320 Fall 2021, Tuesday, Oct 26, 2021

Section 6.4: Taylor’s Theorem

1. Derivatives of order greater than 1: f”, f" = f® ..
2. Defn: Taylor polynomial of f at xg:

" Zo ) (n) T .
Po(z) = f(xo) + f'(z0)(x — z0) + / (2 )(x—xo) e f—fl)(x—xo) :

3. Taylor’s Theorem: Let n € N, [ = [a,b], f : I — R be such that f and its
derivatives up to order n are continuous on I and that f"=Y exists on (a,b). If xg € I
then for any « € I there is a point ¢ between xy and z so that

B e (e)
f(z) —Pn(x)er

Proof: Fix x and let J be the closed interval with endpoints x and zy. Define
x—t)"
F(t) = f(@) — 1)~ ( — ) (1) - — =D gy
Note F(x) = 0. Differentiate with respect to ¢ and use product rule :

(z—t)"" (x —t)"

F(t) =0 () = () =@ =f'(1) — - = P 00 =

(7 — 20)"™ = Py(2) + R, (x).

f(nJrl) (t) )

All the terms cancel except the last, so

F/(t) _ (‘CE — t)nf(”-f—l)(t)'

Define GG on J by ! B
6 =rio - (Y“=2) Fle,

Then G(z) = G(zg) = 0.

By Rolle’s theorem there is a ¢ € J so that

(x—o)"
(x — o)™t

0=G'(c)=F'(¢c)=(n+1)— F(xg).

Thus
—1 (l‘ - mO)n—H /
F (o) n+1  (z—oc) Fie)
L (- 20)" (@ = )" Linayy .
 on+1 (x —c)™n fe)
f(n—‘,—l)(c)

.
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4oe=1+2+¢++1+...
We assume the derivative of e* is itself. Then the Taylor polynomial for e* at
zo = 0 is

]' 2 1 n
l+2+-2+...—x
2 n

and the remainder is

f(n+1)(c) (l’ . Z,O)n+1 — ec(n 4 1):Cn+1

(n+1)
for some ¢ € [0, z]. Taking x =1 we see R,(1) — 0, so
1 1 1
—el = Bm(1+ =+ =+ ...+ 2).
e=e nl_}I{.lo(+2—|-6+ +n)

5.1 — 2% < cosz for all x € R.

By Taylor’ theorem

cos(z) = 1 —2%/2 + Ry(x)
and
1 1 .
Ry(x) = éf"'(c)x?’ =5 sin(c)z®.

If 0 <e¢<a<mthen Ry(x) > 0. Similarly if —7 <2 <¢<0.

For |z| > 7, 1 — 2? < —3 < cos(x), so this is trivially true.
6. Theorem 6.4.4: Suppose [ is an interval, z( is an interior point of I and n > 2.
Suppose f',..., f™ are continuous on a neighborhood of z, and the first n — 1
derivatives vanish at xg.

(i) If n is even and f™(x0) > 0, then f has a relative maximum at z.

(ii) If n is even and £ (zy) < 0, then f has a relative minimum at .

(iii) If n is odd, then f has neither a relative minimum or maximum at x.
Proof: see text.
7. Defn: A function f: I — R is convex if for any ¢ € [0,1] and z,y € I, we have

F(A=t)z+ty) <A —1)f(x) +f(y).

8. Facts: convex functions are continuous and left and right derivatives exist at
every point.
9. Theorem 6.4.6: If f has a second derivative on I then f is convex iff f”(z) >0
for all z € I.

Proof:

Suppose f is convex. An exercise shows that

f”(a) — lim f(a+h)_2f(a)+f(a_h>'

h—0 h2

If f is convex the quotient is > 0 so f”(a) > 0.
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To prove the converse, use Taylor’s theorem with a1, xe € I and xg = (1—1)z1+txs
to get

F(a) = $wo) + (o) — 7o) + 5 ") (1 w0’

for some ¢; between xy and x;. Similarly,

F() = Fa0) + (o) w2 = m0) + 5" (e2) (2 — w0)’

for some ¢y between xy and xo. If f” > 0 then the remainder terms are positive
(remember the square), so

(L=t)f(x1) +tf(x2) = f(wo) + f(w0)((1 — )y + tay — 30)
(L= 0 (er) s — w0)?

+%tf”(c2)($2 — 1)”
= flzo) + R

> flxo) = f((1 —t)zy +txy). O
10. Newton’s method: Let I = [a, b] and let f be twice differentiable on I. Suppose
f(a) <0 < f(b). Suppose there are constants m, M so that
0<m<|f'(x)] and |f"(2)]| < M <

on . Them there exists a subinterval J of I containing a zero r of f such that for
any = € J the sequence defined by

)
n

belongs to J and (x,) converges to r. Moreover
M
|z — 7| < %pﬁn —r?

for all n € N.

Proof: see text.
11. Newton’s method need not converge if we start too far from root. Iterates can
become periodic or chaotic.



Section 7.1: Riemann Integral

1. Defn: If I = [a, b] a partition of [ is finite set P
a=Tp <11 <---<x,=>0.

These divide I into disjoint (except for endpoints) intervals Ij, = [x_1, 2] for k =
1,...,n. The norm of P is

[Pl = mas |z — 2]

2. Defn: A tag is a choice of a point ¢, € I. A tagged partition is a partition along
with a tag for each interval.
4. Given a tagged partition, the associated Riemann sum for a function f: [ — R is

S(f,P) = flte) (s — z41).

5. Defn: A function f: I — R is Riemann integrable on [a, b] if there is a L € R so
that for every € > 0 there is a ¢ so that ||P|| < d implies |S(f,P) — L| <.

In this case we write f € R]a,b].
6. If L exists we usually write it as

/a  Ha)de.

7. Theorem 7.1.2: If f € RJa,b] then the value of the integral is uniquely deter-

mined.

Proof: sketch or see text.

8. Theorem 7.1.3: If g € Rla,b|] and f = g except at finitely many points, then

f€Rla,n]and [ f= [g.

Proof: If suffices to prove this for one point ¢ € [a, b], and then apply induction.
Let L = fab g and f = g except at c. The for any tagged partition, the Riemann

sums for f and g are the same except possible for intervals with tag ¢, and there are

at most two such intervals. Thus

1S(f,P) = S(g,P)l < 2(lg(e)| + [f()DIIPI-

Given € > 0 choose .

(£ )l +1g(e)])”

51§4

and d, so that ||P|| < 0 implies
|L —S(g,P)| < e€/2.
Take 6 = min(dy,d2). Then if ||P|| < 0 we get
IL=S(f, P <|L—=5(g,P)+IS(f,P) =59, P)| <e/2+¢/2. [
9. Examples:



constant functions

step functions

continuous functions

Thomae’s function

Any function with a countable number of discontinuities

Any function with a zero length set of discontinuities
10. Non-examples

Dirichlet function
11. Theorem 7.1.5: If f, g € R[a,b] and k € R, then

(a) kf € Rla,b] and ["kf=Fk [ f.
() f+ g € Rla,b] and f;(f—g):f;f+f;g.

(a)if f < gthen [P f< [Vg.
Proof: It is easy to check from the definitions that

S(kf,P) = kS(f,P),
S(f+9,P)=5(f,P)+5(9,P),
S(f,P) < S(g,P),

and from these it is easy to deduce the stated results.
To prove (b), note that

sr+a.P)= [1- [al<is0P) = [ 1141567 - [

and the two terms on the right are less than €/2 if ||P|| < ¢ is small enough.
To prove (c), choose ||P|| < ¢ small enough so that

/f—e/QSS(f,P)

[o+erz=s.p)
so then
/f < 6+/g,
for all € > 0. This implies [ f < [g. 0

12. Theorem 7.1.6: If f € R[a,b] then f is bounded on [a, b].
Proof: Suppose f is integrable with [ f = L. Then taking ¢ = 1, we can choose
d > 0 so that ||P|| < ¢ implies

1S(f, P < [L]+ 1.

If f is not bounded on I then it is also not bounded on at least one of the subintervals
I. Thus we can choose the tag in Ij, so that f(ty)(xx — z1_1) is as large as we wish,



say

Pt —m) > 1L+ 1+ 1S () — 5.

J#k
This contradicts the triangle inequality. U
13. Thomae’s function f is Riemann integrable on [0, 1].
For any € > 0 there are only finitely many points M, where f(z) > €/2, so at most

2M, tags where this happens. Thus ||P| < § implies

S(f,P)<1-M.- 5+e/22(xk —Tp—1) < OM, + €.
Choose 6 < ¢/(2M,).Then

S(f,P)<e€/2+4+¢€/2=c¢.

Thus Thomae’s function is Riemann integrable with [ f = 0.



