
MAT 319 & 320 Fall 2021, Lecture 5, Thursday, Sept. 9, 2021

Section 2.4: Applications of the Supremum Property

1. Questions from last time?
2. Supremum are compatible with algebraic properties of R

sup(a+ S) = a+ supS

3. Suppose A,B are sets and a ≤ b for all a ∈ A and b ∈ B. Then supA ≤ supB.
4. If A ⊂ B then supA ≤ supB.
5. inf A = − sup(−A) where −A = {−a : a ∈ A}.
6. Definition: A function f : D → R is bounded above if f(D) = {f(x) : x ∈ D}
is bounded above. Similarly for bounded below and bounded.
7. If f(x) ≤ g(x) for all x ∈ D then

sup
x∈D

f(x) ≤ sup
x∈D

g(x).

For brevity we will sometimes write

sup
D

f ≤ sup
D

g.

8. This does not imply any relation between sup
D
f and infD g.

9. If f(x) ≤ g(y) for all x, y ∈ D then we can conclude

sup
x∈D

f(x) ≤ inf
x∈D

g(x).

10. Archimedian property: If x ∈ R then there is a n ∈ N such that x < n.
Proven last time.

11. Corollary 2.4.4: If S = {1/n : n ∈ N} then inf S = 0.
Proof: Clearly 0 is a lower bound for s. If x was a larger lower bound, then

x ≤ 1/n for all n ∈ N, so n ≤ 1/x, so N would be bounded above.
12. Corollary 2.4.5: If t > 0 there is an n ∈ N so that 1/n < t.
13. Corollary 2.4.6: if y > 0 there is an n ∈ N so that n− 1 ≤ y < n.
Proof: By the Archimedian property, E = {n ∈ N : y < n} is not empty. By

the well ordering property E has a smallest element n. Thus n − 1 6∈ E. Hence
n− 1 ≤ y < n.
14. Theorem 2.4.7: There exists a positive x ∈ R such that x2 = 2.
Proven last time.

15. The Density Theorem: If x < y are real numbers, then there is a rational
r ∈ Q so that x < r < y.
17. Proof: Without loss of generality (WLOG) we may assume x > 0. Since

y > x, we have y − x > 0 so we may choose n ∈ N so that 1

n
< y − x. Hence

1 < ny − nx
1
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1 + nx < ny

Choose a m ∈ N so that m− 1 ≤ 1 + nx ≤ m. Then

m− 1 ≤ 1 + nx < ny

m ≤ nx < ny

Thus

nx ≤ m ≤ ny,

x ≤ m

n
≤ y.

17. Corollary 2.4.9: If x < y are real numbers, then there is an irrational number
z with x < z < y.
Proof: By Theorem 2.1.4 (Tuesday 8/31)

√
2 is irrational. Using the Density

Theorem choose a rational r so that
x√
2
< r <

y√
2
.

Then

x < r
√
2 < y,

and r
√
2 is irrational. (Why?)

Section 2.5: Intervals

18.
open interval (a, b) = {x ∈ R : a < x < b}.
closed interval [a, b] = {x ∈ R : a ≤ x ≤ b}.
half-open (or half-closed) interval (a, b] = {x ∈ R : a < x ≤ b}.

[a, b) = {x ∈ R : a ≤ x < b}.
infinite open intervals (a,∞) = {x ∈ R : x > a}

(−∞, a) = {x ∈ R : x < a}
infinite closed intervals [a,∞) = {x ∈ R : x ≥ a}

(−∞, a] = {x ∈ R : x ≤ a}
Warning: [a,∞] is not an interval.

19. Characterization of intervals: Suppose S ⊂ R has the property that x, y ∈ S
and x, y implies [x, y] ⊂ S. Then S is an interval.
Proof: There are four cases depending on whether S is bounded above and below.
Case 1: S is bounded above and below. Let a = inf S, b = supS. Suppose

a < z < b. Then there is a x ∈ S with x < z and a y ∈ S with y > z. Hence
z ∈ [x, y] ⊂ S. Thus (a, b) ⊂ S. Thus S is an interval (one of four possibilities).
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Case 2: S is bounded above but not below. Let b = supS. Suppose < b. Since
S is not bounded below there is an x ∈ S with x < z. Since z < b we can choose a
y ∈ S with y > z. Hence z ∈ [x, y] ⊂ S. Thus (−∞, b) ⊂ S. Thus S is an interval
(one of two possibilities).
Cases 3 and 4 left as exercises.

20. Definition: A sequence of intervals {In}∞1 is called nested if

I1 ⊃ I2 ⊃ . . .

(usually called nested decreasing; nested increasing is I1 ⊂ I2 ⊂ . . . ).
21. Bounded nested sequence of intevals can have empty intersection: {(0, 1

n
)}

22. Unbounded nested sequence of closed intevals can have empty intersection:
{[n,∞)}.
22. Nested interval property: If In = [an, bn] is a nested (decreasing) sequence
of bounded, closed intervals has non-empty intersection,i.e., there is a a ξ ∈ R with
ξ ∈ In for all n.
Proof: We have a1 ≤ a2 ≤ · · · ≤ b1 is bounded above, so A = {an : n ∈ N} is a

bounded set and so has a least upper bound ξ.
By definition, ξ ≤ an for all n.
We claim that ξ ≤ bn for every n. It suffices so show bn is an upper bound for A.

To see this note that if k ≤ n, then

ak ≤ an ≤ bn.

On the other hand, if k ≥ n then Ik ⊂ In, so

ak ≤ bk ≤ bn.

Thus bn is always an upper bound, as desired. �

23. Theorem 2.5.3: If In = [an, bn] is a nested (decreasing) sequence of bounded,
closed intervals whose lengths tend to zero, i.e.,

inf{bn − an : n ∈ N} = 0

then ξ = ∩nIn is a single point.
Proof: If η is a distinct point in the intersection, first suppose η > ξ. Then

an ≤ ξ − η < bn

so

bn − an > η − ξ > 0,

so the infimum is not zero. Thus η > ξ is impossible. If η < ξ the same proof gives

bn − an > ξ − η > 0.

Thus we can’t have a second point η in the intersection. �

24. Theorem 2.5.4: R is uncountable.
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Proof 1: Suppose I = [0, 1] is countable, say I = {x1, x2, . . . }. Choose a closed
bounded interval I1 so that x1 6∈ I1 (for example, if x1 > 0 take [0, x1/2] and if x1 = 0
take [1/2.1]).
In general, choose a closed bounded interval In ⊂ I1 that does not contain x1, . . . , xn

(why is this possible?). Then ∩In is non-empty so it contains a real number y ∈ I.
But y ∈ In implies y 6= xn. This is true for every n so y is not on the list x1, x2, . . . .
This contradicts that I was the whose list.
25. Proof of claim: Given a finite set {x1, . . . , xn} ⊂ [0, 1] and a closed interval
J ⊂ [0, 1], find a closed interval inside J that does not contain any of the xk’s
Suppose J = [a, b] and choose 2n points subintervals a < y1 < y2 < . . . y2n < b.

This defines 2n+ 1 subintervals

[a, y1], [y1, y2], . . . , [y2n, b],

and each xk is in at most 2 of these. Thus at least one of these intervals does not
contain any of the xk’s.
26. Every x ∈ [0, 1] has a binary repreentation

x = (.a1a2 . . . )

defined by recursively bisecting [0, 1] and seeing if xis in the left or right half of the
parent interval.
27. Binary expansion need not be unique when x is the midpoint of such a bisection,
i.e.,

.0111111111 · · · = .100000000000 . . .

28. Decimal representation are similar, but we subdivide [0, 1] into ten subintervals
labeled 0, 1, . . . 9. Again, representations need not be unique:

.9999999 · · · = 1.0000000 . . .

29. Only countably many reals have non-unique representations. Every non-unique
expansion ends in all zeros or all nines. It is determined by the finite segment of
digits that come before the repeating 0’s or 9’s and there are only countbly many
finite segments. (Why? use Nk is countable and countable unions of countable sets
are countable).
30. A number is rational iff its decimal representation is periodic (repeats after some
point).
31. Decimal representations can be used to give a second proof that [0, 1] is uncount-
able.
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Proof: Assume [0, 1] = x1, x2, . . . and write the decimal expansions

x1 = 0.b11b12b13b14 . . . b1n . . .

x2 = 0.b21b22b23b24 . . . b2n . . .

x3 = 0.b31b32b33b34 . . . b3n . . .

x4 = 0.b41b42b43b44 . . . b4n . . .

x1 = 0.b51b52b53b54 . . . b5n . . .
... =

...

Now define y = .a1a2a3 . . . by choosing an so that

an 6= bnn and an ∈ {2, 3}.
Then this decimal expansion is not on the list, and y does not have a different
expansion that might be on the list, since this one does not end in 0’s or 9’s.
32. Cantor’s continuum hypothesis: every infinite subset of R has a bijection

to either N or R.
Gödel (1930’s) and Cohen (1960’) showed this is independent of the other axioms

of the real numbers. You may assume it is either true or false. Most working analysts
accept it as true, but few theorems depend on this assumption. There are various
arguments for and against believing the hypothesis, based on whether you prefer
statements that follow from the hypothesis or its negation.


