MAT 320 Fall 2021, Thursday, Oct 21, 2021

Finish from Tuesday — Section 5.6: Monotone and Inverse Functions

8. Continuous Inverse Theorem: If f is strictly monotone and continuous on an
interval I, then f has an inverse g that is strictly monotone and continuous.
Proof: Enough to consider f increasing.

By Theorem 5.3.10, J = f(I) is an interval. Since strictly monotone implies
injective, f has an inverse g : J — I.

Easy to see that g is strictly increasing: if z,y € J and x < y Then f(g(x)) <
flg(y)) so g(x) < g(y) since f is increasing.

If g were discontinuous, then it must have a jump discontinuity at some point
¢ € J. This means there is a value between lim,_,.- ¢ and lim,_,.+ ¢ which is not in
the image of g. Thus g(J) = I is not an interval, a contradiction. O
9. nth roots exist for z > 0 if n is even.

10. nth roots exist for x € R if n is even.
11. positive rational powers x" exist for x > 0.
12. all rational powers z" exist for z > 0.

Section 6.1: The derivative

1. Defn: Suppose f is defined on an interval [ and ¢ € I. We say L is the derivative

of f at cif
ORI
z—c €T —cC
We allow ¢ to be an endpoint of I.
We say f is differentiable at ¢ and write f'(c) = L.
2. If f is differentiable on all of I we obtain a function f’ on I.
3. Theorem 6.1.2: If f has a derivative at ¢, then f is continuous at c.

Proof: Write

flx) = flc) = (x—c)w
b (0) = 10 = (e 0) - (1 =71 ) =00 <o

Thus f is continuous at c. U
4. There are continuous functions that are nowhere continuous, first constructed by

Weierstrass, e.g.,
Z 27" cos(3").
n=0

See Chapter 5 of my book Fractals in probability and analysis, PDF on my webpage.
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5. Theorem 6.4.1: Suppose f, g are defined on an interval I and differentiable at
c€ l. Then
(a) if @ € R then af is differentiable and (af)'(c) = af'(c).
(b) f + g is differentiable at ¢ and (f + g)'(c) = f'(c) + ¢'(c).
(c) fg is differentiable at ¢ and (fg)'(c) = f'(c)g(c) + f(c)g'(c).
(

(d) f/g is differentiable at ¢ and (f/g)'(c) = %)()glc)

Proof: See text (same proof as in calculus classes).

6. Deduce power rule, rule for finite products.

7. Carathéodory’s Theorem: Suppose f is defined on an interval [ and ¢ € I.
Then f is differentiable at c iff there is a function ¢ on I that is continuous at ¢ and
satisfies

f(@) = flc) = p(z)(z — o).
Proof:
If f is differentiable at c set

r—c
for x # c and p(c) = f'(c). It is easy to check ¢ has desired properties.
Conversely, if such a ¢ exists, then

p(c) = lim p(z) = lim w

so f'(c) exists and equals ¢(c). O
8. The chain rule: Let I, J be intervals in R and suppose f:J — [ and g: I — R.
If f is differentiable at ¢ € I and g is differentiable at g(c) then the composition go f
is differentiable at ¢ and

(go f)(e) =(g'(f(c) - f(c).

Proof: By Carethéodory’s theorem there is function ¢ continuous at ¢ so that ¢(c) =

f'(c) and
f(@) = f(e) = p(a)(z — o).
Similarly, there is a function ¢ continuous at f(c) so that 1(c) = ¢’(f(c)) and
b(y)(y —

9(y) — g(f(c)) = ¥(y)(y — o).
Then

9(f(x)) = g(f(e)) = L(f(e)(f(x) = f(c)) = (¥ o f)(x) - p(x)(x = ¢).

Now apply Carathéodory’s theorem to go f with the function ® = (¢ o f)- ¢ to prove
g o f is differentiable with derivative (v o f)(c) - ¢(c) = ¢'(f(c))f'(c). O
9. Examples:

Power rule for integers.

Derivative of 1/f. Quotient rule.
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10. Theorem 6.1.8: Suppose f is strictly monotone and continuous on an interval
I. Let J = f(I) and let g : J — I be the inverse to f. If f is differentiable at ¢ and
f'(c) # 0, then g is differentiable at d = f(c) and

1 1

D=5 = Flg@)

Proof: By Carathéodory’s theorem

f(x) = flc) = p(x)(z — ¢
and ¢(c) = f'(¢) # 0. Thus ¢ is non-zero on some d-neighborhood V = (¢ — 4, ¢+ 0)
(thm 4.2.9).
Let U = f(V NI). Then f(9(y)) =y on U so
y—d=[f(g(y)) = f(c) = »(9(y)) - (9(y) = 9(d)).

Since ¢ is non-zero, we can divide by it to get

y—d
=9(y) — g(d).
v(9(y))
Now apply Carathéodory’s theorem using 1/¢(g(y)), which is continuous at d to
deduce g is differentiable with derivative 1/¢(g(d)) = 1/f'(c). O

11. Theorem 6.1.9: Suppose f is strictly monotone and continuous on an interval
I. Let J = f(I) and let g : J — I be the inverse to f. If f is differentiable on / and
/', is never zero, then g is differentiable on I and ¢' = 1/f"(g(x)).
12. Examples:

xl/n

xP/a

arcsin(x)
Section 6.2: The Mean Value Theorem

1. Defn: f has a relative (or local) maximum at ¢ € I if f(z) < f(c) for all = in
some ¢-neighborhood of c.

Similar for minimum. Extremum = minimum or maximum.
2. Interior Extremum Theorem: Suppose ¢ € [ is an interior point of I at which
f I — R has a relative extremum. If f is differentiable at ¢ then f’(c) = 0.
Proof: We only consider case when f has a local maximum at c.

For x close enough to ¢, f(z) — f(c) <0, so

F@ =IO iy s e
r—c -
MZOifz<c.

So if limit exists, it must be zero. O
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3. Corollary 6.2.2: Suppose ¢ € [ is an interior point of [ at which f : I — R has
a relative extremum. Then either f'(¢) = 0 or f is not differentiable at c.

3. Rolle’s Theorem: Suppose f is continuous on [a,b] and differentiable on (a, b)
and f(a) = f(b) = 0. Then there is at least one point ¢ € (a,b) where f'(c) = 0.
Proof: If f is always zero, any ¢ will work.

Otherwise, by replacing f by —f if necessary, we may assume f takes some positive
value. By Theorem 5.3.4 f attains a positive maximum value at an interior point ¢
and hence f’(c) = 0 by the previous result. O
4. Mean Value Theorem: Suppose f is continuous on [a,b] and differentiable on
(a,b). Then there is at least one point ¢ € (a,b) where

oy L) = fla)
fi(c) =  R—
Proof: Apply Rolle’s theorem to
o) = 1) — fla) - LT )
Check that p(a) = ¢(b) = 0 and ¢ is differentiable where f is, so ¢'(¢) = 0 for some
c. Hence o (@)
o fb) — fa
0=fc) = ——
or

f'©)b—a)= f(b) = fla). O
5. Theorem 6.2.5: Suppose f is continuous on [a, b] and differentiable on (a,b). If
f'(z) =0 for all x € (a,b) then f is constant.
Proof: If there is « € (a,b) where f(z) # f(a) then by the Mean Value Theorem
there is a ¢ € (a,z) where

o D =F@
rT—a

a contradiction. O
6. Corollary 6.2.6: Suppose f, g are continuous on [a, b] and differentiable on (a, b).
If f'(z) = ¢'(x) for all x € (a,b) then f = g+ C where C = f(a) — g(a) is constant.
Proof: (f —g)' =0so f — g is constant and equal to f(a) — g(a) at a. O
7. Theorem 6.2.7: Suppose f : I — R is differentiable on I. Then

(a) f is increasing iff f'(xz) > 0 for all x € I.

(b) f is decreasing iff f'(x) <0 for all € I.
Proof:

(a) Suppose f' > 0. If z < y are in I then

fly) = f(z) = fl(c)(y —x) >0,

so f is increasing.



Conversely, if f is increasing then = # y implies (two cases)

fly) — f(z)
y—l’

>0

- )

so the limit as x — y is > 0. Thus f'(y) > 0 for any y € I.

Part (b) is proved similarly (or apply Part (a) to g = —f).
8. A differentiable f is strictly increasing if f* > 0. Converse is not true because of
23,
9. f'(z) > 0 does not imply f is increasing on any neighborhood of x.
10. First Derivative Test for Extrema: Suppose f is continuous on I = [a, b,
that ¢ € I is an interior point and f is differentiable on (a,c) and (¢, b). Then

(a) If there is a 6 > 0 so that f* > 0 on (¢ — d,c) and f* <0 on (¢,c+ §) then f
has a relative maximum at c.

(b) If there is a § > 0 so that f < 0 on (¢ —d,c) and f' > 0 on (¢,c+ J) then f
has a relative minimum at c.
11. Converse is not true. We can have a relative maximum ¢ so that f’ take both
positive and negative values on both sides of ¢, inside any neighborhood of c.
12. Inequalities:

e*>14+x.

—z <sin(x) <z

if @ > 1 then (1+2)* > 1+ ax.
13. Lemma 6.2.11: Suppose [ is an interval, ¢ € I and f is differentiable at c.
Then

(a) if f'(c) > 0 there is § > 0 so that f(z) > f(c) for x € I so that ¢ <z < c+ 9.

(b) if f'(¢) < 0 there is 6 > 0 so that f(x) > f(c) forx € [ sothat c—d <z < c.
Proof:

(a) Since

i @) = 1)

r—c €T —cC

=f(c)>0
there is a § > 0 so that # € I and |z — ¢| < J implies

f(z) = f(e)

r —C

> 0.

If © > ¢ this implies f(z) — f(c) > 0.

Proof of (b) is similar. O
14. Darboux’s theorem: If f is differentiable on I = [a,b] and k is between f'(a)
and f'(b) then there is a ¢ € (a,b) so that f'(c) = k.

Proof: Assume f'(a) < k < f'(b) and wet

g(w) = ko — f(x).
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Since g is continuous, it attains a maximum value at some c. Since ¢'(a) = k — f'(a)
the maximum does not occur at a by lemma 6.2.11. Similarly, the maximum does
not occur at b. Thus ¢ € (a,b) and 0 = ¢'(c) = k — f'(c) so f'(c) = k. O
15. Even if f is differentiable f’ need not be continuous, e.g., z%sin(1/z). So Dar-
boux’s theorem does not follow from intermediate value theorem.

16. Darboux’s theorem lets us find functions that can’t be derivatives of any function.

Section 6.4: Taylor’s Theorem

1. Derivatives of order greater than 1: f”, f” = f® ...
2. Defn: Taylor polynomial of f at xq:

Pula) = f(an) + £an)(w = o) + L8 o ... L200)

3. Taylor’s Theorem: Let n € N, [ = [a,b], f : I — R be such that f and its
derivatives up to order n are continuous on I and that f("=Y exists on (a,b). If o € I
then for any x € I there is a point ¢ between xy and x so that

f+ (o
(n+1)

(x — x0)".

f(x) = P,(z) + (x — o)™ = P, (2) + R(x).

Proof: Fix x and let J be the closed interval with endpoints x and zy. Define

(=)

F(t) = f(z) = f(t) = (x =) f'(t) — F ).

Note F(x) = 0. Differentiate with respect to ¢t and use product rule :

P =0 70 = F0) = (= 0"(0) = = D ooy = B2 g,
All the terms cancel except the last, so
P = )

Define G on J by

G(t) = F(t) - (@ - ”)nﬂ Flzo).

T — Zo

Then G(z) = G(x) = 0.
By Rolle’s theorem there is a ¢ € J so that

(x ="
(x — xo) !

0=G(¢c)=F'(¢)=(n+1)— F(x0).



Thus
-1 (x — )"t
n+1  (z—oc)n Fle)
L (=x)" (@ ="
on+1 (x —c)"n )
f(n—‘,—l)(c)

= gy @)

4oe=143+c+-+1+...
We assume the derivative of e” is itself. Then the Taylor polynomial for e* at
Tg=01is

1 2 1 n
l4+z+=2"+...-x
2 n
and the remainder is
S (c)
(n+1)
for some ¢ € [0, x]. Taking z = 1 we see R, (1) — 0, so
1 1

1
1 .
f— :1 ]_ —_— _— DY — .
e=c¢e nLIEo(+2+6+ +n)

(l’ o xo)n+1 — ec(n 4 1)xn+1

5 1— 22 < cosz for all x € R.
By Taylor’ theorem
cos(z) = 1 —2%/2 + Ry(x)
and

Ry(z) = %f”’(c)x?’ = ésin(c)x?’.

If 0 <c¢<z<mthen Ry(x) > 0. Similarly if —7 <2 <¢<0.

For |z| > 7, 1 — 2% < —3 < cos(z), so this is trivially true.
6. Theorem 6.4.4: Suppose [ is an interval, z( is an interior point of I and n > 2.
Suppose f,..., f™ are continuous on a neighborhood of z, and the first n — 1
derivatives vanish at xg.

(i) If n is even and £ (z) > 0, then f has a relative maximum at .

(ii) If n is even and £ (z) < 0, then f has a relative minimum at .

(iii) If n is odd, then f has neither a relative minimum or maximum at x.
Proof: see text.
7. Defn: A function f: I — R is convex if for any ¢ € [0,1] and z,y € I, we have

(L= t)z +ty) < (L= () +t£(y).

8. Facts: convex functions are continuous and left and right derivatives exist at
every point.

9. Theorem 6.4.6: If f has a second derivative on I then f is convex iff f”(z) >0
for all z € I.



Proof:
Suppose f is convex. An exercise shows that
1" 9. f(a+h)_2f(a)+f(a_h)
fia) = Jim 12 '
If f is convex the quotient is > 0 so f”(a) > 0.
To prove the converse, use Taylor’s theorem with ay,xo € I and xg = (1 —t)x1+txs
to get

1
f(@) = f(xo) + f'(w0) (w1 — 20) + §f"(61)(ff?1 — x9)°
for some ¢; between xy and z;. Similarly,
1
f(@) = f(xo) + f'(w0) (w2 — 20) + gf”(f&)(ivz — x9)
for some ¢y between xg and xo. If f” > 0 then the remainder terms are positive
(remember the square), so

(L=t)f(z1) +tf(x2) = f(wo) + f(w0)((1 —t)zy + Ly — 30)
1

5= (er) (@ = wo)”
gt (e2) (w2 — 1)
= f(zo) + R

10. Newton’s method: Let I = [a, b] and let f be twice differentiable on I. Suppose
f(a) <0< f(b). Suppose there are constants m, M so that

0<m<|f'(x)] and |f"(2)] < M <
on I. Them there exists a subinterval J of I containing a zero r of f such that for
any x € J the sequence defined by

b T T )
n

belongs to J and (z,) converges to r. Moreover
2 — 7| < o[ — 7
2m
for all n € N.
Proof: see text.
11. Newton’s method need not converge if we start too far from root. Iterates can
become periodic or chaotic.



