook”
2009/5/27
page 52

�

�

�

�

�

�

�

�

52 Chapter 5. Graphics

Table 5.3. Common colors in RGB and as string abbreviations.

Color RGB vector Abbreviation

Black [0 0 0] ’k’
Red [1 0 0] ’r’
Green [0 1 0] ’g’
Blue [0 0 1] ’b’
Yellow [1 1 0] ’y’
Magenta [1 0 1] ’m’
Cyan [0 1 1] ’c’
White [1 1 1] ’w’

All figures are also considered to be children of the virtual root object that has
handle 0, so setting properties to this handle creates global defaults.

5.4 Color
The coloring of lines and text is easy to understand. Each object has a color property
that can be assigned an RGB (red, green, blue) vector in which each of the three
entries is between zero and one. The primary and secondary colors are shown in
Table 5.3, along with their one-letter string abbreviations. Note that green does
not show well against a white background; MATLAB often uses a darker green
color given by [0 0.5 0].

Surfaces are colored differently. There are two aspects, both modifiable:
coloring of the data points, and coloring of the patches or mesh lines between
them. The data point colors are specified by a CData property of the surface
object. This could be a specification of RGB values at each individual data point,
which is called the truecolor model. It is best for photographs and bitmap images.

The more common model for abstract data, and the default when you specify
no explicit color information, is the indexed color model. This model involves an
interaction between the CData property of the surface, the CLim property of its
parent axes, and the Colormap property of the axes’ parent figure. The figure’s
Colormap is an m × 3 array, with each row interpreted as RGB values. The
CLim property is a vector [a b] that defines a linear transformation from the
interval [a,b] to the interval [1,m]. Thus, each value in the CData property is
mapped according to the linear transformation, then rounded to the nearest integer
in {1,2, . . . ,m}, which serves as a row index into the colormap to determine a color.

As with all graphics object properties, those named above can be changed
using set. However, there are more commonly used alternatives. By default, the
CData surface property is equal to the array of z coordinate values (ZData) for
the surface, but it can be set by giving a fourth argument to the plotting functions
surf and mesh. The CLim is set by default to include exactly the full range
of data values, and it can be changed after the fact by using caxis. The default
figure Colormap is named jet and varies from blue to green to red. It can be

“matlabbook”
2009/5/27
page 53

�

�

�

�

�

�

�

�

5.5. Saving and exporting figures 53

Table 5.4. Shading models for surfaces.

shading flat Each face or mesh segment has constant color, deter-
mined by one boundary point.

shading faceted Flat shading is used for faces and black for edges.
shading interp Color in each face or segment is found by linear in-

terpolation of corners.

changed by using the colormap command. Any changes to these properties,
however made, have instant effects on the colors:

>> [X,Y,Z] = peaks; % some built-in data
>> surf(X,Y,Z)
>> colorbar % show data->color mapping
>> caxis % current CLim value of axes
ans =
-6.5466 8.0752

>> caxis([-8 8]), colorbar % zero-level symmetry
>> colormap pink % change figure colormap
>> colormap gray % change figure colormap
>> colormap(flipud(gray)) % reverse ordering

You can specify explicit CData for a surface in the indexed model. One natural
use of this is for functions of a complex variable:

>> [T,R] = meshgrid(2*pi*(0:0.02:1),0:0.05:1);
>> [X,Y] = pol2cart(T,R);
>> Z = X + 1i*Y;
>> W = Z.ˆ2;
>> surf(X,Y,abs(W),angle(W)/pi) % arg(W) for coloring
>> axis equal, colorbar
>> colormap hsv % periodic colormap

Between grid points, color is determined by shading. You can change the
shading of a surface by calling shading after the surface is created. The available
types are shown in Table 5.4. While interpolated shading makes much smoother
colors and prettier pictures, it can be very slow to render, particularly on printers.
In fact, it’s often faster to interpolate the data yourself to a finer grid and print with
flat shading. See interp2 to get started on this.

5.5 Saving and exporting figures
It often happens that a figure needs to be changed long after its creation. You
can simply save the figure-creation commands in a script (section 3.1), but this
approach has drawbacks. If the plot data takes a long time to generate, rerunning
the script will waste time. Also, any edits made through menus and buttons will
be lost.

“matlabbook”
2009/5/27
page 54

�

�

�

�

�

�

�

�

54 Chapter 5. Graphics

Instead, you can save a figure in a format that allows it to be recreated in
future sessions. Just enter

>> saveas(gcf,’myfigure.fig’)

to save the current figure in a file named myfigure.fig. (This is equivalent to Save
as… on the figure’s File menu.) Later you can enter open myfigure.fig to
recreate it. Since graphics objects store the data that defines them (in the XData,
YData, and ZData properties), this tactic is also a way of storing the data used to
create the graph. You can even leave notes about the data in an object’sUserData
field.

Ultimately, you will want to use some figures in a presentation or publication,
a process that involves exporting the figure to a graphics file.9 In this process,
what you see on the screen is not necessarily what you get in the file, because
MATLAB tweaks graphs differently depending on the output device. The relevant
changes are laid out as a GUI if you select Export setup. . . from a figure’s File
menu. This dialog also lets you save a collection of preferences as a named style,
so the GUI might be the most convenient approach if it meets your needs. But
all of the options it offers affect properties that can be set using the handles of the
figure and its descendant objects, should you prefer to work with commands.

Here are some significant issues to consider when exporting a figure:

Size. At first the size of the output graphic might seem irrelevant, since any
document preparation or presentation program will let you change the image’s
size in the final product. However, resizing after exporting scales everything in
the figure, including text, sometimes leading to graphs with thin lines or comically
small font sizes. You are better off using MATLAB to set figure size, line widths,
and font sizes independently before exporting.

Format. The most important difference in graphics file formats is between
vector formats (such as EPS, PDF, and EMF) and bitmap formats (such as GIF,
JPEG, PNG, and TIFF). Bitmaps, which store a pixel-by-pixel snapshot, are ideal
for photographs but less so for most other scientific applications. These formats fix
the resolution of your image forever, whereas the resolution of your screen, your
printer, and a publication’s printer are all very different. Vector formats, which
represent lines, text, and surfaces more abstractly, are usually a much better choice
for data-driven graphics.

EPS (encapsulated PostScript) files are the best choice for inclusion by LATEX
documents. They contain bounding box information that allows LATEX to know
exactly how large the graphic is. If you wish to export from the command line,
you can use

>> print -deps myfig

9Depending on what tools you use, it may also be possible to copy and paste images, which is
often adequate, at least on some platforms. However, you still might need to set up the figure first
in the same ways discussed here.

“matlabbook”
2009/5/27
page 55

�

�

�

�

�

�

�

�

5.6. Other common graphics techniques 55

or, for color output,

>> print -depsc myfig

to create myfig.eps from the current figure. However, this method uses the
PaperPosition property of the figure, not the position on the screen, to deter-
mine the size of the output graphic. The EPS format also works with Microsoft
WordTM if you print the output on a PostScript printer. In this case it’s handy to
use

>> print -deps -tiff myfig

in which case Word will be able to show a crude preview version of the graph in
the document onscreen.

An additional twist in LATEX is that if the file is processed directly to PDF
format using pdflatex, EPS graphics cannot be used. Instead, you should use PDF
for vector graphics. Currently, MATLAB-generated PDFs do not seem to embed
graphic bounding box information in a way that the graphicx package for LATEX
understands. To work around this limitation, you can use the widely available
pdfcrop script, or save the file as EPS and use the free script epstopdf to convert
it to PDF.

Color. Colored lines are automatically converted to black when saved in
a non-color format, so you should distinguish them by other features, such as
symbol or line style. The colors of surfaces may be converted to grayscale, which
presents a problem. The default colormap has colors ranging from deep blue to
deep red, and the hues signal real information about the surface. When these
colors are converted to grayscale, the distinction between red and blue is not
clear, and the shades become meaningless. For a grayscale surface plot, you
should consider using colormap(gray) or colormap(flipud(gray)),
whichever gives less total black, before exporting the figure, so that saturation
corresponds to data. Finally, the edges of wireframe surfaces created by mesh
are also converted to gray, often with poor results. Make all the lines black by
entering colormap([0 0 0]).

5.6 Other common graphics techniques
To create an array of plots in one figure window, use subplot. For example:

for n = 1:6
subplot(2,3,n), ezpolar(@(t) sin(n*t), [0 2*pi])
xlabel(’’), title([’r = sin(’,int2str(n),’t)’])

end
delete(findobj(gcf,’type’,’text’)) % generic labels

The call subplot(m,n,k) selects the kth axes in an m×n array, counting from
left to right, top to bottom.

“matlabbook”
2009/5/27
page 56

�

�

�

�

�

�

�

�

56 Chapter 5. Graphics

Here is a way to make a dynamic graph or animation:

figure(’doublebuffer’,’on’) % flash-free redraws
t = linspace(0,8*pi,800)’;
for s = 0:0.01:1

x = exp(-s*t).*cos(6*s*t+t);
y = exp(-s*t).*sin(6*s*t+t);
plot(x,y), axis ([-1 1 -1 1])
pause(0.01)

end

Graphics commands accumulate in a buffer and do not take effect immediately.
This fact allows you to make multiple changes (for instance, data and title) between
animation frames. You must use a pause or drawnow command whenever you
want to force all pending graphics commands to be processed.

The animation technique is best when little time is needed to render each
frame. An alternative is to make a movie of bitmap renderings of the frames, using
getframe to store each frame. The movie can be played back with movie or
converted to a video file using movie2avi.

Generally, when a graphical function encounters a NaN value in a list of
points, it quietly omits drawing the point. This can be useful when combined with
the technique of index masking (see section 6.3). For example, these commands
plot a surface that is mathematically defined only over an L-shaped region:

>> [X,Y] = meshgrid(-1:1/18:1);
>> L = membrane(1,18,8,8);
>> surf(X,Y,L)

For this graph, the z values outside the domain are set to zero, which is not bad since
the function happens to be zero at the real boundary. But the graph is improved if
we erase that part of the surface using NaN:

>> outside = (X < 0) & (Y > 0); % logical index mask
>> L(outside) = NaN; % note "scalar expansion"
>> surf(X,Y,L)

Exercises
5.1. On a single graph, make a plot of the functions sinh, cosh, and tanh for

−1 ≤ x ≤ 1. Give each curve a different color and label them with text and
arrows.

5.2. Recall the identity

e = lim
n→∞rn, rn =

(
1+ 1

n

)n

.

“matlabbook”
2009/5/27
page 57

�

�

�

�

�

�

�

�

Exercises 57

Make a standard and a log-log plot of e − rn for n = 5,10,15, . . . ,500.
What does the log-log plot reveal about the asymptotic behavior of e − rn
as n → ∞?

5.3. Here are two different ways of plotting a sawtooth wave. Explain concisely
why they behave differently:

>> x = [0:7;1:8]; y = [zeros(1,8);ones(1,8)];
>> subplot(121), plot(x,y,’b’), axis equal
>> subplot(122), plot(x(:),y(:),’b’), axis equal

(The first version is more mathematically proper, but the second is more
likely to appear in print.)

5.4. Play the “chaos game.” Let P1, P2, and P3 be the vertices of an equilateral
triangle. Start with a point anywhere inside the triangle. At random, pick
one of the three vertices and move halfway toward it. Repeat indefinitely.
If you plot all the points obtained, a very clear pattern will emerge. (Hint:
This is particularly easy to do if you use complex numbers. If z is complex,
then plot(z) is equivalent to plot(real(z),imag(z)).)

5.5. a. Generate 100 random matrices using randn(100), and plot all of
their eigenvalues as dots in the complex plane on one graph. (Thus,
you should see 10,000 dots.) Use axis equal to make the aspect
ratio one-to-one. You should see a fairly striking result.

b. Repeat the experiment with 100 random complex matrices of the form
complex(randn(100),randn(100)). You should be able to
see one very clear qualitative difference between the previous case
and this one.

5.6. Make surface plots of the following functions over the given ranges:

1. (x2 +3y2)e−x2−y2
, −3 ≤ x ≤ 3, −3 ≤ y ≤ 3.

2. −3y/(x2 +y2 +1), |x| ≤ 2, |y| ≤ 4.
3. |x|+ |y|, |x| ≤ 1, |y| ≤ 1.

5.7. Make contour plots of the functions in the previous exercise.

5.8. Make a contour plot of

f (x,y) = e−(4x2+2y2) cos(8x)+ e−3((2x+1/2)2+2y2)

for −1.5 < x < 1.5, −2.5 < y < 2.5, showing only the contour at the level
f (x,y) = 0.001. You should see a friendly message.

5.9. Plot the surface represented by

x = u(3+ cos(v))cos(2u), y = u(3+ cos(v))sin(2u), z = usin(v)−3u

for 0 ≤ u ≤ 2π , 0 ≤ v ≤ 2π .

“matlabbook”
2009/5/27
page 58

�

�

�

�

�

�

�

�

“matlabbook”
2009/5/27
page 59

�

�

�

�

�

�

�

�

Chapter 6

Advanced Techniques

MATLAB software provides a high-level language that allows one to think fairly
abstractly about matrices, vectors, and functions. Sometimes, though, we must
pay more attention to concrete concerns such as execution speed and programming
complexity. In these contexts, certain patterns or habits prove to be more useful
than others.

Sooner or later you will hear that MATLAB is “too slow.” MATLAB does
tend to prioritize development time over execution time. When your code is too
slow to please you, start by profiling it (see section 3.5) to find out where the
bottlenecks are. With more careful coding of time-intensive spots, you might
recover huge gains in efficiency.10 This chapter suggests some of the most common
ways to find substantial savings.

Similarly, while vectors and matrices are a good paradigm for many situa-
tions, there are other tasks for which they can be found wanting. In this chapter
we see other, more convenient, ways to manipulate data.

6.1 Memory preallocation
MATLAB hides the tedious process of allocating memory for variables. This
generosity, while often highly convenient, can cause you to waste a lot of run-
time. Consider the following code, which implements Euler’s method for the
vector differential equation y′ = Ay and stores the value at every time step:

10In a pinch, you can write a time-consuming subroutine in C or Fortran and link the compiled
code into MATLAB. See the online help under “external interfaces.”

59

“matlabbook”
2009/5/27
page 60

�

�

�

�

�

�

�

�

60 Chapter 6. Advanced Techniques

tic
A = rand(200);
y = ones(200,1);
dt = 0.001;
for n = 1:(1/dt)

y(:,n+1) = y(:,n) + dt*A*y(:,n);
end
toc

This takes about 0.93 seconds on a 2007-built desktop PC. Almost all of this time,
though, is spent on a noncomputational task.

When MATLAB encounters the statement y = ones(200,1), repre-
senting the initial condition, it asks the operating system for a block of memory to
hold 200 floating-point numbers. Upon the first execution of the loop, it becomes
clear that we actually need space to hold 400 numbers, so a new block of this size is
requested. On the next iteration, this also becomes obsolete, and more memory is
allocated. The little program above requires 1001 individual memory allocations
of increasing size!

Changing the second line to y = ones(200,1001); changes none of
the mathematics but does all the required memory allocation at once. This step is
called preallocation. With preallocation the program takes about 0.075 seconds
on the same computer as above, increasing the speed by a factor of 12.

6.2 Vectorization
Vectorization refers to the avoidance of for and while loops. As an example,
suppose x is a column vector and you want to compute a matrix D such that
dij = xi −xj . The standard implementation would involve two nested loops:

n = length(x);
D = zeros(n); % preallocation
for j = 1:n

for i = 1:n
D(i,j) = x(i) - x(j);

end
end

The loops could be written in either order here. But the innermost loop is easily
replaced by a vector operation:

n = length(x);
D = zeros(n); % preallocation
for j = 1:n

D(:,j) = x - x(j);
end

‘‘matlabbook’
2009/5/27
page 61

�

�

�

�

�

�

�

�

6.2. Vectorization 61

We can get rid of the remaining loop, too, by upgrading from vectors to two-
dimensional arrays. This is a bit more subtle:

n = length(x);
X = x(:,ones(n,1)); % copy columns to make n by n
D = X - X.’;

The second line here is a trick that was introduced in section 2.2 (and in
MATLAB circles is called “Tony’s trick”). Note too the use of .’ in the last
line for compatibility with a complex input.

At this point you might ask, why vectorize? There are two answers: speed
and style. Neither is a simple matter. Until around 2002, careful vectorization
almost always yielded tremendous improvements in execution speed. But the situ-
ation has changed somewhat due to a technique called JIT acceleration. Acceler-
ation, which is applied automatically, can remove the speed penalty that MATLAB
traditionally experienced with loops. While not every loop can be optimized, it’s
clear that code vectorization is not critical for speed in every case. For example,
with n = 1000 the times in milliseconds for each of the three methods above were
0.025, 0.010, and 0.025, respectively. In this case a medium level of vectorization
proved to be the fastest.

Style is a subjective matter, of course. To programming veterans who are new
to MATLAB, multiply nested loops over scalar operations seem natural and perhaps
inevitable. However, MATLAB makes it easy to act on vectors and matrices, and
not on their individual entries, as atomic objects. The superiority of A*B to a triply
nested loop to compute a matrix product is obvious; many problems seem to land
between extremes. In the codes above, for instance, each version is shorter than the
one before it. Yet while the second is no less clear than the first, the third version
requires some thought when first encountered. Unlike the first two versions, the
third is also not easily adjusted to account for the obvious antisymmetry in the
result.

Another classic illustration of the trade-offs involved with vectorization
comes from Gaussian elimination. Here is a basic textbook implementation with-
out any vectorization:

n = length(A);
for k = 1:n-1

for i = k+1:n
s = A(i,k)/A(k,k);
for j = k:n

A(i,j) = A(i,j) - s*A(k,j);
end

end
end

Again we can start vectorization with the innermost loop, on j. Each iteration of
this loop is independent of all the others. This parallelism is a big hint that we can
use a vector operation instead:

“matlabbook”
2009/5/27
page 62

�

�

�

�

�

�

�

�

62 Chapter 6. Advanced Techniques

Table 6.1. CPU times, in milliseconds per factorization, for n×n Gaus-
sian eliminations using three different levels of vectorization.

n = 100 200 300 400 500
Three loops 23 143 369 743 1364
Two loops 50 171 382 837 1584
One loop 6.2 43.8 258 962 2188

n = length(A);
for k = 1:n-1

for i = k+1:n
s = A(i,k)/A(k,k);
cols = k:n;
A(i,cols) = A(i,cols) - s*A(k,cols);

end
end

The new version makes the algorithmic idea of a row operation much more ap-
parent, and, in my view, is clearly preferable. However, the innermost of the
remaining loops is also vectorizable:

n = length(A);
for k = 1:n-1

rows = k+1:n;
cols = k:n;
s = A(rows,k)/A(k,k);
A(rows,cols) = A(rows,cols) - s*A(k,cols);

end

You have to flex your linear algebra muscles a bit to see that the vector outer product
in the next-to-last line is appropriate. This is an interesting insight, but does not
lead to an unquestionable improvement in style.

To compare the speed of these three versions, each was run 20 times for
different values of the matrix size n on a 2007 PC using MATLAB 7.7. The
results, per factorization in milliseconds, are given in Table 6.1. The results of this
experiment advise against making a uniform recommendation about vectorization
based on execution speed! The experiment also points out the pitfalls of classical
thinking about the performance of algorithms solely in terms of floating-point
operation counts: none of the above rows is well represented as an O(n3) function.

An uncontroversial application of vectorization is the use of array operators
and utility functions in the evaluation of a mathematical expression. In the follow-
ing comparisons, it’s hard to defend the looped versions as being superior to their
vectorized counterparts, once you understand the functions being used:

“matlabbook”
2009/5/27
page 63

�

�

�

�

�

�

�

�

6.3. Masking 63

y = t.*sin(t.ˆ2); y = zeros(size(t));
for i = 1:length(t)

y(i) = t(i)*sin(t(i)ˆ2);
end

dz = diff(z([1:end 1]));

dz = zeros(size(z));
for j = 1:length(z)-1

dz(j) = z(j+1)-z(j);
end
dz(end) = z(end)-z(1);

e = 1+sum(1./cumprod(1:20));

e = 1; p = 1;
for j = 1:20,

p = p*j;
e = e + 1/p;

end

The bottom line is that loops should not be written carelessly. Writing code
that works at a vector level is easy and natural in most cases. But if profiling
indicates that a lot of time is being spent in a place where the level of vectorization
is selectable, experimentation may be the only way to see what level is best.
For leads on more sophisticated types of vectorization, look for accumarray,
arrayfun, and bsxfun in the online help.

6.3 Masking
A special type of vectorization is called masking. Let’s say that we have a vector
x of values at which we want to evaluate the piecewise-defined function

f (x) =
{

1+ cos(2πx), |x| ≤ 1
2 ,

0, |x| > 1
2 .

Here is the standard loop method:

f = zeros(size(x));
for j = 1:length(x)

if abs(x(j)) <= 0.5
f(j) = 1 + cos(2*pi*x(j));

end
end

The shorter way is to use a mask:

f = zeros(size(x));
mask = (abs(x) < 0.5);
f(mask) = 1 + cos(2*pi*x(mask));

“matlabbook”
2009/5/27
page 64

�

�

�

�

�

�

�

�

64 Chapter 6. Advanced Techniques

The mask is a logical index into x (see page 17). You could refer, if needed, to the
unmasked points by using ˜mask.

Consider a new version of the sum-of-primes idea from page 32. Here’s how
we could count the number of primes less than 100 and add them up:

isprm = isprime(1:100); % which are prime?
sum(isprm) % how many primes
sum(find(isprm)) % sum the primes

Here find converts a logical index into an absolute one, i.e., gives a vector of the
prime numbers.

6.4 Scoping exceptions
Once in a while, the scoping rules for functions get in your way. Although you can
virtually always do what you need within the rules, it’s nice to know how to bend
them.

The least useful and most potentially troublesome violation of scoping comes
from global variables. Any variable may be declared global before it is assigned
a value for the first time in its current scope. After this, any other workspace may
also declare the variable to be global and access or change its value. The trouble
with global variables is that they do not scale well to large or even moderately
sized projects; name clashes and unexpected behaviors tend to creep in quickly.
At one time global values were occasionally more or less necessary, so you may
still find examples of code that uses them. However, all the legitimate uses are
now achieved by more desirable and stable mechanisms. In particular, global
variables should not be used to pass parameters between functions. Instead, use
the techniques described in sections 4.1 and 4.2.

A more interesting exception to the scoping rules is the persistent variable.
When a function declares a variable to be persistent, the variable’s value is pre-
served between invocations to that particular function. While this mechanism does
require a little care to ensure correct use, it is far less general than a global vari-
able, because the persistent variable is still visible only within the workspace of
the function that declares it.

Persistent variables can be used to record information about a function’s
internal state, or to preserve costly preliminary results that can be reused later.
Consider this example for computing the Fibonacci numbers:

function y = fib(n)

persistent f
if length(f) < 2, f = [1 1]; end
for k = length(f)+1:n

f(k) = f(k-2) + f(k-1);
end
y = f(1:n);

“matlabbook”
2009/5/27
page 65

�

�

�

�

�

�

�

�

6.5. Strings 65

The first time this function is called, f will be empty.11 Thus, f will then be
assigned the first two values in the sequence. After this, f is extended as needed
to get the first n values, and the sequence is returned to the caller. In future calls
to fib, any previously computed members of the sequence are simply accessed
rather than recomputed. If the function were called requesting sequence lengths
of n1,n2, . . . ,nk , the work would be proportional to maxni rather than

∑
ni . The

same effect could, of course, be achieved by having f as an input argument, but
that makes the calling function responsible for handling data that may be relevant
only within fib. The approach here is more self-contained.

6.5 Strings
A MATLAB string is enclosed in single forward quotes. If you want a quote
character within a string, use two consecutive quote characters, as in ’It’’s
Cleve’’s fault’.

A string is really just a specially flagged row vector of character codes, and
thus strings can be concatenated using matrix syntax:

>> str = ’Hello world’;
>> str(1:5)
ans =
Hello

>> double(str)
ans =

72 101 108 108 111 ... 108 100

>> char(ans)
ans =
Hello world

>> [’Hello’,’ ’,’world’]
ans =
Hello world

>> [’Hello’; ’world’]
ans =
Hello
world

Vertical concatenation is not so straightforward in general, because each row of
an array has to have the same length. You can use char instead to automatically
pad strings with blanks before concatenation. However, if your intent is really to
create a collection of strings, a better mechanism is a cell array (section 6.6).

11Unlike other variables, persistent variables are given an initial value—specifically, the
empty matrix.

“matlabbook”
2009/5/27
page 66

�

�

�

�

�

�

�

�

66 Chapter 6. Advanced Techniques

There are many string handling functions; see the help on strfun. Here
are a few:

>> upper(str)
ans = HELLO WORLD

>> strcmp(str,’Hello world’)
ans =

1

>> findstr(’world’,str)
ans =

7

Of particular interest is converting between numbers and their character
representations. You can convert a string such as ’3.14’ into its numerical
meaning by using str2num or str2double. Note the important difference
between double, which converts to character codes, and str2double, which
interprets the string as a number!

For the inverse operation of converting a number to a string, there are
num2str and sprintf. Both accept C-style format strings with data con-
version specifiers (but unfortunately, without extension to complex numbers). In
num2str, a single conversion specifier is applied to all the elements of an array,
while the more flexible sprintf can apply multiple conversion specifiers cycli-
cally through all the data given, proceeding in the usual row-first ordering through
arrays. For output to the screen or a file rather than a string, use fprintf.

A common use of sprintf is to create strings, such as file names, that have
consecutive integers in them, as in this example:

for n = 1:12
fn = sprintf(’mydata_%.2i’,n);
load(fn), data(:,:,n) = A;

end

This will load each of the data files named mydata_01.mat, …, mydata_12.mat,
storing a matrix called A as layers of a three-dimensional array. Note that

load mydata_01 and load(’mydata_01’)

are functionally identical, but the second is more suitable when the file name
is stored in a variable. The same “command/function duality” holds for every
MATLAB command that takes extra arguments separated by spaces.

Another common need is to create formatted tables of output. For example,
this script prints out successive Taylor approximations for e1/4:

‘‘matlabbook’
2009/5/27
page 67

�

�

�

�

�

�

�

�

6.6. Cell arrays 67

x=0.25; n=1:6; c=1./cumprod([1 n]);
for n=1:7, T(n)=polyval(c(n:-1:1),x); end
fprintf(’\n T_n(x) |T_n(x)-exp(x)|\n’);
fprintf(’----------------------------------\n’);
fprintf(’%15.12f %8.3e\n’, [T;abs(T-exp(x))])

The result:

T_n(x) |T_n(x)-exp(x)|

1.000000000000 2.840e-01
1.250000000000 3.403e-02
1.281250000000 2.775e-03
1.283854166667 1.713e-04
1.284016927083 8.490e-06
1.284025065104 3.516e-07
1.284025404188 1.250e-08

6.6 Cell arrays
Collecting objects of different sizes is a common chore. For instance, suppose
you want to tabulate the Chebyshev polynomials T0 = 1, T1 = x, T2 = 2x2 − 1,
T3 = 4x3 −3x, and so on. In MATLAB one expresses a polynomial as a vector of
its coefficients, so the length of the vector depends on the degree of the polynomial.
For a collection of consecutive Chebyshev polynomials starting from T0, we could
use a triangular array, but this is neither convenient nor general.

Cell arrays are a mechanism for gathering dissimilar objects into one vari-
able. They are indexed like regular numeric arrays, but their elements can be
anything, including other cell arrays. A cell array is created or referenced using
curly braces {} rather than parentheses. Cell arrays can have any size and dimen-
sion, and their elements do not need to be of the same size or type. Because of
their generality, cell arrays are mostly just containers; they do not support any sort
of arithmetic.

>> str = { ’Goodbye’, ’cruel’, ’world’ }
str =

’Goodbye’ ’cruel’ ’world’

>> str{2}
ans =
cruel

>> T = cell(1,9);
>> T(1:2) = { [1], [1 0] };
>> for n=2:8, T{n+1}=[2*T{n} 0] - [0 0 T{n-1}]; end

“matlabbook”
2009/5/27
page 68

�

�

�

�

�

�

�

�

68 Chapter 6. Advanced Techniques

>> T
T =

Columns 1 through 5
[1] [1x2 double] ... [1x5 double]

Columns 6 through 9
[1x6 double] [1x7 double] ... [1x9 double]

>> T{4}
ans =

4 0 -3 0

The second example above points out a subtlety in extracting elements from
cell arrays. The assignment reference T(1:2) refers to a subarray extracted from
the cell array T; thus, the right-hand side member of the assignment is a 1×2 cell
array to match. The reference T{n+1}, however, refers to a single element of a
cell array—in this case, a vector. To summarize,

>> T{4}
ans =

4 0 -3 0

>> T(4)
ans =

[1x4 double]

Thus, the right-hand side member of the loop assignment must not be enclosed
in braces. Doing so would not cause an error in the first loop pass—the element
T{3} would itself be a cell array with one element—but it would cause an error
in the second pass, when that cell array is illegally concatenated with a vector.

What, then, should we expect from a reference to T{4:5}, which should
refer to two vectors? The answer is that MATLAB acts as though those two vectors
had just been entered in the command line at that spot:

>> T{4:5}
ans =

4 0 -3 0

ans =
8 0 -8 0 1

This syntax proves to be surprisingly useful, in particular as the idiomT{:}, which
is interpreted as a comma-separated list of the elements of T. For example, using
the str cell array created above, we get

‘‘matlabbook’
2009/5/27
page 69

�

�

�

�

�

�

�

�

6.6. Cell arrays 69

>> char(str{:}) % = char(’Goodbye’,’cruel’,’world’)
ans =
Goodbye
cruel
world

When combined with cat (the command form of array concatenation), this syntax
can be used to convert cells containing compatibly sized data into numeric array
form:

>> c = { [3 4], [5 6] };
>> cat(1, [1 2], c{:})
ans =

1 2
3 4
5 6

>> cat(2, [1 2], c{:})
ans =

1 2 3 4 5 6

>> e = {}; cat(2, [1 2], e{:})
ans =

1 2

Observe that for the empty cell array e, the expression e{:} was not only empty,
but it also gobbled up the comma in front of it that would otherwise have caused
a syntax error. The inverse operation of converting an array into cell form is done
by num2cell:

>> num2cell(1:6)
ans =

[1] [2] [3] [4] [5] [6]

>> num2cell(1:6,2)
ans =

[1x6 double]

The second argument of num2cell specifies which dimension to “pack” into a
cell; it defaults to 1.

The special cell array varargin is used to pass optional arguments into
functions. In this way, you can write functions that have sensible default behaviors
which may be overridden. For example, suppose we want to write a function that
returns the color specification for blue, in either the RGB color model (by default)
or the hue-saturation-value (HSV) model:

“matlabbook”
2009/5/27
page 70

�

�

�

�

�

�

�

�

70 Chapter 6. Advanced Techniques

function b = blue(varargin)

if nargin < 1
varargin = {’rgb’};

end

switch(varargin{1})
case ’rgb’

b = [0 0 1];
case ’hsv’

b = [2/3 1 1];
otherwise

error(’Unrecognized color model.’)
end

Both blue and blue(’rgb’) return the first option, while blue(’hsv’)
returns the second. Another way to use varargin is when an arbitrary number
of inputs might be appropriate. For instance, consider:

function s = add(s,varargin)

for n = 1:nargin-1
s = s + varargin{n};

end

Here, the first input argument is assigned to the name s, and all others are assigned
to the cell varargin. The keyword nargin always returns the total number
of inputs, both named and optional. To provide similar functionality for output
arguments, you can use varargout and nargout.

6.7 Structures
Structures are essentially cell arrays that are indexed by name rather than by
number.

Say you are keeping track of the grades of students in a class. You might
start by creating a student structure as follows:

>> student.name = ’Moe’;
>> student.homework = [10 10 7 9 10];
>> student.exam = [88 94];
>> student
student =

name: ’Moe’
homework: [10 10 7 9 10]

exam: [88 94]

“matlabbook”
2009/5/27
page 71

�

�

�

�

�

�

�

�

6.7. Structures 71

The name of the structure is student. Data is stored in the structure according
to named fields, which are accessed using the dot notation. The field values can
be anything.

Let’s add another student:

>> student(2).name = ’Curly’;
>> student(2).homework = [4 6 7 3 0];
>> student(2).exam = [53 66];
>> student
student =
1x2 struct array with fields:

name
homework
exam

Now you have an array of structures. This array can have any size and dimension.
All elements of the array must have the same fields, but the values occupied by
those fields do not have to be compatible in any way across different elements of
the structure array. For instance,

>> student(2).homework = ’missing’

would be a syntactically valid continuation of the above.
In parallel with the cell array syntax c{:}, you can use the array and field

names alone to create comma-separated lists of all the entries in the array. For
example:

>> roster = {student.name}
roster =

’Moe’ ’Curly’

>> hw = cat(1, student.homework)
hw =

10 10 7 9 10
4 6 7 3 0

In addition, you can refer to a field whose name is stored as a string variable using
a modified syntax:

>> score = ’exam’;
>> cat(1, student.(score))
ans =

88 94
53 66

“matlabbook”
2009/5/27
page 72

�

�

�

�

�

�

�

�

72 Chapter 6. Advanced Techniques

Exercises
6.1. Rewrite trap or simp (page 43) so that it does not use any loops. (Hint:

Set up a vector of all x values and evaluate f for it. Then set up a vector of
weighting coefficients and use an inner product.)

6.2. Consider again the pairwise-differencing code variants beginning on page 60.
Explore the issue of whether the order of the loops in the first variant, or
the use of row rather than column vectors in the second variant, affects the
execution time.

6.3. Suppose x is a column vector. Compute, without using loops or condition-
als, the matrix A given by

aij =



1

(xi −xj)2
if i �= j ,

1 otherwise.

(One way to do this uses direct assignment to the diagonal elements of A.
Using row/column style indices, this is rather tricky, but see Exercise 2.6.)

6.4. The n×n matrix

An =




1 0 0 · · · 1
−1 1 0 · · · 1
−1 −1 1 · · · 1

...
. . .

. . .
...

−1 −1 · · · −1 1




is well known for causing (a very rare!) numerical instability in Gaussian
elimination for solving systems of equations. Using some combination
of commands such as ones, tril, eye, indexed assignment, and array
concatenation, create the matrix A50 without resorting to any loops.

6.5. Reconsider the function chebeval (page 34) that evaluates Chebyshev
polynomials at multiple points. Write the function so that it performs as
efficiently as you can make it. Among other things, you have to choose
whether to use the definition or the recursion.

6.6. Consider “shuffling” a vector of integers from 1 to 52 using a physical
interpretation of a card shuffle. Divide the cards into two equal stacks, and
merge the stacks together such that each time a pair of cards is to fall off the
“bottom” of each stack, a random decision is made as to which falls first.
A loop-based implementation would be

“matlabbook”
2009/5/27
page 73

�

�

�

�

�

�

�

�

Exercises 73

function s = shuffle(x)
n = length(x)/2;
s = [];
for i = 1:n

if rand(1) > 0.5
s = [s x([2*i-1 2*i])];

else
s = [s x([2*i 2*i-1])];

end
end

Rewrite this function without loops. (This can be done in as few as four
statements using resizing tricks.) It can be interesting to start with a perfectly
ordered deck and see how many shuffles it takes to “randomize” it. One
crude measure of randomness is the (1,2) element of corrcoef(1:52,v),
which is expected to be zero if v is random.

6.7. Rewrite the function entropy on page 35 without any loops using sort,
diff, find, and (perhaps) sum.

6.8. Different Fibonacci sequences can be produced by changing the first two
members of the sequence. Rewrite fib from page 64 so that it accepts
these seed values and recomputes the sequence only when necessary.

6.9. Write a function capital that accepts arbitrarily many string inputs and
capitalizes each one using the built-in function upper. You can return
either a cell array of the new strings, or a list of the individual strings using
varargout.

6.10. Write a function

function f = pcfun(int_1,val_1,...,int_N,val_N)

that returns a callable function f such that f (x)=val_k if x is in the
interval int_k, specified as a vector [a b], and not in any previous int_j
for j < k, and such that f (x) = 0 if x is not in any of the intervals. The
f you return should be a handle to a nested function within pcfun. To
increase the challenge, allow a different default value to be specified at the
end of the list.

6.11. Using the examples in section 6.7 as a model, write a function

function [mu,sigma] = gradestat(student,asgnt)

that computes grade averages and standard deviations for a field named in
the input argument asgnt.

“matlabbook”
2009/5/27
page 74

�

�

�

�

�

�

�

�

“matlabbook”
2009/5/27
page 75

�

�

�

�

�

�

�

�

Chapter 7

Scientific Computing

Certain computational problems appear repeatedly in applications motivated by
science and engineering. Naturally, the MATLAB software is thoroughly equipped
with ways to handle such problems. This chapter presents quick surveys of some of
these methods. The goal of the chapter is not to make you a numerical master chef
or even to give you “recipes” for numerics. Rather, it’s to explain how to order from
the menu. A solid mathematical understanding of the underlying methods would
require at least a year of undergraduate numerical analysis. However, even complex
problems can often be broken down into linked elements for which MATLAB
provides good functions for solving.

7.1 Linear algebra
The most common tasks in numerical linear algebra are solving linear systems
and finding matrix decompositions, with eigenvalues and singular values being
the most prominent examples. Broadly speaking, the methods for these problems
break down into direct methods, which are best for matrices up to size (perhaps)
in the few thousands, and iterative methods, which are useful for sparse and truly
large matrices. Iterative methods are discussed in section 7.2.

Linear systems are most often given in one of two forms: Ax = b, where A is
a square matrix, or in the overdetermined least-squares problem min‖b−Ax‖2,
where A is a matrix with more rows than columns. Mathematically, the square
case is solved (when possible) by using the inverse A−1, and the rectangular case
is solved by a generalization known as the pseudoinverse. However, in numerical
computation an actual matrix inverse is computed only rarely in practice. When
numerical analysts speak of “inverting” a matrix, what’s meant is using appropriate
numerical algorithms that accomplish an equivalent task.

In MATLAB, the method of choice in both square and rectangular cases is the
backslash operator, used in the formx=A\b for both types of problems. For square
matrices, in fact, the idiom A\ is mathematically equivalent and computationally
superior to left-multiplication by A−1. When A is not square, the same idiom

75

‘‘matlabbook’
2009/5/27
page 76

�

�

�

�

�

�

�

�

76 Chapter 7. Scientific Computing

represents left-multiplication by the pseudoinverse of A. Similarly, to multiply on
the right by A−1 or the pseudoinverse, you can use a forward slash, as in /A. The
notational idea in both cases is that A is in the “denominator,” while respecting the
fact that matrix multiplication is not commutative. The generality of the notation is
aesthetically pleasing but dangerous when used carelessly. For example, when A is
n×n and b is n×1, then both A\b and b\A are syntactically and mathematically
defined but utterly different!

The backslash operator does not apply only a single algorithm. It represents
an expert system that applies the best of several methods depending on detectable
properties of A such as sparsity, triangularity, and positive definiteness. These are
spelled out in the documentation page for mldivide. One consequence of the
complexity of this operator is that you may need to set up A properly to get the
fastest solution: for instance, if A is tridiagonal, you should create it in or convert
it to sparse format to get an O(n) solution time. See section 2.5 for more on sparse
matrices.

If you need to solve multiple systems Axi = bi , for the known vectors
b1, . . . ,bk , you can use the identity[

b1 b2 · · · bk

] = [
Ax1 Ax2 · · · Axk

] = A
[
x1 x2 · · · xk

]
.

The following code demonstrates a case with k = 3:

>> A = magic(5);
>> B = ones(5,3); B(2,2)=0; B(4,3)=0;
>> X = A\B
X =

0.0154 -0.0358 0.0142
0.0154 0.0527 0.0027
0.0154 0.0123 0.0123
0.0154 0.0219 -0.0281
0.0154 0.0104 0.0604

>> A*X
ans =

1.0000 1.0000 1.0000
1.0000 -0.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 0.0000
1.0000 1.0000 1.0000

Often, however, the right-hand side vectors bi are not all known at once, because
they are produced as part of an iteration. In such a situation, the backslash idiom
is much less useful, because it has to repeat costly work on each iteration. Instead,
you need to first compute a separate factorization. For instance, the well-known
inverse iteration for an eigenvector of A might look like this:

A = randn(400)/20;
[L,U] = lu(A);

‘‘matlabbook’
2009/5/27
page 77

�

�

�

�

�

�

�

�

7.1. Linear algebra 77

v = randn(400,1); v = v/v(1);
for k = 1:50

v = U \ (L\v);
v = v/v(1);

end

Observe that U\(L\v) is equivalent to U−1(L−1v) = (LU)−1v = A−1v. Be-
cause L and U have a special structure (triangular plus permutation), applying the
backslash to them requires only triangular substitutions, which are much faster
than the factorization step. Matters become even more complicated when A has
one of the special properties that can be detected by the backslash. At this point
one really needs to know some numerical linear algebra to exploit the structure of
the problem.

Two of the most commonly desired matrix factorizations are the eigenvalue
and singular value decompositions (SVDs). These are found using eig and svd,
respectively. Both functions have multiple output formats, as demonstrated below:

>> A = magic(5);
>> lambda = eig(A)
lambda =

65.0000
-21.2768
-13.1263
21.2768
13.1263

>> [V,D] = eig(A);
>> v1 = V(:,1)
v1 =

-0.4472
-0.4472
-0.4472
-0.4472
-0.4472

>> norm(A*V-V*D)
ans =

6.9390e-014

>> A = magic(5);
>> sigma = svd(A)
sigma =

65.0000
22.5471
21.6874
13.4036
11.9008

“matlabbook”
2009/5/27
page 78

�

�

�

�

�

�

�

�

78 Chapter 7. Scientific Computing

>> [U,S,V] = svd(A);
>> norm(A-U*S*V’)
ans =

8.7934e-014

The differences are more than pure cosmetics, as the single-output forms can be
substantially faster than the full versions. In addition, the syntax svd(A,0)
produces a reduced-size variant of the SVD that is often more appropriate for
rectangular matrices.

7.2 Iterative linear algebra
The methods of section 7.1 are best for matrices of size up to around a thousand, or
perhaps tens of thousands for some sparse linear systems. For truly large problems,
one turns to iterative methods, which produce sequences of improving estimates.
Iterative methods do not factor or modify the given matrix, which is ideal for
sparse problems, and they are able to exploit other problem structures, such as the
existence of an approximate inverse (an idea known as preconditioning).

For linear systems, there are many choices of iterative methods. The focus
in MATLAB is on the projective or Krylov subspace methods (see the help for
sparfun), as opposed to older methods such as Gauss–Seidel or successive over-
relaxation (SOR). If the system matrix is positive definite, the usual choice is the
conjugate gradient method, implemented by pcg. For more general matrices,
bicgstab and gmres tend to be quite popular, but there is no single best method.

Here is gmres at work:

>> A = eye(400) + 0.5*randn(400)/20;
>> b = randn(400,1);
>> x = gmres(A,b,10,1e-10);
gmres(10) converged at outer iteration 4 ...

>> norm(b-A*x)/norm(b)
ans =

6.8167e-011

In practice the choice of method is often less critical than the choice of a precon-
ditioner, which is a matrix M that is somehow close to A yet allows very fast
solutions of Mx = b.

For matrix decompositions the choices are simpler: eigs for eigenvalues
and sigs for singular values. Both are preferred to the power iteration and related
classical methods often presented in textbooks. Usually one does not seek the full
decomposition (which might be impractical to even store), but rather a few of the
largest or smallest values and perhaps their associated vectors. Those capabilities
are available, as explained in the online help.

All of these iterative methods have a surprising additional flexibility: they
don’t require matrices! They can instead be given a function that returns the vector

“matlabbook”
2009/5/27
page 79

�

�

�

�

�

�

�

�

7.3. Rootfinding 79

Au for any given vector u. This is more useful than it may first seem, for example,
in applications where one can use multipole expansions, wavelets, or other fast
approximate methods for the matrix-times-vector operation. This is a common
mode of operation in many of the very largest problems.

7.3 Rootfinding
One of the oldest and most common numerical problems is trying to find a root
or zero of a scalar function f (x) of one variable. (This formulation is equivalent
to solving f (x) = c for any constant c, since in that case we can find a root of
the function f (x) − c.) Usually one learns Newton’s method for this problem,
but it turns out not to be the best general-purpose method, owing to its unreliable
convergence and its requirement of an explicit derivative calculation.

The MATLAB function fzero is much better than a handwritten algorithm
for most rootfinding problems. It requires you to provide a function that computes
f (x) for any given x, and either a starting guess for the root or an interval on which
f changes sign. Providing an interval, when this is feasible, can often greatly speed
up the convergence. As an example, we try both approaches using a syntax that
shows the progress of iterations. First, we try with a starting guess only:

>> f = @(x) 1 + 1./(1-x) + 4./(2-x);
>> opt = optimset(’disp’,’iter’);
>> fzero(f,1.5,opt)
Search for an interval around 1.5 ...
Count a f(a) b f(b)
1 1.5 7 1.5 7
3 1.4576 6.1888 1.5424 7.898

...
14 1.1606 -0.46184 1.74 15.033

Search for a zero in the interval [1.16059, 1.74]:
Func-count x f(x)

14 1.16059 -0.461842
15 1.17786 0.242895

...
21 1.17157 8.88178e-016

Zero found in the interval [1.16059, 1.74]

ans =
1.1716e+000

(The output has been edited to save space.) Here two-thirds of the iterations were
devoted just to finding an interval that contains a root. If we provide such an
interval to start with, much of the work is saved, even if the interval is not small:

“matlabbook”
2009/5/27
page 80

�

�

�

�

�

�

�

�

80 Chapter 7. Scientific Computing

>> fzero(f,[1.01 1.99],opt)
Func-count x f(x)

2 1.01 -94.9596
3 1.19802 0.937661

...
11 1.17157 8.88178e-016

Zero found in the interval [1.01, 1.99]

ans =
1.1716e+000

In this particular example, the execution time difference is negligible, but in many
problems each evaluation of the function f might itself represent a time-consuming
computation, such as integration of a differential equation.

Roots of polynomials are handled differently, using the function roots,
which actually solves an equivalent matrix eigenvalue problem. It’s far faster and
more reliable than trying to find roots by Newton-style methods. Be aware, though,
that polynomial roots can be very sensitive to perturbations in the coefficients.

For solving multidimensional systems of nonlinear equations of the form
F(x) = 0, MATLAB offers fsolve in the Optimization Toolbox. You need only
supply a function for computing F and a starting point, but you might greatly
improve the convergence if you also supply a function computing the Jacobian
matrix J (x) of F , or at least giving the sparsity pattern of J . There are several
algorithms to choose from, so read the documentation if you have trouble on a
particular problem. All of the methods expect F to be reasonably smooth.

7.4 Optimization
To find the minimum of a scalar function f (x) of one variable, use fminbnd. It
requires a function computing f and an interval on which to optimize it:

>> format long
>> f = @(x) exp(3*x.ˆ2-2*x);
>> fminbnd(f,0,2)
ans =

0.333329150935613

>> fminbnd(f,0,2,optimset(’tolx’,1e-10))
ans =

0.333333328332764

To maximize f (x), minimize −f (x).
For minimization of functions with multiple variables, there are two main

choices: fminunc (in the Optimization Toolbox) and fminsearch. For smooth

“matlabbook”
2009/5/27
page 81

�

�

�

�

�

�

�

�

7.5. Data fitting and interpolation 81

functions, fminunc is usually faster, but fminsearch does not use any deriva-
tive information and may be better for nonsmooth problems. In the special case of
nonlinear least squares,

f (x) = f1(x)2 +f2(x)2 +·· ·+fm(x)2,

one should use lsqnonlin instead. (In fact, lsqnonlin is one of the methods
fsolve uses for solving nonlinear systems.)

Optimization in engineering often comes with side constraints on the vari-
ables. None of the multidimensional methods named here respects such con-
straints. See the Optimization Toolbox for methods for several variants of such
problems.

7.5 Data fitting and interpolation
A common task is to make sense of data from noisy observations of a presumably
simple relationship. Here noise can refer to experimental error or uncertainty, or to
neglected higher-order effects. In data fitting one posits a form for the underlying
relationship involving some unknown parameters, then uses the data to find the
best parameters via an optimization.

When the form of the relationship is a linear combination of basis functions
and the parameters are the coefficients, the resulting optimization is a linear least-
squares problem and can be solved using the backslash. For example,

>> t = (0:.01:3)’;
>> y = 4+cos(t)-0.5*sin(t)+0.2*randn(size(t)); % data
>> A = [ones(size(t)) cos(t) sin(t)]; % basis functions
>> c = A\y
c =

4.0033
0.9890
-0.4763

We can use an anonymous function (with linear algebra shortcuts) to turn the result
into a callable function of the independent variable:

>> f = @(t) [ones(size(t)) cos(t) sin(t)] * c;
>> max(abs(f(t)-y))
ans =

0.6093

>> ezplot(f,[0 3])
>> hold on, plot(t,y,’.’)

The result is shown in Figure 7.1.
When the functional form is a polynomial, the least-squares fitting process

is automated by polyfit. Certain other types of fit can be recast into a polyno-
mial form. For example, the power law y = ctα becomes the linear relationship

‘‘matlabbook’
2009/5/27
page 82

�

�

�

�

�

�

�

�

82 Chapter 7. Scientific Computing

0 0.5 1 1.5 2 2.5 3

3

3.5

4

4.5

5

t

Figure 7.1. Example of a least-squares fit to data.

logy = logc +α log t for the logs of the variables. A graphical data fitting tool
for the most common linear fits is available from the Tools menu of every figure
window.

If the unknown coefficients of the fitting function appear nonlinearly, a non-
linear optimization results. For instance, MATLAB ships with U.S. census data
for the years 1790–1990. This data was collected every 10 years. To fit this data
with an exponential curve of the form c1 + c2e

c3t , you could proceed as follows
(if you have access to the Optimization Toolbox):

>> load census
>> t = (cdate-1790)/10;
>> resid = @(c) sum((c(1)+c(2)*exp(c(3)*t)- pop).ˆ2);
>> fminsearch(resid,[1 1 1])
ans =

-39.1124 35.8209 0.1053

You can check graphically that this is a pretty good fit.
A related problem is that of interpolation. The idea again is to transform

discrete values into a function of a continuous variable, but here the function is
constrained to actually pass through all the given data. This is most appropriate
when one presumes that the data itself consists of samples of a function with some
regularity properties.

The primary function for interpolation in one variable is interp1. For
example, here we sample a smooth function at eight random points, then compare
a piecewise cubic interpolating polynomial to the original:

>> f = @(t) exp(sin(2*t));
>> x = [0;sort(rand(6,1));1]; y = f(x);
>> t = (0:0.2:1)’;
>> [interp1(x,y,t,’pchip’), f(t)]

“matlabbook”
2009/5/27
page 83

�

�

�

�

�

�

�

�

7.5. Data fitting and interpolation 83

0 0.5 1

1

1.5

2

2.5

t

exp(sin(2 t))

0 0.5 1

1

1.5

2

2.5

t

pchip interpolant

Figure 7.2. One-dimensional interpolation.

ans =
1.0000 1.0000
1.4873 1.4761
2.0280 2.0490
2.5194 2.5397
2.6976 2.7171
2.4826 2.4826

Calling interp1 evaluates the interpolating polynomial at given points. If in-
stead you want to create an interpolating function that can be evaluated, it is
convenient to use a different form of the command with an anonymous function:

>> g = @(t) ppval(interp1(x,y,’pchip’,’pp’), t);
>> subplot(1,2,1), ezplot(f,[0 1]) % original
>> hold on, plot(x,y,’o’)
>> subplot(1,2,2), ezplot(g,[0 1]) % interpolant
>> hold on, plot(x,y,’o’)

The result is shown in Figure 7.2.
There are several different types of interpolants available with interp1:

’nearest’, which produces a piecewise-constant staircase approximation;
’linear’, the default, which is piecewise linear; ’spline’, which is a piece-
wise cubic spline with not-a-knot conditions; and ’pchip’, which is also piece-
wise cubic, but sacrifices some smoothness in order to preserve monotonicity and
local maxima and minima in the result. You can also interpolate periodic data
using interpft.

For interpolation of data depending on more than one variable, there are
two families of commands: interp2, interp3, and interpn when the data
values lie on grids (not necessarily equispaced), and griddata, griddata3,
and griddatanwhen the data lies at scattered locations. In the latter cases, only
nearest and linear types of interpolants are available.

“matlabbook”
2009/5/27
page 84

�

�

�

�

�

�

�

�

84 Chapter 7. Scientific Computing

7.6 Integration
Numerical approximation of definite integrals is called quadrature in one dimen-
sion and cubature if the integration domain is multidimensional. You may be
familiar with quadrature methods such as the midpoint or trapezoid rule from el-
ementary calculus; the quadrature methods in MATLAB are close cousins. The
integrand is sampled at automatically selected points, and areas of approximating
shapes are used to estimate the area represented by the integral itself. The process
usually continues until the accuracy of the approximation is estimated to be less
than an optionally specified tolerance. The error estimate is not a mathematical
guarantee, but it can usually be treated with confidence.

MATLAB gives a few different quadrature variants (shown below), each of
which works best in certain situations. quad is best for general purposes unless
very high accuracy is desired, in which case quadl is likely to be more efficient.
The quadgk function is best for rapidly oscillating integrands, improper integrals,
and integration in the complex plane.

>> f = @(x) x.*sin(exp(x));
>> format long
>> [quad(f,1,6) quadl(f,1,6) quadgk(f,1,6)]’
ans =

-0.340051345224177
-0.340044091632578
-0.340044091659739

>> [quad(f,1,8) quadl(f,1,8) quadgk(f,1,8)]’
Warning: Maximum function count exceeded.
> In quad at 106
Warning: Maximum function count exceeded.
> In quadl at 104

ans =
-0.518113806710640
-0.663567101898307
-0.333649594278458

>> quadgk(@(x) 1./sqrt(x),0,1)
ans =

1.999999999999763

Indefinite integration is normally a symbolic process of producing an
antiderivative, something that is not available through numerics. However, since∫ x

a
f (t)dt , where x is regarded as an independent variable, is an antiderivative of

f (x), numerical quadrature can be used to create numerical values, though not a
formula, for any particular antiderivative. This is easily done with the quad fam-
ily, but the result is quite inefficient, since a completely new quadrature is done
for each value of x. Instead, you should write the antiderivative as an initial-value
problem (IVP) and use one of the methods described in section 7.7.

“matlabbook”
2009/5/27
page 85

�

�

�

�

�

�

�

�

7.7. Initial-value problems 85

MATLAB offers dblquad for cubature over two-dimensional rectangular
domains and triplequad for integration over rectangular boxes in space. More
general domains can be implemented straightforwardly using iterated integration,
but in more than two dimensions this is probably much too slow in most cases.

7.7 Initial-value problems
MATLAB has an excellent library of solvers for IVPs in the form

dx

dt
= f

(
t ,x(t)

)
, a ≤ t ≤ b, x(a) = x0, (7.1)

where x and f are understood to be vector valued. Any differential equation
with higher-order derivatives present must first be written in this first-order form,
as explained in most elementary books on differential equations and numerical
analysis.

The primary division between IVP solvers is stiff versus nonstiff. Loosely
speaking, stiff problems include phenomena that vary over widely different time
scales, and they require methods that are more expensive for each time step taken,
especially in the face of high-dimensional nonlinearity. The logical extreme of stiff-
ness is the differential-algebraic equation, which has algebraic side constraints
on the variables in addition to the dynamics.

A basic IVP solution takes the form

output = odexxx(f,time,init)

The name of the function called might beode45, ode113, ode15s, or one of the
other solvers listed in the documentation. In terms of equation (7.1), the first input
argument f is a callable function representing the mathematical function f (t ,x),
the second argument time defines the interval [a,b] for the independent variable
t , and the input init defines the initial value x0. Both the time input argument
and the output can take different forms.

For example, consider the well-known predator-prey model

dx1

dt
= x1 −αx1x2,

dx2

dt
= βx1x2 −x2.

This problem can be solved by first writing an M-file to represent the functions on
the right-hand side. Note that the IVP solvers want the result f (t ,x) as a column
vector:

function dxdt = predprey(t,x)

dxdt(1,1) = x(1) - 0.2*x(1)*x(2);
dxdt(2,1) = 0.5*x(1)*x(2) - x(2);

end

“matlabbook”
2009/5/27
page 86

�

�

�

�

�

�

�

�

86 Chapter 7. Scientific Computing

Here are several variations on solving the problem:

>> % auto-select times for output
>> [t,x] = ode45(@predprey, [0 20], [8;1]);
>> size(x)
ans =

101 1

>> [t(1:5) x(1:5,:)]
ans =

0 1.0000
0.0100 1.0001
0.0200 1.0002
0.0300 1.0005
0.0400 1.0008

>> % manually select times for output
>> [t,x] = ode45(@predprey, [0:0.05:20], [8;1]);
>> size(x)
ans =

401 2

>> [t(1:5) x(1:5,:)]
ans =

0 8.0000 1.0000
0.0500 8.3198 1.1665
0.1000 8.6363 1.3717
0.1500 8.9445 1.6255
0.2000 9.2375 1.9408

>> % delay selecting output times
>> sol = ode45(@predprey, [0 20], [8;1]);
>> deval(sol,t(1:5))
ans =

8.0000 8.3198 8.6363 8.9444 9.2374
1.0000 1.1665 1.3717 1.6255 1.9408

The internal solution process is not affected by whether or how you request output
times. If you want to make solutions more (or less) accurate than the selected
defaults, see the help on odeset or the online examples.

The IVP solvers offer lots of customization and additional features. Investi-
gate online help if you are doing any more than the basics.

7.8 Boundary-value problems
A boundary-value problem (BVP) also starts with a first-order ODE, y′(x) =
f (x,y), for a ≤ x ≤ b, but unlike an IVP, it has side conditions involving two

“matlabbook”
2009/5/27
page 87

�

�

�

�

�

�

�

�

7.8. Boundary-value problems 87

values of the solution: g(y(a),y(b)) = 0 for a vector-valued g. Existence and
uniqueness theory is less general for BVPs than for IVPs, and the numerical so-
lution process is also less straightforward. Here we just give a simple case study,
the Allen–Cahn equation:

εu′′ +u(1−u2) = 0, 0 < x < 1; u(0) = −1, u(1) = 1.

Both u ≡ −1 and u ≡ 1 are constant solutions of the differential equation, and
this equation models a “phase change” between them. If ε is small, this change
is abrupt. As with IVPs, the second-order differential equation must be cast in
first-order vector form by introducing y1 = u, y2 = u′.

Three elements are needed to attempt a numerical solution: a function to
define the ODE, a function to define the boundary conditions, and an initial guess
to the solution. One way to organize these needs is to write a single M-file that
returns them as output. For the Allen–Cahn example, with ε = 0.01, we might use
the following:

function [f,g,init] = mybvp(epsilon)
f = @(x,y) [y(2); (y(1)ˆ3-y(1))/epsilon];
g = @(ya,yb) [ya(1)+1; yb(1)-1];
x = linspace(0,1,10)’;
yguess = @(x) [-1+2*x; 2];
init = bvpinit(x,yguess);

The first output is the vector function f (x,y). (In many problems this might be
a handle to a subfunction.) The second is the vector function g that should equal
zero when vectors y(a) and y(b) are substituted for ya and yb. In this case, only
the first component of y appears at both boundaries. The third output is created by
bvpinit, which in turn requires a function defining a guess for y(x), which ought
to satisfy the boundary conditions. Both the nodes and the values are potentially
important to the solution process; in difficult problems, the guess may need to be
quite similar to the true solution.

With these elements in place, we can call bvp4c or bvp5c to create the
solution and use deval to evaluate it for a plot:

>> [f,g,init] = mybvp(1e-3);
>> soln = bvp4c(f,g,init)
soln =

x: [1x143 double]
y: [2x143 double]
yp: [2x143 double]

solver: ’bvp4c’

>> xp=0:0.01:1; plot(xp, deval(soln,xp,1))

The result is shown in Figure 7.3. The structure soln tells us that the original 10
nodes in x have been replaced by 143 unequally spaced ones, in order to represent
the solution accurately.

“matlabbook”
2009/5/27
page 88

�

�

�

�

�

�

�

�

88 Chapter 7. Scientific Computing

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Figure 7.3. Solution of the Allen–Cahn equation by bvp4c.

If we attempt the same process with ε = 10−4, the solver appears to hang.
The reason is that as ε shrinks, so does the width of the transition region around
x = 1/2, and the linear initial guess for the solution is not sufficiently close to
the correct shape. In this case one gets better results by using the solution with
ε = 10−3 as the initial guess, in a crude form of a process called continuation.
The syntax of bvp4c makes this easy—note the subtle change in the second line
here:

>> [f,g,init] = mybvp(1e-4);
>> soln = bvp4c(f,g,soln);

7.9 Time-dependent partial differential equations
The numerical solution of partial differential equations (PDEs) is an enormous and
difficult subject. In this section we show how some simple tools can be used to
solve some problems in one space dimension plus time. While MATLAB does
have an automatic facility for such problems called pdepe, here we present a
semi-automated process known as semidiscretization or the method of lines. In
the method of lines one discretizes space and time independently. At a practical
level this means the original PDE is replaced by a (typically large) system of ODEs.
In principle, and often in practice too, one can solve the ODE system using the
IVP solvers from section 7.7.

For example, consider the problem

ut = 0.2uxx +u, −1 ≤ x ≤ 1, u(−1, t) = u(1, t) = 0. (7.2)

This problem mixes exponential growth (via ut = u) with diffusion. To solve
this problem, we divide the interval [−1,1] into n intervals of width h = 2/n,
having endpoints xi for i = 0, . . . ,n. We represent the function u(x, t) at a fixed

“matlabbook”
2009/5/27
page 89

�

�

�

�

�

�

�

�

7.9. Time-dependent partial differential equations 89

−1

0

1

0

1

2
0

0.5

1

Figure 7.4. Method of lines result for a PDE in one dimension.

time t as a vector of its values ui(t), i = 1, . . . ,n−1, with the understanding that
u0(t) = un(t) = 0 for all time due to the boundary conditions. The differentiation
operation uxx is replaced by the matrix-vector multiplication

1

h2




−2 1
1 −2 1

. . .
. . .

. . .
1 −2 1

1 −2







u1
u2
...

un−2
un−1


 . (7.3)

The result is a linear IVP for the semidiscrete values ui(t), which can be solved
using the built-in methods. The problem can be attacked with the following re-
markably short script, whose result is shown in Figure 7.4:

n = 100; h = 2/n; % n intervals, width 2/n
x = -1 + h*(1:n-1)’; % node locations
D2 = toeplitz([-2 1 zeros(1,n-3)]/hˆ2); % diff matrix
f = @(t,u) 0.2*D2*u + u; % discretized du/dt
u0 = (1-x.ˆ2)./(1+50*x.ˆ2); % initial condition
[t,u] = ode15s(f,[0 2],u0); % solve
waterfall(x,t,u)

This script is far more effective than trying to code a “classical” method such as
Crank–Nicolson. Observe that small time steps were taken initially because of the
large derivatives in the solution, and that much larger steps became possible once
the solution smoothed out.

“matlabbook”
2009/5/27
page 90

�

�

�

�

�

�

�

�

90 Chapter 7. Scientific Computing

Exercises
7.1. Write a function or script that solves the linear system Akx = b for a square

matrix A and positive integer k, using an LU factorization of A and never
explicitly computing the matrix Ak . (Hint: Interpret the problem as solving
k linear systems sequentially.)

7.2. Suppose A is a full-rank 6×4 matrix. Which of the following is (in exact
arithmetic) equal to an identity matrix: A\A or A/A? Why is the other case
something other than the identity?

7.3. Examine the eigenvalues of the family of matrices

DN = −N2




−2 1 0 0 · · · 1
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

. . .
. . .

. . .
...

0 0 · · · 1 −2 1
1 0 0 · · · 1 −2




,

where DN is N ×N , for growing values of N , for example, N = 32,64,128.
The smallest eigenvalues converge to integer multiples of a simple number.

7.4. Verify, for a random 10×5 matrix, the identity

‖A‖2
F =

K∑
i=1

σ 2
i ,

where K = min{m,n}, {σ1, . . . ,σK} are the singular values of A, and ‖ · ‖F

is the Frobenius matrix norm.

7.5. A classical problem of applied mathematics is to find the zeros of Bessel’s
function Jν(x) for fixed values of the index ν. Find all the zeros of J1/2(x)

for x ∈ [0,10].
7.6. Lambert’s W function is defined as the inverse of the function f (x) = xex .

It has no simple analytic expression. Write a function W = lambert(x)
that evaluates Lambert’s W at any value of x > 0. (Hint: Solve the expres-
sion x = yey for y given x, using fzero.)

7.7. Find the value of x ∈ [0,1] that minimizes the largest eigenvalue of the
matrix A(x) = xM + (1−x)P , where M is a 5×5 magic square and P is
a 5×5 Pascal matrix.

7.8. Consider the census population data fits in section 7.5. Show that by setting
c1 = 0 in the proposed model, a linear relationship results between t and the

“matlabbook”
2009/5/27
page 91

�

�

�

�

�

�

�

�

Exercises 91

log of the population. Hence use polyfit to find c2 and c3 in the model,
and check the quality of fit graphically. (See also section 5.1.2.)

7.9. Write a function

function F = indefint(f,a,b,Fa)

that returns a callable F such that F(x) evaluates for x ∈ [a,b] the
antiderivative of f defined uniquely by F(a) = Fa. (A call to ode45,
followed by an anonymous function wrapper around a call to deval, is a
straightforward solution.)

7.10. The quadrature routines require an integrand that can be evaluated for any
value of the independent variable. A function given only by some of its
values at discrete points must first be interpolated before quadrature can be
applied. Write a function

function Q = interpquad(x,y)

that applies quad over the interval [x(1),x(end)] to the piecewise
cubic interpolant computed by interp1 for the data points defined by
vectors x and y. (Note: If instead you use a piecewise linear interpolant,
the result is the Trapezoid Rule for numerical quadrature.)

7.11. Consider the IVP x′(t) = tx2, x(0) = 1. Solve this problem using ode45
for 0 ≤ t ≤ 1, and plot the result. Then try solving again for 0 ≤ t ≤ 2. How
do you interpret what happens? This IVP is a separable equation with an
easy solution, so you can check your guess.

7.12. Solve the BVP

y′′′ = −2e−3y +4(1+x)−3, 0 ≤ x ≤ 1,

subject to y(0) = 0, y′(0) = 1, y(1) = ln 2. Compare to the exact solution,
y(x) = ln(1+x).

7.13. Solve the linear advection-diffusion equation,

ut = 0.2uxx −ux , −1 ≤ x ≤ 1, 0 ≤ t ≤ 2,

with the boundary conditions u(−1, t) = u(1, t) = 0 and the initial condition
from the code on page 89. In place of ux , use the centered finite difference
matrix

1

2h




0 1 0
−1 0 1

. . .
. . .

. . .
−1 0 1

−1 0







u1
u2
...

un−2
un−1


 .

“matlabbook”
2009/5/27
page 92

�

�

�

�

�

�

�

�

92 Chapter 7. Scientific Computing

7.14. (a) Solve the PDE ut = 0.2uxx +u2, −1 ≤ x ≤ 1, u(−1, t) = u(1, t) = 0,
with the same initial condition as the code on page 89, for 0 ≤ t ≤ 2.

(b) Disable the plotting command in the code, multiply the initial condi-
tion by 10, and try to solve again. You should find that the solution
reaches a singularity in finite time (as does ut = u2).

“matlabbook”
2009/5/27
page 93

�

�

�

�

�

�

�

�

Afterword

What now?
If you have gotten this far, typing in examples and giving an honest effort

to many of the exercises, then you are well beyond a beginning MATLAB pro-
grammer. From here, any further learning about MATLAB should be driven by
your own needs. Are you creating a module or toolbox for other MATLAB users?
Maybe you should consider an object-oriented programming model. Want to cre-
ate a friendly interface for nontechnical users who may not even have access to
MATLAB? Try a graphical user interface and the MATLAB Compiler. Need to
incorporate Fortran legacy code? See the documentation on “external interfaces.”
Or you might delve into one of the many toolboxes for specific application areas.

The point is that you now should understand the structures on which
MATLAB programming is based. Greater fluency is mainly a matter of increasing
your vocabulary and gaining experience. I encourage you, before writing a block
of code to accomplish a generic task, to take a few moments to look around the
documentation and matlabcentral.com. As Samuel Johnson said, “A man will turn
over half a library to write one book.”

Don’t forget too about the mathematics underlying so many of the MATLAB
functions you might use. This body of mathematics, most often collected under the
rubric of numerical analysis, is at least as responsible as hardware improvements
for the breathtaking increases of scope in the problems scientists and engineers
have been able to solve over the last several decades. Numerical analysis is not
just useful but often strikingly beautiful. By learning MATLAB—not just using
it—you can learn about some of the most exciting developments and triumphs of
this important field.

Newton stood on the shoulders of giants, but you have the opportunity to
order them around and put them to work. Happy coding!

Toby Driscoll
January 2009

93

“matlabbook”
2009/5/27
page 94

�

�

�

�

�

�

�

�

“matlabbook”
2009/5/27
page 95

�

�

�

�

�

�

�

�

Index

\, see matrix, linear system solution
:, 13–16
<, <=, >, >=, 17
==, 17, 31
% (comment), 6, 27
& and | (AND and OR), 22
&& and|| (short-circuiting logic), 31
∼=, 17
˜ (logical NOT), 22, 31

all, 23, 31
any, 23, 31
array, see also matrix

arithmetic operators on, 20, 62–63
concatenation, see alsocat, 12,

14, 65
element references, 14–18

by masking, 56, 63
flat indexing model, 15

logical, 17, 22, 56, 64
preallocation of memory for,

59–60
size and dimension, 12
transpose, 19, 21

assert, 42
axis, 47, 49, 50

break, 33
bvp4c, bvp5c, bvpinit, 87

cat, 14, 69, 71
caxis, 52
cell array, 67–71

element references, 68
char, 65
chol, 20
colorbar, 53
colormap, 52–53, 55

complex numbers, 5, 32, 57
conjugate gradients (pcg), 78
contour, contourf, 50

data fitting, 81–82
debugging, 7, 29, 33–34
det, 20
diag, 14, 25
diff, 23
differential equation

boundary-value problem, 86–88
initial-value problem, 59, 85–

86, 88
partial (in one dimension plus

time), 88–89
doc, 3
double, 65
drawnow, 56

Editor (edit), 7, 33
eig, 20, 40, 77
empty matrix, 13, 16
eps (machine precision), 5
error, 41
expm, 21
exporting work, 6, 28, 53
eye (identity matrix), 14
ezplot, ezpolar, ezplot3

(curve plotting), 46
ezsurf, ezmesh, ezcontour,

(surface plotting), 47

figure
exporting and saving, 7, 54–55
multiple plots in one, 55
opening with figure, 45

find, 12, 17, 23, 64
fminbmnd, 80

95

“matlabbook”
2009/5/27
page 96

�

�

�

�

�

�

�

�

96 Index

for, 32, 60
format, 7, 25
fprintf, 66
fsolve, 80, 81
function, 29–31, 37–41, 64

anonymous, 38, 47, 81, 83
as data, 37
handle to, 37
input arguments, 41, 69
nested, 40
subfunction, 39

fzero, 37, 40, 79–80

gcf, gca, gco, 51
get, 51
GMRES algorithm (gmres), 78
graphics

animation, 56
annotation of, 50
for 2D data, 48
for 3D data, 49–50
for mathematical formula, 46
handle to, 51, 54
object types, 45
specifying color of, 52, 55

help, 3, 27

if/elseif/else, 31
integration (quadrature), 84
interp1, 82
interpolation, 82–83
interrupting execution, 7
isequal, 31

least-squares problem, 75, 81
legend, 49
length, 12
linspace, 14
load, 6, 66
logical value (logical), 18, 31
loglog, 49
lu, 20, 76

matrix, see also array
adjoint, 19
arithmetic operators on, 18

eigenvalues and singular values,
77, 78

element references, 14–18
exponential, 21
identity matrix, 13
inverse, 19, 26, 76
linear algebra, 20
linear system solution, 19, 24,

75–79
plot of, see spy
sparse, 23, 76, 78
transpose, 19

max, min, 23
mean, median, 23
mesh, 50, 52, 55
meshgrid, 49–50
movie (using movie), 56

NaN (not a number), 5, 56
nargin, 42, 70
ndgrid, 50
ndims, 12
nnz, 24
norm, 20
num2str, 66

ode113, ode15s, ode45, 85, 89
ones, 14
optimization, 80–82

path, 2
pause, 56
pcolor, 50
persistent variables, 64
plot, 48
plot3, 50
polynomial, 22, 25, 34, 67, 81

roots, see roots
print, 49
prod, 23
Profiler, 7
publishing scripts, 28

qr, 20
quad, quadl, quadgk, 84

rand, randn, 14
rank, 20

“matlabbook”
2009/5/27
page 97

�

�

�

�

�

�

�

�

Index 97

repmat, 14
rootfinding, see fzero

for polynomials, see roots
systems of equations, seefsolve

roots, 80

saveas, 54
saving work, 6, 28, 53
semilogx, semilogy, 49
set, 51
shading, 53
size, 12, 26
sort, 23
sparse, 23
spline, 83
sprintf, 66
spy, 24, 26
std, 23
str2num, 66
strcmp, 66
string, 6, 65

conversion to and from numbers,
66

structure, 70–71
subplot, 55
sum, 22
surf, 49, 52

svd, 20, 77
switch/case/otherwise, 32

toeplitz, 14, 25, 89
tril, triu, 14
try/catch, 41

varargin, 69
vector, see also array, 12

and for loops, 32, 60–63
and plot, 48
arithmetic operators on, 22
array interpreted as, 15
creation using :, 13
element references, 14

warning, 41
waterfall, 89
while, 33, 60
who, whos, 6
workspace, 2, 6, 29, 40, 64

xlim, 97

ylim, 97

zeros, 14

	Contents
	List of Figures
	List of Tables
	Preface
	Chapter 1 Introduction
	Chapter 2 Arrays and Matrices
	Chapter 3 Scripts and Functions
	Chapter 4 More on Functions
	Chapter 5 Graphics
	Chapter 6 Advanced Techniques
	Chapter 7 Scientific Computing
	Afterword
	Index

