MAT 324, Fall 2015, Midterm Review Midterm is Thursday, Oct 15 (usual time and room)

Exam format:

- 8 definitions and statements (40 points)
- 4 examples (20 points)
- prove 2 propositions from list below (20 points)
- do 2 problems (20 points)

Know the following terms and results: Countable, uncountable, open, closed, continuous, Riemann integral, Riemann's criterion, fundamental theorem of calculus, Cauchy sequence, complete metric space, null set, Cantor set, Cantor singular function, outer measure, additivity, sub-additivity, Lebesgue measurable set, Lebesgue measure, sigma field, symmetric difference, Bofel set, complete measure, completion of a measure, Lebesgue measureable function, Borel function, essential supremum, simple function, Lebesgue integral, Fatou's lemma, monotone convergence theorem, integrable function, dominated convergence theorem, Beppo-Levi theorem, characterization of Riemann integrable functions, Riemann-Lebesgue lemma.

Know various examples from class and text including: non-measurable sets, Cantor set and function, various sequences where limit of integrals is not the integral of the limiting function, examples of measurable sets and functions, ...

Be able to prove:

Prop 2.16: if A is measurable and $m(A\Delta B) = 0$ then B is measurable and m(A) = m(B).

Prop 2.27: The completion of a σ -field \mathcal{F} with respect to a measure μ is $\{G \cup N : G \in \mathcal{F}, N \subset F \in \mathcal{F} \text{ with } \mu(F) = 0\}$.

Prop 3.15: If f, g are measurable $esssup(f + g) \le esssup(f) + esssup(g)$.

Prop 4.5: for simple functions, the two definitions of ingtegral agree.

Prop 4.10: f is measurable iff both f^+ and f^- are measurable.

Prop 4.15: For any measureable $f \ge 0$, there is a sequence of simple functions $\{s_n\}$ with $s_n \nearrow f$ everywhere.

Prop 4.23: Assume that f is mesurable and $f \ge 0$. Then $\int f dm = 0$ iff f = 0 a.e.. Prop 4.29: For a sequence of non-negative measurable functions $\{f_n\}$, we have

$$\int (\sum_{n=1}^{\infty} f_n) dm = \sum_{n=1}^{\infty} \int f_n dm.$$

Be able to do all homework problems; problems on midterm will be similar (but not necessarily identical). Be prepared to show certain sets and functions are measurable, and compute integrals of certain functions.