
MAT 320 Fall 2021, Tuesday, Oct 19, 2021

Section 5.4: Uniform Continuity

1. In the δ-ǫ definition of continuity at x the δ depends on ǫ and x. For example if
f(x) = x2, and we fix ǫ = 1, we need to take δ smaller as x gets bigger.
2. Defn: f : A → R is uniformly continuous on A if for each ǫ > 0 there is a δ > 0
so that if x, y ∈ A and |x− y| < δ then |f(x)− f(y)| < ǫ.
3. Uniformly continuous implies continuous, but not conversely.
4. Non-uniformity Continuity Criteria: Suppose f : A → R. TFAE
(i) f is not uniformly continuous on A.
(ii) There is ǫ0 > 0 so that for any δ > 0 there are points x, y ∈ A with |x− y| < δ

and |f(x)− f(y)| > ǫ0.
(iii) There is ǫ0 > 0 and sequences (xn), (yn) so |xn−yn| → 0 and |f(xn)−f(yn)| >

ǫ0.
Proof: left to reader.
5. Uniform Continuity Theorem: If f is continuous on a compact interval, then
it is uniformly continuous.
Proof: If f is not uniformly continuous the there is an ǫ0 > 0 so that for every n ∈ N

we can choose xn, yn so that |xn − yn| < 1/n and |f(xn)− f(yn)| > ǫ0. By Bolzano-
Weierstrass these sequences have convergent subsequences that both converge to the
same point c ∈ I and hence f(xnk

) and f(ymk
) must have the same limit. But this

is not possible since |f(xn) − f(yn)| > ǫ0 for all n. This contradiction proves f was
indeed uniformly continuous. �

6. Defn: f is called Lipschitz on A if there is a K > 0 so that for all x, y ∈ A

|f(x)− f(y)| ≤ K|x− y|.

7. Theorem 5.4.5: If f is Lipschitz on A, it is uniformly continuous.
8. f is called α-Hölder on A if there is a C > 0 so that for all x, y ∈ A.

|f(x)− f(y)| ≤ C|x− y|α.

Such functions are also uniformly continuous.
9. Theorem 5.4.7: If f is uniformly continuous on A and (xn) is Cauchy in A then
(f(xn)) is Cauchy in R.
Proof: Given ǫ > 0 choose δ as in the definition of uniformly continuity of f . Then
choose H > 0 so that n,m > h implies |xn − xm| < δ. Thus n,m > h implies
|f(xn)− f(xm)| < δ. �

10. Continuous extension Theorem: If f is uniformly continuous on I = (a, b)
iff it can be defined at the endpoints so it becomes continuous on [a, b].
Proof: If there is an extension, the extension is uniformly continuous on [a, b] by
Theorem 5.4.3, so f is unif continuous on (a, b).
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Conversely, suppose f is uniformly continuous on (a, b). To show it extends to a
we need to show limx→A f exists. If (xn) is any sequence in (a, b) converging to a
then it is Cauchy sequence, so f(xn) is too and hence converges to some L ∈ R If
(yn) is any other sequence converging in I to a then lim(xn − yn) = 0 so

lim f(yn) = lim f(yn)− f(xn)− lim f(xn) = 0 + L = L.

By the sequential criteria for limits of functions, f has limit L at a.
The argument for b is similar.

11. Theorem 5.4.10: If f is continuous on a compact interval I and ǫ > 0, then
there is a step function sǫ on I so that f(x)− sǫ(x)| < ǫ for all x ∈ I.
Sketch proof.
11. Theorem 5.4.10: If f is continuous on a compact interval I and ǫ > 0, then
there is a piecewise linear function gǫ on I so that f(x)− gǫ(x)| < ǫ for all x ∈ I.
Sketch proof.
11. Weierstrass Approximation Theorem: If f is continuous on a compact
interval I and ǫ > 0, then there is a polynomial pǫ on I so that f(x)− pǫ(x)| < ǫ for
all x ∈ I.
Numerous proofs, but all use tools we have not developed yet. One common approach
is to use Fourier Series to approximate f by finite sums of sines and cosines, and then
use power series to approximate each term by polynomials.
Bernstein’s proof: given f on [0, 1] f can be approximated by the polynomials

Bn(f)(x) =
n∑

k=0

f(
k

n
)

n

(n− k)k
xk(1− x)n−k,

As n increases, this gets closer and closer to f . Proof is somewhat complicated. See
link on class webpage.

Section 5.5: Continuity and Guages – optional section

Omitted. We will do this section later when discussing Appendix C.

Section 5.6: Monotone and Inverse Functions

1. Defn:
f is increasing on A if x < y implies f(x) ≤ f(y).
f is strictly increasing on A if x < y implies f(x) < f(y).
Similarly for decreasing and strictly decreasing.
monotone = increasing or decreasing
strictly monotone = strictly increasing or strictly decreasing

2. Monotone functions need not be continuous
3. Theorem 5.6.1: Suppose f is increasing on an interval I and that c ∈ I is not
an endpoint of I. Then
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(i) limx→c− f = sup{f(x) : x < c}.
(ii) limx→c+ f = inf{f(x) : x > c}.

Proof of (i): Since c is not an endpoint of I, the set on the right is not empty so
the supremum L exists and is bounded above by f(c). So for any ǫ > 0, L− ǫ is not
an upper bound, so there is an yǫ < c in I so that f(yǫ) > L− ǫ. If y ∈ (yǫ, c), then

L− ǫ ≤ f(yǫ) ≤ f(y) ≤ L.

Thus
|f(y)− L| < ǫ

whenever |y − c| < |yǫ − c| = δ(ǫ). This proves limx→c− f = L.
The proof of (ii) is similar. �

4. Corollary 5.6.2: Suppose f is increasing on an interval I and that c ∈ I is not
an endpoint of I. Then TFAE
(a) f is continuous at c.
(b) limx→c− f = limx→c+ f
(c) sup{f(x) : x < c} = inf{f(x) : x > c}.

5. Defn: jump discontinuity. The jump of f at c is

jf (c) = lim
x→c−

f = lim
x→c+

f.

A jump point is a value c where jf (c) > 0.
6. Theorem 5.6.3: Suppose f is increasing on an interval I. Then f is continuous
at c ∈ I iff the jump of f at c is zero.
7. Theorem 5.6.4: A monotone function has at mostly countably many jump
discontinuities.
Proof: Each jump discontinuity a t x corresponds to a disjoint open interval Ix =
(limx→c− f, limx→c+ f). This interval contains a rational number rx, and different
intervals contain different rationals. This gives injection from the set of jump points
into the rationals, a countable set. Thus the number of jump points is countable. �

8. Continuous Inverse Theorem: If f is strictly monotone and continuous on an
interval I, then f has an inverse g that is strictly monotone and continuous.
Proof: Enough to consider f increasing.
By Theorem 5.3.10, J = f(I) is an interval. Since strictly monotone implies

injective, f has an inverse g : J → I.
Easy to see that g is strictly increasing: if x, y ∈ J and x < y Then f(g(x)) <

f(g(y)) so g(x) < g(y) since f is increasing.
If g were discontinuous, then it must have a jump discontinuity at some point

c ∈ J . This means there is a value between limx→c− g and limx→c+ g which is not in
the image of g. Thus g(J) = I is not an interval, a contradiction. �

9. nth roots exist for x ≥ 0 if n is even.
10. nth roots exist for x ∈ R if n is even.
11. positive rational powers xr exist for x ≥ 0.
12. all rational powers xr exist for x > 0.


