PROBLEM SET 6 - Product measures

1. Suppose $E \subset R^{2}$ is such that $E_{y}=\{x:(x, y) \in E\} \subset R$ has measure zero for almost every y. Show that E has measure zero.
2. If f and g are measurable on R, show that $h(x, y)=f(x) g(y)$ is measurable on R^{2}.
3. Show

$$
\int_{R^{n}} e^{-|x|^{2}} d m=\pi^{n / 2}
$$

Hint: For $n=1$ use

$$
\left(\int e^{-x^{2}} d x\right)^{2}=\iint e^{-x^{2}-y^{2}} d x d y
$$

and polar coordinates. For $n>1$, use $|x|^{2}=x_{1}^{2}+\ldots+x_{n}^{2}$ and Fubini's theorem to reduce to the $n=1$ case.
4. The convolution $f * g$ of two functions $f, g \in L^{1}(R)$ is defined as the function

$$
f * g(y)=\int_{R} f(y-x) g(x) d x \text {. }
$$

Show that $f * g$ is in $L^{1}(R)$ and

$$
\int f * g(y) d y=\left(\int_{R} f(x) d x\right)\left(\int_{R} g(x) d x\right) .
$$

5. If $f \in L^{1}(R)$ define its Fourier transform as

$$
\hat{f}(t)=\int_{R} f(x) e^{-i x t} d x
$$

Show that

$$
\widehat{f * g}(t)=\hat{f}(t) \hat{g}(t)
$$

