MAT 320 Fall 2021, Sample Final Exam Real final is 8:00-10:45am Tuesday, December 14, 2021

Name	ID	Section

|--|

THIS MIDTERM IS WORTH 100 POINTS. THERE ARE 20 TRUE/FALSE QUESTIONS WORTH 2 POINTS EACH, AND 4 PROOFS WORTH 15 POINTS EACH (24 QUESTIONS TOTAL). NO BOOKS OR NOTES ARE ALLOWED. THERE ARE FIVE PRINTED PAGES AND TWO BLANK PAGES.

(1)-(20) TRUE/FALSE: put a T or F in each box.

- (1) A continuous function on \mathbb{R} that is unbounded above and below takes on all real values.
- (2) An increasing function on \mathbb{R} is continuous except on a set of length zero.
- (3) A continuous function on \mathbb{R} can only take the value 0 countable many times.
- (4) If f is differentiable everywhere on [a, b] and f'(x) > 0 everywhere, then f is strictly increasing on [a, b].
- (5) If f is differentiable everywhere on [a, b] then f' must be bounded on [a, b].
- (6) Suppose f(x) = 1 if x is in the Cantor middle third set $E \subset [0, 1]$, and f(x) = 0 otherwise. Then f is Riemann integrable on [0, 1].
- (7) If $1 \ge f_1(x) \ge f_2(x) \ge f_3(x) \ge \dots$ and $f_n(x) \to 0$ for every $x \in [0,1]$ then $\int_0^1 f_n \to 0.$
- (8) The sequence $f_n(x) = \sin(nx)$ converges uniformly to some limit on $[0, 2\pi]$.

- (9) If $\{f_n\}$ are 1-Lipschitz functions that converge uniformly on [a, b] to f, then f is also 1-Lipschitz.
- (10) If (f_n) are continuous and positive on [0, 1] and if $\sum f_n(x)$ converges for every $x \in [0, 1]$ then $f(x) = \sum f_n(x)$ is continuous.
- (11) $If (f_n) is a sequence of positive, continuous functions on [0, 1] so that <math>\int_0^1 f_n \to 0$, then $f_n(x) \to 0$ for every $x \in [0, 1]$.

(12) If
$$\sum x_n$$
 converges, then $\sum (-1)^n x_n$ converges.

(13) If $\sum y_n$ converges, then $\sum y_n^2$ also converges.

(14)
$$f(x) = \sum_{n=1}^{\infty} n^{-1} \cos(nx)$$
 converges for every $x \in \mathbb{R}$.

- (15) A set can be both open and closed.
- (16) If $f : \mathbb{R} \to \mathbb{R}$ is continuous then $\{x : f(x) > 0\}$ is an open set.
- (17) The union of two compact sets is also compact.
- (18) If $A \subset \mathbb{R}$ is closed and f is continuous on \mathbb{R} , then f(A) is also closed.
- (19) $d(x,y) = |x-y|^2 \text{ is a metric on } \mathbb{R}.$
- (20) $d(f,g) = \int_0^1 |f-g| \text{ is a metric on } \mathcal{R}[0,1] \text{ (Riemann integrable functions).}$

In problems 21-24, you may use results from class/textbook if you quote them correctly.

- (21) If K is a compact subset of a metric space (S, d), show that K is closed and bounded. Bounded means that $K \subset \{x \in S : d(x, x_0) \leq B\}$ for some $x_0 \in S$ and $B < \infty$.
- (22) If $E \subset \mathbb{R}$ is a closed set, show that $d(x) = \inf\{|x y| : y \in E\}$ is a continuous function on \mathbb{R} so that $E = \{x : d(x) = 0\}$.
- (23) If the partial sums (s_n) of $\sum a_n$ are bounded prove that $\sum a_n/n$ is convergent.
- (24) Prove that the set of rationals numbers is not the countable intersection of open sets.