PROBLEM SET 6 - Product measures

- 1. Suppose $E \subset R^2$ is such that $E_y = \{x : (x, y) \in E\} \subset R$ has measure zero for almost every y. Show that E has measure zero.
- 2. If f and g are measurable on R, show that h(x,y) = f(x)g(y) is measurable on \mathbb{R}^2 .
- 3. Show

$$\int_{R^n} e^{-|x|^2} dm = \pi^{n/2}.$$

Hint: For n = 1 use

$$(\int e^{-x^2} dx)^2 = \int \int e^{-x^2 - y^2} dx dy,$$

and polar coordinates. For n > 1, use $|x|^2 = x_1^2 + \ldots + x_n^2$ and Fubini's theorem to reduce to the n = 1 case.

4. The convolution f * g of two functions $f, g \in L^1(R)$ is defined as the function

$$f * g(y) = \int_{R} f(y - x)g(x)dx.$$

Show that f * g is in $L^1(R)$ and

$$\int f * g(y) dy = \left(\int_R f(x) dx\right) \left(\int_R g(x) dx\right).$$

5. If $f \in L^1(R)$ define its Fourier transform as

$$\hat{f}(t) = \int_{R} f(x)e^{-ixt}dx.$$

Show that

$$\widehat{f \ast g}(t) = \widehat{f}(t)\widehat{g}(t).$$