
MAT 319 & 320 Fall 2021, Lecture 9, Tuesday, Sept. 21, 2021

Section 3.4: Subsequences and the Bolzano-Weierstrass Theorem

1. Questions from last time?
2. Defn of subsequence: If {xn} is a sequence, and n1 < n2 < . . . then xn1

, xn2
, . . .

is a subsequence.
3. Subset is not the same as subsequence.
4. nk ≥ k. Proof by induction.
5. Theorem 3.4.2: If {xn} converges to x, then any subsequence also converges to
x.
Proof: Suppose ǫ > 0 is given. Since {xn} converges to x there is a K(ǫ) so that
k > K(ǫ) implies |xk − x| < ǫ. Since nk ≥ k we also have |xnk

− x| < ǫ for k > K(ǫ).
Hence xnk

→ x.
6. Theorem 3.4.4: Let {xn} be a sequence of real numbers. TFAE
(i) The sequence does not converge to x.
(ii) There is ǫ0 > 0 so that for any k ∈ N there is nk > k so that |xnk

− x| ≥ ǫ0.
(iii) There is ǫ0 > 0 and a subsequence {xnk

} so that |xnk
− x| ≥ ǫ0 for all k..

Proof:
(i) ⇒ (ii): This the contrapositive of the definition of convergence to x.
(i) ⇒ (iii): Let ǫ0 be as in (ii) and choose n1 so that |xn1

− x| ≥ ǫ0. Then
choose n2 > n1 be such that |xn2

− x| ≥ ǫ0. In general choose nk+1 > nk so that
|xnk+1

− x| ≥ ǫ0. This gives the desired subsequence.
(iii) ⇒ (i): This follows from Theorem 3.4.2: if {xn} converges to x so does any

subsequence. So if the subsequence does not converge, then {xn} does not either.
7. Divergence Criteria: If {xn} has either of these properties then it diverges:
(i) there are two subsequence that converge to different limits.
(ii) the sequence is unbounded.

8. Example: (−1)n

9. Example: sin(n)
10. Monotone Subsequence Theorem: Every real sequence contains a monotone
subsequence.
Proof: Given {xn} say xm is a “peak” if xn ≤ xm for all n > m.
Case 1: {xn} has infinitely many peaks. List them: xm1

, xm2
, . . . . This is decreas-

ing subsequence.
Case 2: {xn} has finitely many peaks. Let xn1

be past the last peak. This point
is not a peak so there is a n2 > n1 so that xn2

> xn1
. But xn2

is not a peak either
so there is a n3 > n2 so that xn3

> xn2
. Continuing in this inductively gives an

increasing sequence.
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11. The Bolzano-Weierstrass Theorem: Every bounded sequence has a conver-
gent subsequence.
bf Proof: By the previous result there is a monotone subsequence. By Thm 3.3.2
(Monotone convergence theorem) this subsequence converges. �

A second proof based on nested interval is also given in the text. Based on bisecting
and taking subinterval containing infinity many elements.
12. Theorem 3.4.9: A bounded sequence of real numbers converges iff every con-
vergent subsequence has the same limit.
See proof in text.

13. Suppose {xn} ⊂ R is bounded
The “limit superior” (or limsup) is the infimum of v ∈ R so that xn ≤ v except for

finitely many n (so the sequence is eventually ≤ v.
The “limit inferior” (or liminf) is the supremum of w ∈ R so that xn ≥ w except

for finitely many n (so the sequence is eventually ≥ w.
14. Theorem 3.4.11: If {xn} is bounded then TFAE:
(a) x = lim sup(xn).
(b) If ǫ > 0 there are finitely many n so that xn > x + ǫ and infinitely many so

that xn > x− ǫ.
(c) x = inf{um} where um = sup{xn : n ≥ m}.
(d) If S is the set of all limits of subsequences of {xn}, then x = supS.

Proof:
(a) ⇒ (b): Let V be the set of reals v so that xn < v for all but finitely many n.

Since x is the infimum of this set, there is an element of V in [x, x+ ǫ) for any ǫ > 0.
So there are only finitely many xn > v hence only finitely many bigger than x + ǫ.
On the other hand x− ǫ 6∈ V so there are infinitely many xn greater than x− ǫ.
(b) ⇒ (c): If (b) holds then um < x+ ǫ holds for large enough m. Thus inf um ≤

x + ǫ and hence inf um ≤ x. Since infinitely many xn > x− ǫ, um ≥ x− ǫ for all m.
Hence inf um ≥ x− ǫ for all ǫ > 0. Hence inf um ≥ x. Thus inf um = x. .
(c) ⇒ (d): Suppose X ′ = {xnk

} is a convergent subsequence. Its limit must be
less than um for all m, and hence lim xnk

≤ lim um = x. Thus supS ≤ x.
Conversely there is an n1 so that u1 − 1 < xn1

≤ u1. Inductively choose nk+1 > nk

so that uk −
1

1+k
< xn1

≤ uk. Then

lim xmk
= lim uk = x,

so x ∈ S. Hence supS ≥ x.
(d) ⇒ (c): Let w = supS and let ǫ > 0. Then w + ǫ is strictly larger than the

limit of any subsequence. So there can only be finitely many xn > w+ǫ (otherwise by
Bolzano-Weierstrass there would be a subsequence with limit ≥ w+ ǫ). Thus w ∈ V ,
so x ≤ w.
On the other hand, there is a subsequence converging to some number > w − ǫ so

there are infinitely many elements of xn > w − ǫ. Thus no number less than x in is
V . Thus x = inf V = lim sup xn. �
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15. Theorem 3.4.12: A bounded sequence is convergent iff lim sup xn = lim inf xn.

Section 3.5: The Cauchy criterion

16. Defn: A real sequence {xn} is a Cauchy sequence if for every ǫ > 0 there is a
H(ǫ) ∈ N so that for all n,m ≥ (ǫ), we have |xn − xm| < ǫ.
17. Definition of convergence says sequence is eventually in any small disk around
limit point. Cauchy condition says sequence is eventually in some small disk, not
necessarily with same center.
18. Example: {1/n}
19. Example: {(−1)n}
20. Lemma 3.5.3: A convergent sequence is Cauchy.
Proof: Suppose {xn} converges to x. Given ǫ > 0 there is an H so that |xn−x| < ǫ/2
for all n ≥ H. Thus n,m ≥ H implies

|xn − xm| ≤ |xn − x|+ |xm − x| < ǫ. �

21. Lemma 3.5.4: A Cauchy sequence is bounded.
Proof: Take ǫ = 1. By definition there is anH so that n.m > H implies |xn−xm| < 1.
Hence

|xn| ≤ 1 + max{|x1|, . . . , |xH |}. �

22. Cauchy Convergence Criterion: A real sequence is convergent iff it is Cauchy.
Proof: A convergent sequence is Cauchy by Lemma 3.5.3.
Conversely, suppose {xn} is Cauchy. By Lemma 3.5.4 the sequence is bounded.

By the Bolzano-Weierstrass theorem, there is a convergent subsequence {xnk
}, say

with limit x. We claim that {xn} also converges to x.
Since the subsequence converges, for any ǫ > 0, choose H1 so that |xnk

− x| < ǫ/2
for nk ≥ H1.
Since {xn} is Cauchy we can choose H2 so that |xn − xm| < ǫ/2 for n,m ≥ H2.
Let H = max(H1, H2). Then for n ≥ H choose some nk ≥ H. Then

|xn − x| ≤ |xn − xnk
|+ |xnk

− x| < ǫ/2 + ǫ/2 = ǫ.

Hence {xn} converges to x.
23. Example: x1 = 1, x2 = 2, xn = 1

2
(xn−1 + xn−2).

24. Example: {
∑

n

k=1

1

h
} diverges.

Proof: Consider 2m < k ≤≤ 2m+1. Then

1

k
≥ 2−m−1

and there are 2m such terms, so

x2m+1 − x2m =
2m+1∑

k=2m+1

1

k
≥ 2m · 2−m−1 =

1

2
.
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So the differences do not tend to zero, so not Cauchy.
25. Defn: A real sequence is contractive if there is a 0 < C < 1 so that

|xn+2 − xn+1| ≤ C|xn+1 − xn|

25. Theorem 3.5.8: Every contractive sequence is Cauchy, hence convergent.
Proof: By induction we can show

|xn+2 − xn+1| ≤ C|xn+1 − xn|

≤ C2|xn − xn−1|
...

≤ Cn|x2 − x1|.

Therefore

|xm − xn| ≤ |xm − xm−1|+ . . . |xn+1 − xn|

≤ (Cm−2 + · · ·+ Cn−2)|x2 − x1|

≤ Cn−1(Cm−1 + · · ·+ 1)|x2 − x1|

= Cn−1
1− Cm−1

1− C
|x2 − x1|

≤ Cn−1
1

1− C
|x2 − x1|

Since 0 < C < 1, Cn → 0. Therefore this is a Cauchy sequence.
26. Corollary 3.5.10: If {xn} is a contractive sequence with constant 0 < C < 1
and x = lim xn, then
(i) |x− xn| ≤

Cn−1

1−C
|x2 − x1|.

(ii) |x− xn| ≤
C

1−C
|xn − xn−1|.

27. f : R → R is a C-contraction (or C-Lipschitz) if |f(x)− f(y)| ≤ C|x− y|.
Such a map is automatically continuous.
This happens if f is differentiable and |f ′| ≤ C by the mean value theorem.

28. Theorem: If C < 1 and f is a C-contraction, then f(x) = x has a unique
solution.
Proof: Take x1 = 0 (any value would work), and define xn+1 = f(xn). Then

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ C|xn − xn−1|,

so the sequence is contractive, and has a limit x. Then

x = lim xn = lim xn+1 = lim f(xn) = f(x).

Hence a solution exists.
If x, y are two different solutions, then

|x− y| = |f(x)− f(y)| ≤ C|x− y| < |x− y|.

since 0 < C < 1 and |x− y| > 0. Therefore there is at most one solution. �


