
MAT 319 & 320 Fall 2021, Lecture 10, Thursday, Sept. 23, 2021

Section 3.5: The Cauchy criterion

1. Defn: A real sequence {xn} is a Cauchy sequence if for every ǫ > 0 there is a
H(ǫ) ∈ N so that for all n,m ≥ (ǫ), we have |xn − xm| < ǫ.
2. Definition of convergence says sequence is eventually in any small disk around
limit point. Cauchy condition says sequence is eventually in some small disk, not
necessarily with same center.
3. Example: {1/n}
4. Example: {(−1)n}
5. Lemma 3.5.3: A convergent sequence is Cauchy.
Proof: Suppose {xn} converges to x. Given ǫ > 0 there is an H so that |xn−x| < ǫ/2
for all n ≥ H. Thus n,m ≥ H implies

|xn − xm| ≤ |xn − x|+ |xm − x| < ǫ. �

6. Lemma 3.5.4: A Cauchy sequence is bounded.
Proof: Take ǫ = 1. By definition there is anH so that n.m > H implies |xn−xm| < 1.
Hence

|xn| ≤ 1 + max{|x1|, . . . , |xH |}. �

7. Cauchy Convergence Criterion: A real sequence is convergent iff it is Cauchy.
Proof: A convergent sequence is Cauchy by Lemma 3.5.3.
Conversely, suppose {xn} is Cauchy. By Lemma 3.5.4 the sequence is bounded.

By the Bolzano-Weierstrass theorem, there is a convergent subsequence {xnk
}, say

with limit x. We claim that {xn} also converges to x.
Since the subsequence converges, for any ǫ > 0, choose H1 so that |xnk

− x| < ǫ/2
for nk ≥ H1.
Since {xn} is Cauchy we can choose H2 so that |xn − xm| < ǫ/2 for n,m ≥ H2.
Let H = max(H1, H2). Then for n ≥ H choose some nk ≥ H. Then

|xn − x| ≤ |xn − xnk
|+ |xnk

− x| < ǫ/2 + ǫ/2 = ǫ.

Hence {xn} converges to x.
8. Example: x1 = 1, x2 = 2, xn = 1

2
(xn−1 + xn−2).

9. Example: {
∑n

k=1
1
h
} diverges.

Proof: Consider 2m < k ≤≤ 2m+1. Then

1

k
≥ 2−m−1

and there are 2m such terms, so

x2m+1 − x2m =
2m+1∑

k=2m+1

1

k
≥ 2m · 2−m−1 =

1

2
.
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So the differences do not tend to zero, so not Cauchy.
10. Defn: A real sequence is contractive if there is a 0 < C < 1 so that

|xn+2 − xn+1| ≤ C|xn+1 − xn|

11. Theorem 3.5.8: Every contractive sequence is Cauchy, hence convergent.
Proof: By induction we can show

|xn+2 − xn+1| ≤ C|xn+1 − xn|

≤ C2|xn − xn−1|
...

≤ Cn|x2 − x1|.

Therefore

|xm − xn| ≤ |xm − xm−1|+ . . . |xn+1 − xn|

≤ (Cm−2 + · · ·+ Cn−2)|x2 − x1|

≤ Cn−1(Cm−1 + · · ·+ 1)|x2 − x1|

= Cn−11− Cm−1

1− C
|x2 − x1|

≤ Cn−1 1

1− C
|x2 − x1|

Since 0 < C < 1, Cn → 0. Therefore this is a Cauchy sequence.
12. Corollary 3.5.10: If {xn} is a contractive sequence with constant 0 < C < 1
and x = lim xn, then
(i) |x− xn| ≤

Cn−1

1−C
|x2 − x1|.

(ii) |x− xn| ≤
C

1−C
|xn − xn−1|.

27. f : R → R is a C-contraction (or C-Lipschitz) if |f(x)− f(y)| ≤ C|x− y|.
Such a map is automatically continuous.
This happens if f is differentiable and |f ′| ≤ C by the mean value theorem.

13. Theorem: If C < 1 and f is a C-contraction, then f(x) = x has a unique
solution.
Proof: Take x1 = 0 (any value would work), and define xn+1 = f(xn). Then

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ C|xn − xn−1|,

so the sequence is contractive, and has a limit x. Then

x = lim xn = lim xn+1 = lim f(xn) = f(x).

Hence a solution exists.
If x, y are two different solutions, then

|x− y| = |f(x)− f(y)| ≤ C|x− y| < |x− y|.

since 0 < C < 1 and |x− y| > 0. Therefore there is at most one solution. �
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Section 3.6: Properly divergent sequences Theorem

1. What does lim xn = ∞ mean?
2. Defn:

We say xn → +∞ and write lim xn = +∞ if for all a ∈ R there is a K so that
n ≥ K implies xn > a.
Similarly for xn → −∞: for all a ∈ R there is a K so that n ≥ K implies xn < a.
We say (xn) is properly divergent if either of these hold.

3. Examples: xn = n, xn = log n, xn = en

4. Theorem 3.6.3: A monotone sequence is properly divergent iff it is unbounded.
Proof: We already know a bounded monotone sequence converges. Conversely, first
assume (xn) is increasing and unbounded. Then for any K there is an n so that
xn > k and since (xn) is increasing xm ≥ xn > K for all m ≥ n. Thus (xn) diverges
property to ∞.
The decreasing case is similar.

5. Theorem 3.6.4: Suppose (xn) and (yn) are sequences and xn ≤ yn for all n ∈ N.
(a) lim xn = +∞ then lim yn = +∞.
(a) lim yn = −∞ then lim xn = −∞.

6. Theorem: Suppose (xn) and (yn) are sequences and suppose

lim inf
xn

yn
≥ L > 0.

Then lim yn = +∞ implies lim xn = +∞. If

lim sup
xn

yn
≤ L < ∞.

Then lim xn = +∞ implies lim yn = +∞. If
Proof: We do the first statement. Since L/2 < L, the definition of lim inf says that
for n large enough (xn/yn) > L/22, or

xn > L · yn/2.

Fix K > 0. Since yn → ∞ we can choose N so that n ≥ N implies yn ≥ 2K/L. Then
n ≥ N implies xn ≥ Lyn/2 ≥ (L(2K/L)/2 = K. Thus xb → +∞.
The other direction is similar.

7. Theorem 3.6.5: Suppose (xn) and (yn) are sequences and suppose

lim
xn

yn
= L > 0.

Then lim yn = +∞ iff lim xn = +∞.
Proof: This is immediate from previous result.
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Section 3.7: Introduction to infinite series

1. Defn: given a real sequence (xn), the corresponding infinite series is the sequence

sn =
n∑

k=1

zk = x1 + · · ·+ xn.

These are called the partial sums of the series. The infinite series is denoted
∞∑

k=1

xn.

The series converges if the sequence of partial sums converge.
2. Example: The geometric series

∑
∞

k=0 r
k = 1 + r + r2 + . . . .

sn = 1 + r + r2 + · · ·+ rn

r · sn = r + r2 + · · ·+ rn + rn+1

(1− r)sn = sn − r · sn = 1− rn+1

sn =
1− rn+1

1− r
∞∑

0

rn =
1

1− r
, if − 1 < r < 1.

3. Theorem 3.7.3: If
∑

∞

0 xn converges then |xn| → 0.
11. Cauchy Criterion: The series

∑
xn converges iff for every ǫ > 0 there is an

M ∈ N so that if m > n ≥ M then

|sn − sm| = |xn+1 + · · ·+ xm| < ǫ.

4. Corollary: If
∑

|xn| converges, then
∑

xn converges.
Idea of proof:

|xn+1 + · · ·+ xm|||xn+1|+ · · ·+ |xm|| < ǫ.

5. Theorem 3.7.5: Suppose (xn) is a non-negative sequence. Then
∑

xn converges
iff the partial sums are bounded.
6.

∑
1
n
diverges.

7.
∑

1
np converges if p > 1.

Enough to show partial sums are bounded.
Enough to show partial sums have bounded subsequence.
Consider s2

k

.
Consider

s2k+1 − sk =
2k+1∑

n=2k

n−p ≤ 2k(2−p)k ≤ 2k(2−p)k = (21−p)k.
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so if we let r = 21−p < 1, then

s2k = 1 + r + r2 + . . . rk ≤
1

1− r
. �

8. Alternating series test: If (xn) is positive and decreases to zero, then
∑

(−1)nxn

converges.
Proof: Note that if n is odd then (−1)n = −1 so

sn = sn−1 + (−1)nxn = sn−1 − xn < sn−1.

Also
sn = sn−2 + xn−1 − xn > sn−2.

Hence
sn−2 < sn < sn−1.

Similarly if n is even, then
sn−1 < sn < sn−2.

So the intervals In with endpoints sn−1, sn are nested, bounded have diameters tend-
ing to zero, and In contain all the partials sums sm with m ≥ n. Thus the partial
sums are a Cauchy sequence, hence converges. �

9. Theorem 3.7.7: Suppose (xn) and (yn) are real sequences and that for some K,
0 ≤ xn ≤ yn for n ≥ K. Then
(a) if

∑
yn converges, so does

∑
xn.

(b) if
∑

xn diverges, so does
∑

yn.
10. Limit comparison test: Suppose (xn) and (yn) are strictly positive sequences
and

r = lim
xn

yn
,

exists. Then
(a) if r 6= 0 then

∑
xn converges iff

∑
yn does.

(b) if r = 0 and
∑

yn converges then
∑

xn converges.
20. Suppose f : N → N is a bijection. The

∞∑

n=1

xf(n)

is called a re-arrangement of
∑

xn.
11. Theorem: If xn are non-negative and

∑
|xn| converges, any re-arrangement

then
∑

xn converges to same limit.
False in general:

∑
xn converges but

∑
|xn| diverges, then

∑
xn can be re-arranged

to sum to any limit we want.


