PROBLEM SET 2a

1. Prove that the Lebesgue function F satisfies

$$
|F(x)-F(y)| \leq|x-y|^{\alpha},
$$

where $\alpha=\log 2 / \log 3$. This is called a Hölder condition of order α.
2. If $E \subset[0,1]$ is a null set, and $f:[0,1] \rightarrow[0,1]$ is continuous, does $f(E)$ have to be a null set as well? Prove this or find a counterexample.
3. Let $X=\{x+y: x, y \in C\}$ be the set of sums of numbers in the Cantor middle third set. What is X ?
4. Prove that if $\lambda>0$ then $m^{*}(\lambda E)=\lambda m^{*}(E)$ where $\lambda E=\{\lambda x: x \in E\}$.
5. If X is set of finite Lebesgue measure show that $m(X \cap X+t) \rightarrow 0$ as $t \rightarrow \infty$. Here $X+t=\{x+t: x \in X\}$. Does there have to be a value of t so that $m(X \cap X+t)=0$?

