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Section 6.4: Taylor’s Theorem

1. Derivatives of order greater than 1: f ′′, f ′′′ = f (3), . . .
2. Defn: Taylor polynomial of f at x0:

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 · · ·+
f (n)(x0)

n
(x− x0)

n.

3. Taylor’s Theorem: Let n ∈ N, I = [a, b], f : I → R be such that f and its
derivatives up to order n are continuous on I and that f (n=1) exists on (a, b). If x0 ∈ I
then for any x ∈ I there is a point c between x0 and x so that

f(x) = Pn(x) +
f (n+1)(c)

(n+ 1)
(x− x0)

n+1 = Pn(x) +Rn(x).

Proof: Fix x and let J be the closed interval with endpoints x and x0. Define

F (t) = f(x)− f(t)− (x− t)f ′(t)− · · · −
(x− t)n

n
f (n)(t).

Note F (x) = 0. Differentiate with respect to t and use product rule :

F ′(t) = 0− f ′(t)− f ′(t)− (x− t)f ′′(t)− · · · −
(x− t)n−1

(n− 1)
f (n)(t)−

(x− t)n

n
f (n+1)(t).

All the terms cancel except the last, so

F ′(t) = −
(x− t)n

n
f (n+1)(t).

Define G on J by

G(t) = F (t)−

(

(x− t)

x− x0

)n+1

F (x0).

Then G(x) = G(x0) = 0.
By Rolle’s theorem there is a c ∈ J so that

0 = G′(c) = F ′(c) = (n+ 1)−
(x− c)n

(x− x0)n+1
F (x0).

Thus

F (x0) =
−1

n+ 1
−

(x− x0)
n+1

(x− c)n
F ′(c)

=
1

n+ 1
−

(x− x0)
n+1(x− c)n

(x− c)nn
f (n+1)(c)

= −
f (n+1)(c)

(n+ 1)
(x− x0)

n+1. �
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4. e = 1 + 1
2
+ 1

6
+ · · ·+ 1

n
+ . . .

We assume the derivative of ex is itself. Then the Taylor polynomial for ex at
x0 = 0 is

1 + x+
1

2
x2 + . . .

1

n
xn

and the remainder is

f (n+1)(c)

(n+ 1)
(x− x0)

n+1 = ec(n+ 1)xn+1

for some c ∈ [0, x]. Taking x = 1 we see Rn(1) → 0, so

e = e1 = lim
n→∞

(1 +
1

2
+

1

6
+ · · ·+

1

n
).

5. 1− x2 ≤ cos x for all x ∈ R.
By Taylor’ theorem

cos(x) = 1− x2/2 +R2(x)

and

R2(x) =
1

6
f ′′′(c)x3 =

1

6
sin(c)x3.

If 0 ≤ c ≤ x ≤ π then R2(x) ≥ 0. Similarly if −π ≤ x ≤ c ≤ 0.
For |x| ≥ π, 1− x2 < −3 < cos(x), so this is trivially true.

6. Theorem 6.4.4: Suppose I is an interval, x0 is an interior point of I and n ≥ 2.
Suppose f ′, . . . , f (n) are continuous on a neighborhood of x0 and the first n − 1
derivatives vanish at x0.
(i) If n is even and f (n)(x0) > 0, then f has a relative maximum at x0.
(ii) If n is even and f (n)(x0) < 0, then f has a relative minimum at x0.
(iii) If n is odd, then f has neither a relative minimum or maximum at x0.

Proof: see text.
7. Defn: A function f : I → R is convex if for any t ∈ [0, 1] and x, y ∈ I, we have

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

8. Facts: convex functions are continuous and left and right derivatives exist at
every point.
9. Theorem 6.4.6: If f has a second derivative on I then f is convex iff f ′′(x) ≥ 0
for all x ∈ I.
Proof:

Suppose f is convex. An exercise shows that

f ′′(a) = lim
h→0

f(a+ h)− 2f(a) + f(a− h)

h2
.

If f is convex the quotient is ≥ 0 so f ′′(a) ≥ 0.
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To prove the converse, use Taylor’s theorem with a1, x2 ∈ I and x0 = (1−t)x1+tx2

to get

f(x) = f(x0) + f ′(x0)(x1 − x0) +
1

2
f ′′(c1)(x1 − x0)

2

for some c1 between x0 and x1. Similarly,

f(x) = f(x0) + f ′(x0)(x2 − x0) +
1

2
f ′′(c2)(x2 − x0)

2

for some c2 between x0 and x2. If f ′′ ≥ 0 then the remainder terms are positive
(remember the square), so

(1− t)f(x1) + tf(x2) = f(x0) + f ′(x0)((1− t)x1 + tx2 − x0)

+
1

2
(1− t)f ′′(c1)(x1 − x0)

2

+
1

2
tf ′′(c2)(x2 − x0)

2

= f(x0) +R

≥ f(x0) = f((1− t)x1 + tx2). �

10. Newton’s method: Let I = [a, b] and let f be twice differentiable on I. Suppose
f(a) < 0 < f(b). Suppose there are constants m,M so that

0 < m ≤ |f ′(x)| and |f ′′(x)| ≤ M < ∞

on I. Them there exists a subinterval J of I containing a zero r of f such that for
any x ∈ J the sequence defined by

xn+1 = xn −
f(xn)

f ′(xn)
,

belongs to J and (xn) converges to r. Moreover

|xn − r| ≤
M

2m
|xn − r|2

for all n ∈ N.
Proof: see text.

11. Newton’s method need not converge if we start too far from root. Iterates can
become periodic or chaotic.
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Section 7.1: Riemann Integral

1. Defn: If I = [a, b] a partition of I is finite set P

a = x0 < x1 < · · · < xn = b.

These divide I into disjoint (except for endpoints) intervals Ik = [xk−1, xk] for k =
1, . . . , n. The norm of P is

‖P‖ = max
k

|xk − xk−1|.

2. Defn: A tag is a choice of a point tk ∈ Ik. A tagged partition is a partition along
with a tag for each interval.
4. Given a tagged partition, the associated Riemann sum for a function f : I → R is

S(f,P) =
n

∑

k=1

f(tk)(xk − xk−1).

5. Defn: A function f : I → R is Riemann integrable on [a, b] if there is a L ∈ R so
that for every ǫ > 0 there is a δ so that ‖P‖ < δ implies |S(f,P)− L| < ǫ.
In this case we write f ∈ R[a, b].

6. If L exists we usually write it as
∫ b

a

f(x)dx.

7. Theorem 7.1.2: If f ∈ R[a, b] then the value of the integral is uniquely deter-
mined.
Proof: sketch or see text.
8. Theorem 7.1.3: If g ∈ R[a, b] and f = g except at finitely many points, then
f ∈ R[a, n] and

∫

f =
∫

g.
Proof: If suffices to prove this for one point c ∈ [a, b], and then apply induction.

Let L =
∫ b

a
g and f = g except at c. The for any tagged partition, the Riemann

sums for f and g are the same except possible for intervals with tag c, and there are
at most two such intervals. Thus

|S(f,P)− S(g,P)| ≤ 2(|g(c)|+ |f(c)|)‖P‖.

Given ǫ > 0 choose
δ1 ≤

ǫ

4(|f(c)|+ |g(c)|)
,

and δ2 so that ‖P‖ < δ2 implies

|L− S(g,P)| < ǫ/2.

Take δ = min(δ1, δ2). Then if ‖P‖ < δ we get

|L− S(f,P)| ≤ |L− S(g,P)|+ |S(f,P)− S(g,P)| < ǫ/2 + ǫ/2. �

9. Examples:
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constant functions
step functions
continuous functions
Thomae’s function
Any function with a countable number of discontinuities
Any function with a zero length set of discontinuities

10. Non-examples
Dirichlet function

11. Theorem 7.1.5: If f, g ∈ R[a, b] and k ∈ R, then

(a) kf ∈ R[a, b] and
∫ b

a
kf = k

∫ b

a
f .

() f + g ∈ R[a, b] and
∫ b

a
(f − g) =

∫ b

a
f +

∫ b

a
g.

(a) if f ≤ g then
∫ b

a
f ≤

∫ b

a
g.

Proof: It is easy to check from the definitions that

S(kf,P) = kS(f,P),

S(f + g,P) = S(f,P) + S(g,P),

S(f,P) ≤ S(g,P),

and from these it is easy to deduce the stated results.
To prove (b), note that

|S(f + g,P)−

∫

f −

∫

g| ≤ |S(f,P)−

∫

f |+ |S(g,P)−

∫

g|

and the two terms on the right are less than ǫ/2 if ‖P‖ < δ is small enough.
To prove (c), choose ‖P‖ < δ small enough so that

∫

f − ǫ/2 ≤ S(f,P)

∫

g + ǫ/2 ≥ S(f,P)

so then
∫

f ≤ ǫ+

∫

g,

for all ǫ > 0. This implies
∫

f ≤
∫

g. �

12. Theorem 7.1.6: If f ∈ R[a, b] then f is bounded on [a, b].
Proof: Suppose f is integrable with

∫

f = L. Then taking ǫ = 1, we can choose
δ > 0 so that ‖P‖ < δ implies

|S(f,P)| ≤ |L|+ 1.

If f is not bounded on I then it is also not bounded on at least one of the subintervals
Ik. Thus we can choose the tag in Ik so that f(tk)(xk − xk−1) is as large as we wish,
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say

f(tk)(xk − xk−1) > |L|+ 1 + ‖
∑

j 6=k

f(tj)(xj − xj−1).

This contradicts the triangle inequality. �

13. Thomae’s function f is Riemann integrable on [0, 1].
For any ǫ > 0 there are only finitely many points Mǫ where f(x) > ǫ/2, so at most

2Mǫ tags where this happens. Thus ‖P‖ < δ implies

S(f,P) ≤ 1 ·Mǫ · δ + ǫ/2
∑

(xk − xk−1) ≤ δMǫ + ǫ.

Choose δ ≤ ǫ/(2Mǫ).Then

S(f,P) < ǫ/2 + ǫ/2 = ǫ.

Thus Thomae’s function is Riemann integrable with
∫

f = 0.


