MAT 319 & 320 Fall 2021, Lecture 10, Thursday, Sept. 23, 2021

Section 3.5: The Cauchy criterion

1. **Defn:** A real sequence $\{x_n\}$ is a **Cauchy sequence** if for every $\epsilon > 0$ there is a $H(\epsilon) \in \mathbb{N}$ so that for all $n, m \geq (\epsilon)$, we have $|x_n - x_m| < \epsilon$.

2. Definition of convergence says sequence is eventually in any small disk around limit point. Cauchy condition says sequence is eventually in some small disk, not necessarily with same center.

- 3. Example: $\{1/n\}$
- 4. Example: $\{(-1)^n\}$

5. Lemma 3.5.3: A convergent sequence is Cauchy.

Proof: Suppose $\{x_n\}$ converges to x. Given $\epsilon > 0$ there is an H so that $|x_n - x| < \epsilon/2$ for all $n \ge H$. Thus $n, m \ge H$ implies

$$|x_n - x_m| \le |x_n - x| + |x_m - x| < \epsilon.$$

6. Lemma 3.5.4: A Cauchy sequence is bounded.

Proof: Take $\epsilon = 1$. By definition there is an H so that $n \cdot m > H$ implies $|x_n - x_m| < 1$. Hence

$$|x_n| \le 1 + \max\{|x_1|, \dots, |x_H|\}.$$

7. Cauchy Convergence Criterion: A real sequence is convergent iff it is Cauchy. **Proof:** A convergent sequence is Cauchy by Lemma 3.5.3.

Conversely, suppose $\{x_n\}$ is Cauchy. By Lemma 3.5.4 the sequence is bounded. By the Bolzano-Weierstrass theorem, there is a convergent subsequence $\{x_{n_k}\}$, say with limit x. We claim that $\{x_n\}$ also converges to x.

Since the subsequence converges, for any $\epsilon > 0$, choose H_1 so that $|x_{n_k} - x| < \epsilon/2$ for $n_k \geq H_1$.

Since $\{x_n\}$ is Cauchy we can choose H_2 so that $|x_n - x_m| < \epsilon/2$ for $n, m \ge H_2$. Let $H = \max(H_1, H_2)$. Then for $n \ge H$ choose some $n_k \ge H$. Then

$$|x_n - x| \le |x_n - x_{n_k}| + |x_{n_k} - x| < \epsilon/2 + \epsilon/2 = \epsilon$$

Hence $\{x_n\}$ converges to x.

8. Example: $x_1 = 1, x_2 = 2, x_n = \frac{1}{2}(x_{n-1} + x_{n-2}).$

9. Example: $\{\sum_{k=1}^{n} \frac{1}{h}\}$ diverges. **Proof:** Consider $2^m < k \leq 2^{m+1}$. Then

$$\frac{1}{k} \ge 2^{-m-1}$$

and there are 2^m such terms, so

$$x_{2^{m+1}} - x_{2^m} = \sum_{\substack{k=2^m+1\\1}}^{2^{m+1}} \frac{1}{k} \ge 2^m \cdot 2^{-m-1} = \frac{1}{2}.$$

So the differences do not tend to zero, so not Cauchy.

10. Defn: A real sequence is contractive if there is a 0 < C < 1 so that

$$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n|$$

11. Theorem 3.5.8: Every contractive sequence is Cauchy, hence convergent. **Proof:** By induction we can show

$$|x_{n+2} - x_{n+1}| \leq C|x_{n+1} - x_n| \\ \leq C^2|x_n - x_{n-1}| \\ \vdots \\ \leq C^n|x_2 - x_1|.$$

Therefore

$$\begin{aligned} |x_m - x_n| &\leq |x_m - x_{m-1}| + \dots |x_{n+1} - x_n| \\ &\leq (C^{m-2} + \dots + C^{n-2})|x_2 - x_1| \\ &\leq C^{n-1}(C^{m-1} + \dots + 1)|x_2 - x_1| \\ &= C^{n-1}\frac{1 - C^{m-1}}{1 - C}|x_2 - x_1| \\ &\leq C^{n-1}\frac{1}{1 - C}|x_2 - x_1| \end{aligned}$$

Since 0 < C < 1, $C^n \to 0$. Therefore this is a Cauchy sequence.

12. Corollary 3.5.10: If $\{x_n\}$ is a contractive sequence with constant 0 < C < 1and $x = \lim x_n$, then (i) $|x - x_n| \le \frac{C^{n-1}}{1-C} |x_2 - x_1|$. (ii) $|x - x_n| \le \frac{C}{1-C} |x_n - x_{n-1}|$.

27. $f: \mathbb{R} \to \mathbb{R}$ is a *C*-contraction (or *C*-Lipschitz) if $|f(x) - f(y)| \leq C|x - y|$. Such a map is automatically continuous.

This happens if f is differentiable and $|f'| \leq C$ by the mean value theorem. 13. Theorem: If C < 1 and f is a C-contraction, then f(x) = x has a unique solution.

Proof: Take $x_1 = 0$ (any value would work), and define $x_{n+1} = f(x_n)$. Then

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le C|x_n - x_{n-1}|,$$

so the sequence is contractive, and has a limit x. Then

$$x = \lim x_n = \lim x_{n+1} = \lim f(x_n) = f(x).$$

Hence a solution exists.

If x, y are two different solutions, then

$$|x - y| = |f(x) - f(y)| \le C|x - y| < |x - y|.$$

since 0 < C < 1 and |x - y| > 0. Therefore there is at most one solution.

Section 3.6: Properly divergent sequences Theorem

- 1. What does $\lim x_n = \infty$ mean?
- 2. **Defn:**

We say $x_n \to +\infty$ and write $\lim x_n = +\infty$ if for all $a \in \mathbb{R}$ there is a K so that $n \ge K$ implies $x_n > a$.

Similarly for $x_n \to -\infty$: for all $a \in \mathbb{R}$ there is a K so that $n \ge K$ implies $x_n < a$. We say (x_n) is properly divergent if either of these hold.

3. Examples: $x_n = n, x_n = \log n, x_n = e^n$

4. Theorem 3.6.3: A monotone sequence is properly divergent iff it is unbounded. **Proof:** We already know a bounded monotone sequence converges. Conversely, first assume (x_n) is increasing and unbounded. Then for any K there is an n so that $x_n > k$ and since (x_n) is increasing $x_m \ge x_n > K$ for all $m \ge n$. Thus (x_n) diverges property to ∞ .

The decreasing case is similar.

- 5. Theorem 3.6.4: Suppose (x_n) and (y_n) are sequences and $x_n \leq y_n$ for all $n \in \mathbb{N}$.
 - (a) $\lim x_n = +\infty$ then $\lim y_n = +\infty$.
 - (a) $\lim y_n = -\infty$ then $\lim x_n = -\infty$.
- 6. Theorem: Suppose (x_n) and (y_n) are sequences and suppose

$$\liminf \frac{x_n}{y_n} \ge L > 0.$$

Then $\lim y_n = +\infty$ implies $\lim x_n = +\infty$. If

$$\limsup \frac{x_n}{y_n} \le L < \infty.$$

Then $\lim x_n = +\infty$ implies $\lim y_n = +\infty$. If

Proof: We do the first statement. Since L/2 < L, the definition of limits says that for n large enough $(x_n/y_n) > L/22$, or

$$x_n > L \cdot y_n/2.$$

Fix K > 0. Since $y_n \to \infty$ we can choose N so that $n \ge N$ implies $y_n \ge 2K/L$. Then $n \ge N$ implies $x_n \ge Ly_n/2 \ge (L(2K/L)/2 = K$. Thus $x_b \to +\infty$.

The other direction is similar.

7. Theorem 3.6.5: Suppose (x_n) and (y_n) are sequences and suppose

$$\lim \frac{x_n}{y_n} = L > 0.$$

Then $\lim y_n = +\infty$ iff $\lim x_n = +\infty$. **Proof:** This is immediate from previous result.

Section 3.7: Introduction to infinite series

1. **Defn:** given a real sequence (x_n) , the corresponding infinite series is the sequence

$$s_n = \sum_{k=1}^n z_k = x_1 + \dots + x_n$$

These are called the partial sums of the series. The infinite series is denoted

$$\sum_{k=1}^{\infty} x_n.$$

The series converges if the sequence of partial sums converge. 2. **Example:** The geometric series $\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + \dots$

$$s_n = 1 + r + r^2 + \dots + r^n$$

$$r \cdot s_n = r + r^2 + \dots + r^n + r^{n+1}$$

$$(1 - r)s_n = s_n - r \cdot s_n = 1 - r^{n+1}$$

$$s_n = \frac{1 - r^{n+1}}{1 - r}$$

$$\sum_{n=0}^{\infty} r_n = \frac{1}{1 - r}, \text{ if } -1 < r < 1.$$

3. Theorem 3.7.3: If $\sum_{0}^{\infty} x_n$ converges then $|x_n| \to 0$. 11. Cauchy Criterion: The series $\sum x_n$ converges iff for every $\epsilon > 0$ there is an $M \in \mathbb{N}$ so that if $m > n \geq M$ then

$$|s_n - s_m| = |x_{n+1} + \dots + x_m| < \epsilon.$$

4. Corollary: If $\sum |x_n|$ converges, then $\sum x_n$ converges. Idea of proof:

$$|x_{n+1} + \dots + x_m|||x_{n+1}| + \dots + |x_m|| < \epsilon$$

5. Theorem 3.7.5: Suppose (x_n) is a non-negative sequence. Then $\sum x_n$ converges iff the partial sums are bounded. 6. $\sum \frac{1}{n}$ diverges. 7. $\sum \frac{1}{n^p}$ converges if p > 1.

Enough to show partial sums are bounded.

Enough to show partial sums have bounded subsequence.

Consider s^{2^k} .

Consider

$$s_{2^{k+1}} - s_k = \sum_{n=2^k}^{2^{k+1}} n^{-p} \le 2^k (2^{-p})^k \le 2^k (2^{-p})^k = (2^{1-p})^k.$$

so if we let $r = 2^{1-p} < 1$, then

$$s_{2^k} = 1 + r + r^2 + \dots r^k \le \frac{1}{1 - r}$$
. \Box

8. Alternating series test: If (x_n) is positive and decreases to zero, then $\sum (-1)^n x_n$ converges.

Proof: Note that if n is odd then $(-1)^n = -1$ so

$$s_n = s_{n-1} + (-1)^n x_n = s_{n-1} - x_n < s_{n-1}.$$

Also

$$s_n = s_{n-2} + x_{n-1} - x_n > s_{n-2}$$

Hence

$$s_{n-2} < s_n < s_{n-1}$$

Similarly if n is even, then

$$s_{n-1} < s_n < s_{n-2}$$

So the intervals I_n with endpoints s_{n-1}, s_n are nested, bounded have diameters tending to zero, and I_n contain all the partials sums s_m with $m \ge n$. Thus the partial sums are a Cauchy sequence, hence converges. \Box

9. Theorem 3.7.7: Suppose (x_n) and (y_n) are real sequences and that for some K, $0 \leq x_n \leq y_n$ for $n \geq K$. Then

(a) if $\sum y_n$ converges, so does $\sum x_n$. (b) if $\sum x_n$ diverges, so does $\sum y_n$.

10. Limit comparison test: Suppose (x_n) and (y_n) are strictly positive sequences and

$$r = \lim \frac{x_n}{y_n},$$

exists. Then

(a) if $r \neq 0$ then $\sum x_n$ converges iff $\sum y_n$ does. (b) if r = 0 and $\sum y_n$ converges then $\sum x_n$ converges.

20. Suppose $f: \mathbb{N} \to \mathbb{N}$ is a bijection. The

$$\sum_{n=1}^{\infty} x_{f(n)}$$

is called a re-arrangement of $\sum x_n$.

11. Theorem: If x_n are non-negative and $\sum |x_n|$ converges, any re-arrangement then $\sum x_n$ converges to same limit.

False in general: $\sum x_n$ converges but $\sum |x_n|$ diverges, then $\sum x_n$ can be re-arranged to sum to any limit we want.