
MAT 319 & 320 Fall 2021, Lecture 14, Thursday, Oct 7, 2021

Section 5.1: Some extensions of the limit concept

1. Defn: Let A ⊂ R, f : A → R and c ∈ A. We say f is continuous at c if for any
ǫ > 0 there is a δ > 0 so that x ∈ A, |x− c| < δ implies |f(x)− f(c)| < ǫ.
For cluster points of A, this is the same as saying limx→c f(x) = f(c).
For isolated points, f is always continuous.

2. Theorem 5.1.2: f is continuous at c iff given any ǫ > 0 there is a δ > 0 so that

f(Vδ(c)) ⊂ Vǫ(f(c)).

Proof: obvious from definitions.
3. Sequential criterion for continuity: f is continuous at c ∈ A iff for every
sequence xn → c we have f(xn) → f(c).
3. Discontinuity criterion: f is discontinuous at c ∈ A iff there is a sequence
xn → c so that f(xn) 6→ f(c).

STOPPED HERE ON OCT 7 DUE TO FIRE ALARM

4. sin(1/x) is discontinuous at 0. xn = 1/πn, yn = −1/πn.
5. We say f is continuous on a set B ⊂ A if f is continuous at every point of B.
6. Examples:
constant functions
identity function
powers, polynomials
rational functions, except at poles
Dirichlet function, discontinuous everywhere
Thomae’s function, discontinuous exactly at rationals

7. If c is a cluster point of A but not in A, then a function f on A can be defined at
c to be continuous there iff f has a limit as x → c in A.
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Section 5.2: Combinations of Continuous Functions

1. Theorem 5.2.1: Let A ⊂ R, f, g : A → R, b ∈ R and c ∈ A. If f, g are continuous
at c then
(a) f + g, f − b, fg, bf are continuous at c.
(b) if also g(x) 6= 0 for all x ∈ A, then f/g is continuous at c.

Proof: If c is isolated this is automatic.
If c is a cluster point of A then

lim
x→c

(f + g)(x) = lim
x→c

f(x) + lim
x→c

g(x) = f(c) + g(c) = (fg)(c),

so f + g is continuous. Other parts are similar. �

2. Theorem 5.2.2: Let A ⊂ R, f, g : A → R are continuous on A and b ∈ R.
(a) f + g, f − b, fg, bf are continuous at c.
(b) if also g(x) 6= 0 for all x ∈ A, then f/g is continuous at c.

3. Examples
polynomials are continuous on all of R.
rational functions are continuous where they are defined
sin(x) continuous. This function is not officially defined yet, but you know it from

calculus. We will prove

| sin x| ≤ |x|

sin x− sin y = 2 sin(
1

2
(x− y)) cos(

1

2
(x+ y)).

These imply

| sin x− sin y| ≤ |x− y|.
So we can take δ = ǫ in defn of continuity.
cos(x) continuous. Similar, but we use

cos x− cos y = −2 sin(
1

2
(x+ y)) sin(

1

2
(x− y)).

These imply

| sin x− sin y| ≤ |x− y|.
So we can take δ = ǫ in defn of continuity.
4. Theorem 5.2.4: If A ⊂ R and f : A → R let |f |(x) = |f(x)|. If f is continuous
at c, so is |f |.
Proof: Note that

||f |(x)− |f |(y)| = ||f(x)| − |f(y|| ≤ |f(x)− f(y)|.
So if |x−y| < δ implies |f(x)−f(y)| < ǫ, then it also implies ||f |(x)−|f |(y)| < ǫ. �

Note that f can be discontinuous, but |f | is continuous.
5. Theorem 5.2.5: If A ⊂ R and f : A → [0,∞). Define

√
f(x) =

√

f(x).
(a) if f is continuous at c, so is

√
f .
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Proof: If 0 < δ < c and |x− c| < δ, then x > 0. Thus

√
x−

√
c = (

√
x−

√
c)

√
x+

√
c√

x+
√
c
=

x− c√
x+

√
c
.

Thus

|
√
x−

√
c| ≤ |x− c|√

x+
√
c
≤ |x− c|√

c
.

So given ǫ > 0 choose δ = min(c,
√
cǫ). Then |x− c| < δ implies

|
√
x−

√
c| ≤

√
cǫ√
c
= ǫ. �

6. Theorem 5.2.7: Let A,B ⊂ R and let f : A → B and g : B → R. If f is
continuous at c and g is continuous at f(c) then g ◦ f is continuous at c.
Proof: Let W be a ǫ-neighborhood of g(c). Since g is continuous at b = f(c) there
is a δ-neighborhood V of b so that g(V ) ⊂ W . Since f is continuous at c, there is a
γ-neighborhood U of c so that f(U) ⊂ V . Hence g(f(U)) ⊂ g(V ) ⊂ W . Thus g ◦ f
is continuous at c. �

7. Theorem 5.2.7: Let A,B ⊂ R and let f : A → B and g : B → R. If f is
continuous on A and g is continuous on B then g ◦ f is continuous on B.
8. Examples:
g(x) = |x|, and any f . Then |f | is continuous.
g(x) = exp(x), f(x) = 1

2
log x, A = (0,∞). then g ◦ f(x) =

√
x is continuous (if

we can define exp and log. This can be done using integration.

Section 5.3: Continuous functions on intervals

1. Defn: A function f : A → R is bounded if f(A) is a bounded set, i.e., if there is
M > 0 so that |f(x)| ≤ M for all x ∈ A.
2. Boundedness Theorem: If I = [a, b] is a closed bounded interval and f : I → R

is continuous then f is bounded on I.
Proof: Suppose f is not bounded on I. Then for any n ∈ N we may choose xn ∈ I
so that |f(xn)| > n. By the Bolzano-Weierstrass theorem there is a convergent
subsequence (xnk

) and by Theorem 3.2.6 the limit point x is in I. But then f(xnk
) →

f(x) and by Theorem 3.2.2 this sequence is bounded, a contradiction. �

3. Examples:

Can fail if I is not bounded, or not closed.
Can fail if f is not continuous

4. Defn: f : A → R has an absolute (global) maximum on A if there is a point
y ∈ A so that f(x) ≤ f(y) for all x ∈ A.
Similar for absolute minimum.
Need not be unique. sin(x).
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5. Closed bounded interval is called a compact interval. Special case of a compact
set.
6. Maximum-Minimum Theorem: A continuous function f on a closed, bounded
interval I has an absolute maximum and minimum.
Proof: First we consider maximums. Choose a sequence (xn) ⊂ A so that f(xn) →
s = sup f(A). By Bolzano-Weierstrass there is a convergent subsequence (xnk

) →
x ∈ A and f(xnk

) → f(x). But lim f(xnk
) = lim f(xn) = s, so f(x) = s. Thus f has

an absolute maximum.
For the minimum, not that g = −f is continuous on I so has an absolute maximum

g(y) by above argument. Thus for all x ∈ I we have f(x) = −g(x) ≥ −g(y) = f(y)
and so f(y) is an absolute minimum of f on I. �-
7. Location of Roots Theorem: Suppose f is continuous on I = [a, b]. If f(a) <
0 < f(b), then there is a c ∈ (a, b) so that f(c) = 0.
Proof: We will define nested, decreasing intervals In = [an, bn]. Let I1 = I so a1 = 1,
b1 = b. Let m1 = (a1 + b1)/2 be the midpoint of I1. If f(m1) = 0 the theorem is
proved, so assume it is not 0. If f(m1) > 0, let a2 = a1 and b2 = m. f(m1) < 0, let
a2 = m and b2 = b1.
Proceeding inductively either some mn is a zero of f , or we construct nested,

decreasing sequence I1 ⊃ I2 ⊃ . . . whose lengths are |b − a|2−n → 0. The Nested
Intervals Property (Thm 2.5.2) says there is a unique point c in the intersection and

c = lim an = lim bn,

so by continuity of f

f(c) = lim f(an) = lim f(bn).

But

lim f(an) ≤ 0, lim f(bn) ≥ 0,

so we must have

f(c) = lim f(an) = lim f(bn) = 0. �

8. Bolzano’s intermediate Value Theorem: If f is continuous on an interval I
and k ∈ R is such that f(a) < k < f(b) then there is a c ∈ (a, b) so that f(c) = k.
Proof: Apply previous result to f(x)− k.
9. Corollary 5.3.8: If f is continuous on interval I and infI f ≤ k ≤ supI f then
there is a c ∈ I with f(c) = k.
10. Theorem 5.3.9: If I is a compact interval and f is continuous on I, then
f(I) = {f(x) : x ∈ I} is a compact interval.
Proof: By the previous Corollary f(I) contains every point in J = [supI f, infI f ]
and by definition of sup and inf it contains no points outside J . Thus f(I) = J , and
J is bounded by the Boundedness Theorem. �

11. Notes:

Max and min don’t have to be attained at endpoints.
Image of an open interval need not be open.
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Image of unbounded, closed interval need not be closed.
12. Theorem 5.3.10: If f is continues on an interval I then f(I) is also an interval.
Proof: If α = f(a) < β = f(b) are two points in f(I) then any value between them
is also in f(I) by the intermediate value theorem. Thus [α, β] ⊂ f(I). By Theorem
2.5.1 f(I) is an interval. �


