PROBLEM SET 3

1. A function is called simple if it only takes on finite number of different values. If g is bounded and measurable, and $\epsilon>0$ is given, show there is a measurable simple function f so that $\sup _{x}|g(x)-f(x)| \leq \epsilon$. Is this true if g is not bounded?
2. Suppose E is measurable set of real numbers and let $f(t)=m(E \cap(t-1, t+1))$. Show that f is continuous.
3. Suppose E is a closed set in the upper half-plane whose vertical projection onto the real line is surjective (onto). For each real number x let $y(x)$ be the closest point of $E \cap L_{x}$ to x (here L_{x} is the vertical line through x). Show that y is a measureable function, but need not be continuous.
4. Given a real number $x \in[0,1]$ let $x_{n}(x) \in\{0,1\}$ be its n-binary digit (if this is not unique, choose the epansion ending in all 0's). Let $f(x)=\lim _{\sup _{n \rightarrow \infty}} \frac{1}{n} \sum_{k=1}^{n} x_{n}(x)$. Show that f is measureable. Where is f continuous? Can you guess what $\int_{0}^{1} f(x) d x$ is?
