
MAT 320 Fall 2021, Thursday, Oct 21, 2021

Finish from Tuesday — Section 5.6: Monotone and Inverse Functions

8. Continuous Inverse Theorem: If f is strictly monotone and continuous on an
interval I, then f has an inverse g that is strictly monotone and continuous.
Proof: Enough to consider f increasing.
By Theorem 5.3.10, J = f(I) is an interval. Since strictly monotone implies

injective, f has an inverse g : J → I.
Easy to see that g is strictly increasing: if x, y ∈ J and x < y Then f(g(x)) <

f(g(y)) so g(x) < g(y) since f is increasing.
If g were discontinuous, then it must have a jump discontinuity at some point

c ∈ J . This means there is a value between limx→c− g and limx→c+ g which is not in
the image of g. Thus g(J) = I is not an interval, a contradiction. �

9. nth roots exist for x ≥ 0 if n is even.
10. nth roots exist for x ∈ R if n is even.
11. positive rational powers xr exist for x ≥ 0.
12. all rational powers xr exist for x > 0.

Section 6.1: The derivative

1. Defn: Suppose f is defined on an interval I and c ∈ I. We say L is the derivative
of f at c if

lim
x→c

f(x)− f(c)

x− c
= L.

We allow c to be an endpoint of I.
We say f is differentiable at c and write f ′(c) = L.

2. If f is differentiable on all of I we obtain a function f ′ on I.
3. Theorem 6.1.2: If f has a derivative at c, then f is continuous at c.
Proof: Write

f(x)− f(c) = (x− c)
f(x)− f(c)

x− c

lim
x→c

f(x)− f(c) =
(

lim
x→c

(x− c)
)

·

(

lim
x→c

f(x)− f(c)

x− c

)

= 0 · f ′(c) = 0.

Thus f is continuous at c. �

4. There are continuous functions that are nowhere continuous, first constructed by
Weierstrass, e.g.,

∞
∑

n=0

2−n cos(3n).

See Chapter 5 of my book Fractals in probability and analysis, PDF on my webpage.
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5. Theorem 6.4.1: Suppose f, g are defined on an interval I and differentiable at
c ∈ I. Then
(a) if a ∈ R then af is differentiable and (af)′(c) = af ′(c).
(b) f + g is differentiable at c and (f + g)′(c) = f ′(c) + g′(c).
(c) fg is differentiable at c and (fg)′(c) = f ′(c)g(c) + f(c)g′(c).

(d) f/g is differentiable at c and (f/g)′(c) = f ′(c)g(c)−f(c)g′(c)
(g(c))2

.

Proof: See text (same proof as in calculus classes).
6. Deduce power rule, rule for finite products.
7. Carathéodory’s Theorem: Suppose f is defined on an interval I and c ∈ I.
Then f is differentiable at c iff there is a function ϕ on I that is continuous at c and
satisfies

f(x)− f(c) = ϕ(x)(x− c).

Proof:

If f is differentiable at c set

ϕ(x) =
f(x)− f(c)

x− c

for x 6= c and ϕ(c) = f ′(c). It is easy to check ϕ has desired properties.
Conversely, if such a ϕ exists, then

ϕ(c) = lim
x→c

ϕ(x) = lim
x→c

f(x)− f(c)

x− c

so f ′(c) exists and equals ϕ(c). �

8. The chain rule: Let I, J be intervals in R and suppose f : J → I and g : I → R.
If f is differentiable at c ∈ I and g is differentiable at g(c) then the composition g ◦ f
is differentiable at c and

(g ◦ f)′(c) = (g′(f(c)) · f ′(c).

Proof: By Carethéodory’s theorem there is function ϕ continuous at c so that ϕ(c) =
f ′(c) and

f(x)− f(c) = ϕ(x)(x− c).

Similarly, there is a function ψ continuous at f(c) so that ψ(c) = g′(f(c)) and

g(y)− g(f(c)) = ψ(y)(y − c).

Then

g(f(x))− g(f(c)) = ψ(f(c))(f(x)− f(c)) = (ψ ◦ f)(x) · ϕ(x)(x− c).

Now apply Carathéodory’s theorem to g ◦f with the function Φ = (ψ ◦f) ·ϕ to prove
g ◦ f is differentiable with derivative (ψ ◦ f)(c) · ϕ(c) = g′(f(c))f ′(c). �

9. Examples:

Power rule for integers.
Derivative of 1/f . Quotient rule.
|x|
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10. Theorem 6.1.8: Suppose f is strictly monotone and continuous on an interval
I. Let J = f(I) and let g : J → I be the inverse to f . If f is differentiable at c and
f ′(c) 6= 0, then g is differentiable at d = f(c) and

g′(d) =
1

f ′(c)
=

1

f ′(g(d))
.

Proof: By Carathéodory’s theorem

f(x)− f(c) = ϕ(x)(x− c)

and ϕ(c) = f ′(c) 6= 0. Thus ϕ is non-zero on some δ-neighborhood V = (c− δ, c+ δ)
(thm 4.2.9).
Let U = f(V ∩ I). Then f(g(y)) = y on U so

y − d = f(g(y))− f(c) = ϕ(g(y)) · (g(y)− g(d)).

Since ϕ is non-zero, we can divide by it to get

y − d

ϕ(g(y))
= g(y)− g(d).

Now apply Carathéodory’s theorem using 1/ϕ(g(y)), which is continuous at d to
deduce g is differentiable with derivative 1/ϕ(g(d)) = 1/f ′(c). �

11. Theorem 6.1.9: Suppose f is strictly monotone and continuous on an interval
I. Let J = f(I) and let g : J → I be the inverse to f . If f is differentiable on I and
f ′, is never zero, then g is differentiable on I and g′ = 1/f ′(g(x)).
12. Examples:

x1/n

xp/q

arcsin(x)

Section 6.2: The Mean Value Theorem

1. Defn: f has a relative (or local) maximum at c ∈ I if f(x) ≤ f(c) for all x in
some δ-neighborhood of c.
Similar for minimum. Extremum = minimum or maximum.

2. Interior Extremum Theorem: Suppose c ∈ I is an interior point of I at which
f : I → R has a relative extremum. If f is differentiable at c then f ′(c) = 0.
Proof: We only consider case when f has a local maximum at c.
For x close enough to c, f(x)− f(c) ≤ 0, so

f(x)− f(c)

x− c
≤ 0 if x > c

f(x)− f(c)

x− c
≥ 0 if x < c.

So if limit exists, it must be zero. �
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3. Corollary 6.2.2: Suppose c ∈ I is an interior point of I at which f : I → R has
a relative extremum. Then either f ′(c) = 0 or f is not differentiable at c.
3. Rolle’s Theorem: Suppose f is continuous on [a, b] and differentiable on (a, b)
and f(a) = f(b) = 0. Then there is at least one point c ∈ (a, b) where f ′(c) = 0.
Proof: If f is always zero, any c will work.
Otherwise, by replacing f by −f if necessary, we may assume f takes some positive

value. By Theorem 5.3.4 f attains a positive maximum value at an interior point c
and hence f ′(c) = 0 by the previous result. �

4. Mean Value Theorem: Suppose f is continuous on [a, b] and differentiable on
(a, b). Then there is at least one point c ∈ (a, b) where

f ′(c) =
f(b)− f(a)

b− a
.

Proof: Apply Rolle’s theorem to

ϕ(x) = f(x)− f(a)−
f(b)− f(a)

b− a
(x− a).

Check that ϕ(a) = ϕ(b) = 0 and ϕ is differentiable where f is, so ϕ′(c) = 0 for some
c. Hence

0 = f ′(c)−
f(b)− f(a)

b− a
or

f ′(c)(b− a) = f(b)− f(a). �

5. Theorem 6.2.5: Suppose f is continuous on [a, b] and differentiable on (a, b). If
f ′(x) = 0 for all x ∈ (a, b) then f is constant.
Proof: If there is x ∈ (a, b) where f(x) 6= f(a) then by the Mean Value Theorem
there is a c ∈ (a, x) where

f ′(c) =
f(x)− f(a)

x− a
6= 0,

a contradiction. �

6. Corollary 6.2.6: Suppose f, g are continuous on [a, b] and differentiable on (a, b).
If f ′(x) = g′(x) for all x ∈ (a, b) then f = g + C where C = f(a)− g(a) is constant.
Proof: (f − g)′ = 0 so f − g is constant and equal to f(a)− g(a) at a. �

7. Theorem 6.2.7: Suppose f : I → R is differentiable on I. Then
(a) f is increasing iff f ′(x) ≥ 0 for all x ∈ I.
(b) f is decreasing iff f ′(x) ≤ 0 for all x ∈ I.

Proof:

(a) Suppose f ′ ≥ 0. If x < y are in I then

f(y)− f(x) = f ′(c)(y − x) ≥ 0,

so f is increasing.
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Conversely, if f is increasing then x 6= y implies (two cases)

f(y)− f(x)

y − x
≥ 0,

so the limit as x→ y is ≥ 0. Thus f ′(y) ≥ 0 for any y ∈ I.
Part (b) is proved similarly (or apply Part (a) to g = −f).

8. A differentiable f is strictly increasing if f ′ > 0. Converse is not true because of
x3.
9. f ′(x) > 0 does not imply f is increasing on any neighborhood of x.
10. First Derivative Test for Extrema: Suppose f is continuous on I = [a, b],
that c ∈ I is an interior point and f is differentiable on (a, c) and (c, b). Then
(a) If there is a δ > 0 so that f ′ ≥ 0 on (c − δ, c) and f ′ ≤ 0 on (c, c + δ) then f

has a relative maximum at c.
(b) If there is a δ > 0 so that f ′ ≤ 0 on (c − δ, c) and f ′ ≥ 0 on (c, c + δ) then f

has a relative minimum at c.
11. Converse is not true. We can have a relative maximum c so that f ′ take both
positive and negative values on both sides of c, inside any neighborhood of c.
12. Inequalities:
ex ≥ 1 + x.
−x ≤ sin(x) ≤ x
if a > 1 then (1 + x)a ≥ 1 + ax.

13. Lemma 6.2.11: Suppose I is an interval, c ∈ I and f is differentiable at c.
Then
(a) if f ′(c) > 0 there is δ > 0 so that f(x) > f(c) for x ∈ I so that c < x < c+ δ.
(b) if f ′(c) < 0 there is δ > 0 so that f(x) > f(c) for x ∈ I so that c− δ < x < c.

Proof:

(a) Since

lim
x→c

f(x)− f(c)

x− c
= f ′(c) > 0

there is a δ > 0 so that x ∈ I and |x− c| < δ implies

f(x)− f(c)

x− c
> 0.

If x > c this implies f(x)− f(c) > 0.
Proof of (b) is similar. �

14. Darboux’s theorem: If f is differentiable on I = [a, b] and k is between f ′(a)
and f ′(b) then there is a c ∈ (a, b) so that f ′(c) = k.
Proof: Assume f ′(a) < k < f ′(b) and wet

g(x) = kx− f(x).
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Since g is continuous, it attains a maximum value at some c. Since g′(a) = k− f ′(a)
the maximum does not occur at a by lemma 6.2.11. Similarly, the maximum does
not occur at b. Thus c ∈ (a, b) and 0 = g′(c) = k − f ′(c) so f ′(c) = k. �

15. Even if f is differentiable f ′ need not be continuous, e.g., x2 sin(1/x). So Dar-
boux’s theorem does not follow from intermediate value theorem.
16. Darboux’s theorem lets us find functions that can’t be derivatives of any function.

Section 6.4: Taylor’s Theorem

1. Derivatives of order greater than 1: f ′′, f ′′′ = f (3), . . .
2. Defn: Taylor polynomial of f at x0:

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 · · ·+
f (n)(x0)

n
(x− x0)

n.

3. Taylor’s Theorem: Let n ∈ N, I = [a, b], f : I → R be such that f and its
derivatives up to order n are continuous on I and that f (n=1) exists on (a, b). If x0 ∈ I
then for any x ∈ I there is a point c between x0 and x so that

f(x) = Pn(x) +
f (n+1)(c)

(n+ 1)
(x− x0)

n+1 = Pn(x) +Rn(x).

Proof: Fix x and let J be the closed interval with endpoints x and x0. Define

F (t) = f(x)− f(t)− (x− t)f ′(t)− · · · −
(x− t)n

n
f (n)(t).

Note F (x) = 0. Differentiate with respect to t and use product rule :

F ′(t) = 0− f ′(t)− f ′(t)− (x− t)f ′′(t)− · · · −
(x− t)n−1

(n− 1)
f (n)(t)−

(x− t)n

n
f (n+1)(t).

All the terms cancel except the last, so

F ′(t) = −
(x− t)n

n
f (n+1)(t).

Define G on J by

G(t) = F (t)−

(

(x− t)

x− x0

)n+1

F (x0).

Then G(x) = G(x0) = 0.
By Rolle’s theorem there is a c ∈ J so that

0 = G′(c) = F ′(c) = (n+ 1)−
(x− c)n

(x− x0)n+1
F (x0).
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Thus

F (x0) =
−1

n+ 1
−

(x− x0)
n+1

(x− c)n
F ′(c)

=
1

n+ 1
−

(x− x0)
n+1(x− c)n

(x− c)nn
f (n+1)(c)

= −
f (n+1)(c)

(n+ 1)
(x− x0)

n+1. �

4. e = 1 + 1
2
+ 1

6
+ · · ·+ 1

n
+ . . .

We assume the derivative of ex is itself. Then the Taylor polynomial for ex at
x0 = 0 is

1 + x+
1

2
x2 + . . .

1

n
xn

and the remainder is

f (n+1)(c)

(n+ 1)
(x− x0)

n+1 = ec(n+ 1)xn+1

for some c ∈ [0, x]. Taking x = 1 we see Rn(1) → 0, so

e = e1 = lim
n→∞

(1 +
1

2
+

1

6
+ · · ·+

1

n
).

5. 1− x2 ≤ cos x for all x ∈ R.
By Taylor’ theorem

cos(x) = 1− x2/2 +R2(x)

and

R2(x) =
1

6
f ′′′(c)x3 =

1

6
sin(c)x3.

If 0 ≤ c ≤ x ≤ π then R2(x) ≥ 0. Similarly if −π ≤ x ≤ c ≤ 0.
For |x| ≥ π, 1− x2 < −3 < cos(x), so this is trivially true.

6. Theorem 6.4.4: Suppose I is an interval, x0 is an interior point of I and n ≥ 2.
Suppose f ′, . . . , f (n) are continuous on a neighborhood of x0 and the first n − 1
derivatives vanish at x0.
(i) If n is even and f (n)(x0) > 0, then f has a relative maximum at x0.
(ii) If n is even and f (n)(x0) < 0, then f has a relative minimum at x0.
(iii) If n is odd, then f has neither a relative minimum or maximum at x0.

Proof: see text.
7. Defn: A function f : I → R is convex if for any t ∈ [0, 1] and x, y ∈ I, we have

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

8. Facts: convex functions are continuous and left and right derivatives exist at
every point.
9. Theorem 6.4.6: If f has a second derivative on I then f is convex iff f ′′(x) ≥ 0
for all x ∈ I.
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Proof:

Suppose f is convex. An exercise shows that

f ′′(a) = lim
h→0

f(a+ h)− 2f(a) + f(a− h)

h2
.

If f is convex the quotient is ≥ 0 so f ′′(a) ≥ 0.
To prove the converse, use Taylor’s theorem with a1, x2 ∈ I and x0 = (1−t)x1+tx2

to get

f(x) = f(x0) + f ′(x0)(x1 − x0) +
1

2
f ′′(c1)(x1 − x0)

2

for some c1 between x0 and x1. Similarly,

f(x) = f(x0) + f ′(x0)(x2 − x0) +
1

2
f ′′(c2)(x2 − x0)

2

for some c2 between x0 and x2. If f ′′ ≥ 0 then the remainder terms are positive
(remember the square), so

(1− t)f(x1) + tf(x2) = f(x0) + f ′(x0)((1− t)x1 + tx2 − x0)

+
1

2
(1− t)f ′′(c1)(x1 − x0)

2

+
1

2
tf ′′(c2)(x2 − x0)

2

= f(x0) +R

≥ f(x0) = f((1− t)x1 + tx2). �

10. Newton’s method: Let I = [a, b] and let f be twice differentiable on I. Suppose
f(a) < 0 < f(b). Suppose there are constants m,M so that

0 < m ≤ |f ′(x)| and |f ′′(x)| ≤M <∞

on I. Them there exists a subinterval J of I containing a zero r of f such that for
any x ∈ J the sequence defined by

xn+1 = xn −
f(xn)

f ′(xn)
,

belongs to J and (xn) converges to r. Moreover

|xn − r| ≤
M

2m
|xn − r|2

for all n ∈ N.
Proof: see text.

11. Newton’s method need not converge if we start too far from root. Iterates can
become periodic or chaotic.


