SAMPLE MIDTERM 1, MAT 319 & 320 Fall 2021 Real midterm is in lecture, Thursday, September 30, 2021

Name			ID		Section
	1			1	

1-20 21 22	2 23	24 total	total
------------	------	----------	-------

THIS MIDTERM IS WORTH 100 POINTS. THERE ARE 20 TRUE/FALSE QUESTIONS WORTH 2 POINTS EACH, AND 4 PROOFS WORTH 15 POINTS EACH (24 QUESTIONS TOTAL). NO BOOKS, NOTES OR CALCULATORS ARE ALLOWED. THERE ARE FOUR PRINTED PAGES.

TRUE/FALSE: put a T or F in each box.

(1) If
$$A = \{1, 2, 6, 8, 10\}, B = \{2, 3, 5, 6, 7, 9\}$$
, then $A \cap B = \{2, 6\}$.

- (2) $\{x \in \mathbb{Z} : x < 100\}$ is a finite set.
- (3) If A, B are both infinite sets, then $A \cup B$ is infinite.
- (4) $f(n) = n^3$ is a bijective map from \mathbb{Z} to itself.
- (5) If $f: X \to Y$ and $g: Y \to Z$ are injective, then $g \circ f: X \to Z$ is injective
- (6) There is a bijection between \mathbb{N} and \mathbb{Z} .
- (7) A subset of a countable set must also be countable.
- (8) There is a bijective map from the interval (0,1) to \mathbb{R} .

(9)Every interval has a supremum. (10)The infimum and supremum of an infinite, bounded set must be different. If a is irrational, then a^2 is irrational. (11) $\lim_{n \to \infty} \frac{\sin(n)}{n} = 0.$ (12)|x - 10| < 4 implies x > 0. (13)(14)Every monotone sequence has a limit. If $\{a_n\}$ converges then $\{a_{n^2}\}$ also converges. (15) ${\sin(n^2)}_1^\infty$ has a convergent subsequence. (16)If $\{x_n\}_0^\infty$ satisfies $x_{n+1} = x_n + \exp(x_{n-1})$, for $n \in \mathbb{N}$, then $\{x_n\}$ is increasing. (17) $1 = \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^n} + \dots$ (18) $\sum_{n=1}^{\infty} (-1)^n / \sqrt{n}$ converges. (19) $\sum_{n=1}^{\infty} \frac{1}{n}$ converges. (20)

(21) State the Density Theorem and use it to prove that for any $x \in \mathbb{R}$ and $\epsilon > 0$ there are rational numbers a, b so that $x \in (a, b)$ and $|a - b| < \epsilon$.

(22) Let \mathcal{P} be all polynomials (of any degree) $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ that have integer coefficients. Is \mathcal{P} countable or uncountable? Prove your answer.

(23) Let $A \subset \mathbb{R}$ be infinite and bounded above. Show there is an increasing sequence in A whose limit is sup A.

6

(24) Suppose that $0 < a_0 < 1$ and $a_{n+1} = a_n(1 - a_n)$ for $n = 0, 1, 2, 3, \ldots$ Prove that $\{a_n\}$ is a bounded sequence.