MAT 319 & 320 Fall 2021, Lecture 9, Tuesday, Sept. 21, 2021

Section 3.4: Subsequences and the Bolzano-Weierstrass Theorem

1. Questions from last time?

2. Defn of subsequence: If $\{x_n\}$ is a sequence, and $n_1 < n_2 < \ldots$ then x_{n_1}, x_{n_2}, \ldots is a subsequence.

3. Subset is not the same as subsequence.

4. $n_k \ge k$. Proof by induction.

5. Theorem 3.4.2: If $\{x_n\}$ converges to x, then any subsequence also converges to x.

Proof: Suppose $\epsilon > 0$ is given. Since $\{x_n\}$ converges to x there is a $K(\epsilon)$ so that $k > K(\epsilon)$ implies $|x_k - x| < \epsilon$. Since $n_k \ge k$ we also have $|x_{n_k} - x| < \epsilon$ for $k > K(\epsilon)$. Hence $x_{n_k} \to x$.

6. Theorem 3.4.4: Let $\{x_n\}$ be a sequence of real numbers. TFAE

(i) The sequence does not converge to x.

(ii) There is $\epsilon_0 > 0$ so that for any $k \in \mathbb{N}$ there is $n_k > k$ so that $|x_{n_k} - x| \ge \epsilon_0$.

(iii) There is $\epsilon_0 > 0$ and a subsequence $\{x_{n_k}\}$ so that $|x_{n_k} - x| \ge \epsilon_0$ for all k.

Proof:

(i) \Rightarrow (ii): This the contrapositive of the definition of convergence to x.

(i) \Rightarrow (iii): Let ϵ_0 be as in (ii) and choose n_1 so that $|x_{n_1} - x| \ge \epsilon_0$. Then choose $n_2 > n_1$ be such that $|x_{n_2} - x| \ge \epsilon_0$. In general choose $n_{k+1} > n_k$ so that $|x_{n_{k+1}} - x| \ge \epsilon_0$. This gives the desired subsequence.

(iii) \Rightarrow (i): This follows from Theorem 3.4.2: if $\{x_n\}$ converges to x so does any subsequence. So if the subsequence does not converge, then $\{x_n\}$ does not either.

7. Divergence Criteria: If $\{x_n\}$ has either of these properties then it diverges:

(i) there are two subsequence that converge to different limits.

(ii) the sequence is unbounded.

8. Example: $(-1)^n$

9. Example: $\sin(n)$

10. Monotone Subsequence Theorem: Every real sequence contains a monotone subsequence.

Proof: Given $\{x_n\}$ say x_m is a "peak" if $x_n \leq x_m$ for all n > m.

Case 1: $\{x_n\}$ has infinitely many peaks. List them: x_{m_1}, x_{m_2}, \ldots This is decreasing subsequence.

Case 2: $\{x_n\}$ has finitely many peaks. Let x_{n_1} be past the last peak. This point is not a peak so there is a $n_2 > n_1$ so that $x_{n_2} > x_{n_1}$. But x_{n_2} is not a peak either so there is a $n_3 > n_2$ so that $x_{n_3} > x_{n_2}$. Continuing in this inductively gives an increasing sequence.

11. The Bolzano-Weierstrass Theorem: Every bounded sequence has a convergent subsequence.

bf Proof: By the previous result there is a monotone subsequence. By Thm 3.3.2 (Monotone convergence theorem) this subsequence converges.

A second proof based on nested interval is also given in the text. Based on bisecting and taking subinterval containing infinity many elements.

12. Theorem 3.4.9: A bounded sequence of real numbers converges iff every convergent subsequence has the same limit.

See proof in text.

13. Suppose $\{x_n\} \subset \mathbb{R}$ is bounded

The "limit superior" (or limsup) is the infimum of $v \in \mathbb{R}$ so that $x_n \leq v$ except for finitely many n (so the sequence is eventually $\leq v$.

The "limit inferior" (or liminf) is the supremum of $w \in \mathbb{R}$ so that $x_n \ge w$ except for finitely many n (so the sequence is eventually $\ge w$.

14. Theorem 3.4.11: If $\{x_n\}$ is bounded then TFAE:

(a) $x = \limsup(x_n)$.

(b) If $\epsilon > 0$ there are finitely many n so that $x_n > x + \epsilon$ and infinitely many so that $x_n > x - \epsilon$.

(c) $x = \inf\{u_m\}$ where $u_m = \sup\{x_n : n \ge m\}$.

(d) If S is the set of all limits of subsequences of $\{x_n\}$, then $x = \sup S$.

Proof:

(a) \Rightarrow (b): Let V be the set of reals v so that $x_n < v$ for all but finitely many n. Since x is the infimum of this set, there is an element of V in $[x, x + \epsilon)$ for any $\epsilon > 0$. So there are only finitely many $x_n > v$ hence only finitely many bigger than $x + \epsilon$. On the other hand $x - \epsilon \notin V$ so there are infinitely many x_n greater than $x - \epsilon$.

(b) \Rightarrow (c): If (b) holds then $u_m < x + \epsilon$ holds for large enough m. Thus inf $u_m \le x + \epsilon$ and hence inf $u_m \le x$. Since infinitely many $x_n > x - \epsilon$, $u_m \ge x - \epsilon$ for all m. Hence inf $u_m \ge x - \epsilon$ for all $\epsilon > 0$. Hence inf $u_m \ge x$. Thus inf $u_m = x$.

(c) \Rightarrow (d): Suppose $X' = \{x_{n_k}\}$ is a convergent subsequence. Its limit must be less than u_m for all m, and hence $\lim x_{n_k} \leq \lim u_m = x$. Thus $\sup S \leq x$.

Conversely there is an n_1 so that $u_1 - 1 < x_{n_1} \le u_1$. Inductively choose $n_{k+1} > n_k$ so that $u_k - \frac{1}{1+k} < x_{n_1} \le u_k$. Then

$$\lim x_{m_k} = \lim u_k = x,$$

so $x \in S$. Hence sup $S \ge x$.

(d) \Rightarrow (c): Let $w = \sup S$ and let $\epsilon > 0$. Then $w + \epsilon$ is strictly larger than the limit of any subsequence. So there can only be finitely many $x_n > w + \epsilon$ (otherwise by Bolzano-Weierstrass there would be a subsequence with limit $\geq w + \epsilon$). Thus $w \in V$, so $x \leq w$.

On the other hand, there is a subsequence converging to some number $> w - \epsilon$ so there are infinitely many elements of $x_n > w - \epsilon$. Thus no number less than x in is V. Thus $x = \inf V = \limsup x_n$.

 $\mathbf{2}$

15. Theorem 3.4.12: A bounded sequence is convergent iff $\limsup x_n = \liminf x_n$.

Section 3.5: The Cauchy criterion

16. **Defn:** A real sequence $\{x_n\}$ is a **Cauchy sequence** if for every $\epsilon > 0$ there is a $H(\epsilon) \in \mathbb{N}$ so that for all $n, m \ge (\epsilon)$, we have $|x_n - x_m| < \epsilon$.

17. Definition of convergence says sequence is eventually in any small disk around limit point. Cauchy condition says sequence is eventually in some small disk, not necessarily with same center.

- 18. Example: $\{1/n\}$
- 19. Example: $\{(-1)^n\}$

20. Lemma 3.5.3: A convergent sequence is Cauchy.

Proof: Suppose $\{x_n\}$ converges to x. Given $\epsilon > 0$ there is an H so that $|x_n - x| < \epsilon/2$ for all $n \ge H$. Thus $n, m \ge H$ implies

$$|x_n - x_m| \le |x_n - x| + |x_m - x| < \epsilon.$$

21. Lemma 3.5.4: A Cauchy sequence is bounded. **Proof:** Take $\epsilon = 1$. By definition there is an H so that n.m > H implies $|x_n - x_m| < 1$.

Proof: Take $\epsilon = 1$. By definition there is an H so that n.m > H implies $|x_n - x_m| < 1$. Hence

$$|x_n| \le 1 + \max\{|x_1|, \dots, |x_H|\}.$$

22. Cauchy Convergence Criterion: A real sequence is convergent iff it is Cauchy. **Proof:** A convergent sequence is Cauchy by Lemma 3.5.3.

Conversely, suppose $\{x_n\}$ is Cauchy. By Lemma 3.5.4 the sequence is bounded. By the Bolzano-Weierstrass theorem, there is a convergent subsequence $\{x_{n_k}\}$, say with limit x. We claim that $\{x_n\}$ also converges to x.

Since the subsequence converges, for any $\epsilon > 0$, choose H_1 so that $|x_{n_k} - x| < \epsilon/2$ for $n_k \ge H_1$.

Since $\{x_n\}$ is Cauchy we can choose H_2 so that $|x_n - x_m| < \epsilon/2$ for $n, m \ge H_2$. Let $H = \max(H_1, H_2)$. Then for $n \ge H$ choose some $n_k \ge H$. Then

$$|x_n - x| \le |x_n - x_{n_k}| + |x_{n_k} - x| < \epsilon/2 + \epsilon/2 = \epsilon$$

Hence $\{x_n\}$ converges to x.

23. Example: $x_1 = 1, x_2 = 2, x_n = \frac{1}{2}(x_{n-1} + x_{n-2}).$ 24. Example: $\{\sum_{k=1}^{n} \frac{1}{h}\}$ diverges. **Proof:** Consider $2^m < k \le 2^{m+1}$. Then

$$\frac{1}{k} \ge 2^{-m-1}$$

and there are 2^m such terms, so

$$x_{2^{m+1}} - x_{2^m} = \sum_{k=2^m+1}^{2^{m+1}} \frac{1}{k} \ge 2^m \cdot 2^{-m-1} = \frac{1}{2}.$$

So the differences do not tend to zero, so not Cauchy.

25. Defn: A real sequence is contractive if there is a 0 < C < 1 so that

$$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n|$$

25. Theorem 3.5.8: Every contractive sequence is Cauchy, hence convergent. **Proof:** By induction we can show

$$|x_{n+2} - x_{n+1}| \leq C|x_{n+1} - x_n| \\ \leq C^2|x_n - x_{n-1}| \\ \vdots \\ \leq C^n|x_2 - x_1|.$$

Therefore

$$\begin{aligned} |x_m - x_n| &\leq |x_m - x_{m-1}| + \dots |x_{n+1} - x_n| \\ &\leq (C^{m-2} + \dots + C^{n-2})|x_2 - x_1| \\ &\leq C^{n-1}(C^{m-1} + \dots + 1)|x_2 - x_1| \\ &= C^{n-1}\frac{1 - C^{m-1}}{1 - C}|x_2 - x_1| \\ &\leq C^{n-1}\frac{1}{1 - C}|x_2 - x_1| \end{aligned}$$

Since 0 < C < 1, $C^n \to 0$. Therefore this is a Cauchy sequence. 26. Corollary 3.5.10: If $\{x_n\}$ is a contractive sequence with constant 0 < C < 1 and $x = \lim x_n$, then

and $x = \lim x_n$, then (i) $|x - x_n| \le \frac{C^{n-1}}{1-C} |x_2 - x_1|$. (ii) $|x - x_n| \le \frac{C}{1-C} |x_n - x_{n-1}|$.

27. $f : \mathbb{R} \to \mathbb{R}$ is a *C*-contraction (or *C*-Lipschitz) if $|f(x) - f(y)| \le C|x - y|$. Such a map is automatically continuous.

This happens if f is differentiable and $|f'| \leq C$ by the mean value theorem. 28. **Theorem:** If C < 1 and f is a C-contraction, then f(x) = x has a unique solution.

Proof: Take $x_1 = 0$ (any value would work), and define $x_{n+1} = f(x_n)$. Then

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le C|x_n - x_{n-1}|,$$

so the sequence is contractive, and has a limit x. Then

 $x = \lim x_n = \lim x_{n+1} = \lim f(x_n) = f(x).$

Hence a solution exists.

If x, y are two different solutions, then

$$|x - y| = |f(x) - f(y)| \le C|x - y| < |x - y|.$$

since 0 < C < 1 and |x - y| > 0. Therefore there is at most one solution.