320 Fall 2021, Tuesday, Nov 9, 2021

Section 8.1: Pointwise and Uniform Convergence

1. **Defn:** A sequence of functions (f_n) is a choice of function $f_n : A \to \mathbb{R}$ for each $n \in \mathbb{Z}$. The domain A should be the same for every n.

2. We say f_n converges pointwise to f on A if $f_n(x) \to f(x)$ for every $x \in A$.

3. Examples:

 $f_n(x) = x/n$ on \mathbb{R}

$$f_n(x) = x^n$$
 on $[0, 1]$.

4. **Defn:** We say f_n converges to f uniformly on A if for all $\epsilon > 0$ there is a K so that $n \ge K$ implies $|f_n(x) - f(x)| < \epsilon$ for all $x \in A$.

5. Uniform convergence implies pointwise convergence, but not conversely. We say uniform convergence is "stronger" than pointwise convergence.

6. Lemma 8.1.5: f_n does not converge uniformly on A to f iff there is some $\epsilon_0 > 0$ and a subsequence f_{n_k} and a sequence (x_k) so that

$$|f_{n_k}(x_k) - f(x_k)| \ge \epsilon_0.$$

7. **Defn:** We say $\varphi : A \to \mathbb{R}$ is bounded if $\varphi(A)$ is a bounded set, i.e., $|\varphi(x)| \leq M$ for some M and all $x \in A$. Define

$$\|\varphi\|_A = \sup\{|\varphi(x)| : x \in A\}$$

8. Bounded functions on a set form a vector space. This is a norm on that vector space.

9. Lemma 8.1.8: A sequence f_n converges uniformly to f on A iff

$$||f_n - f||_A \to 0.$$

Proof: If $f_n \to f$ uniformly then for all ϵ there is a K so that $n \ge K$ implies

$$|f_n - f||_A = \sup\{|f_n(x) - f(x) : x \in A\} \to 0.$$

Conversely, if $|f_n - f||_A \to 0$, then for all ϵ there is a K so that $n \ge K$ implies $|f_n - f||_A < \epsilon$, which is the same as $|f_n(x) - f(x)| < \epsilon$ for all $x \in A$.

10. Cauchy Criterion for Uniform Convergence: Suppose f_n is sequence of bounded functions on A. Then f_n converges uniformly on A to a bounded function f iff for all $\epsilon > 0$ there is a H so that for all $n, m \ge H$ we have $||f_n - f_m||_A < \epsilon$. **Proof:** If $f_n \to$ uniformly then for any $\epsilon > 0$ there is a K so that $n \ge K$ implies $||f - f_n||_A < \epsilon/2$, so $n, m \ge K$ implies

$$||f_m - f_n||_A ||f - f_n||_A + ||f - f_m||_A < \epsilon/2 + \epsilon/2 < \epsilon.$$

Conversely, if the Cauchy condition holds for f_n , then for each $x \in A$ we have

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_A,$$

so $(f_n(x))$ is a Cauchy sequence of real numbers and hence converge so some limit we call f(x). Since

$$|f(x) - f_m(x)| \le \limsup_n |f_n(x) - f_m(x)| \le \epsilon$$

if $m \geq H$, we see that $f_m \to f$ uniformly.

Section 8.2: Interchange of Limits

1. Questions:

Is a limit of continuous functions continuous? x^n

Is a limit of differentiable functions differentiable?

Is a limit of Riemann integrable functions Riemann integrable? Sliding tent.

2. Theorem 8.2.2: If (f_n) is a sequence of continuous function converging uniformly on A to f, then f is continuous on A.

Proof: Given $\epsilon > 0$ there is a H so that $n \ge H$ implies $|f_n(x) - f(x)| < \epsilon/3$ for all $x \in A$. Also, given $c \in A$ there exists $\delta > 0$ so that $|x - c| < \delta$ implies $|f_n(x) - f_n(c)| < \epsilon/3$. Thus for $|x - c| < \delta$, we have

$$|f(x) - f(c)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(c)| + |f_n(c) - f(c)| \le \epsilon.$$

3. Partial sums of $\sum_{n=1}^{\infty} 2^{-n} \cos(3^n x)$ show that differentiable functions can converge uniformly to a nowhere differentiable function.

4. Theorem 8.2.3: Let $J = [a, b] \subset \mathbb{R}$ be a bounded interval and (f_n) a sequence of functions on J. Suppose there is a $x_0 \in J$ so that $f_n(x_0)$ converges and that f'_n converge uniformly to g on J. Then f_n converges uniformly to a differentiable function f on J. so that $f'_{-} = g$.

Proof: Take some $x \in J$. Apply the mean value theorem to $f_n - f_m$ to find a point y between x_0 and x so that

$$f'_m(y) - f'_n(y) = f_m(x_0) - f_n(x_0) + (x - x_0)(f_m(x) - f_n(x)).$$

Thus

$$||f'_m(y) - f'_n(y)||_J \le |f_m(x_0) - f_n(x_0)| + |b - a| \cdot ||f_m(x) - f_n(x)||_J.$$

Hence $\{f_n\}$ is Cauchy and therefore convergent. Thus it has a continuous limit f.

Take $c \in J$. To prove f'(c) exists, apply the mean value theorem between x and c to find a z between them so that

$$f_m(x) - f_n(x) - (f_m(c) - f_n(c)) = (x - c)(f_m(z) - f_n(z)).$$
$$\left|\frac{f_m(x) - f_m(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c}\right| \le \|f_m(z) - f_n(z)\|_J.$$

For any $\epsilon > 0$ there is an H so that $n, m \ge H$ imply

$$\left|\frac{f_m(x) - f_m(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c}\right| \le \epsilon.$$

Take the limit over m

$$\left|\frac{f(x) - f(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c}\right| \le \epsilon.$$

Since $g(c) = \lim_{n \to \infty} f'_n(c)$, there is an N so that $n \ge N$ implies

$$|g(c) - f'_n(c)| < \epsilon.$$

Let $K = \max(H, N)$. Since $f'_K(c)$ exists, there is a $\delta > 0$ so that $0 < |x - c| < \delta$ implies

$$\left|\frac{f_K(x) - f_K(c)}{x - c} - f'_K(c)\right| < \epsilon.$$

Hence if $0 < |x - c| < \delta$, we have

$$\left|\frac{f(x) - f(c)}{x - c} - g(c)\right| < 3\epsilon.$$

Hence f'(c) = g(c).

5. Theorem 8.2.4: If (f_n) are Riemann integrable functions converging uniformly to f then f is Riemann integrable and

$$\int_{a}^{b} f = \lim_{n} \int_{a}^{b} f_{n}.$$

Proof: Given any $\epsilon > 0$ there is an N so that n > N implies

$$\alpha(x) = f_n(x) - \epsilon \le f(x) \le \omega(x) = f_n(x) + \epsilon$$

Both α and ω are Riemann integrable and

$$\int_{a}^{n} \omega - \alpha = \epsilon (b - a).$$

Thus by the squeeze theorem f is Riemann integrable and for all n

$$\int_{a}^{b} f_{n}(x) - \epsilon(b-a) \leq \int_{a}^{b} f(x) \leq \int_{a}^{b} f_{n}(x) + \epsilon(b-a)$$
$$|\int_{a}^{b} f_{n} - \int_{a}^{b} f_{n}| < \epsilon.$$

Thus $\int f_n \to \int f$.

Both α and ω are Riemann integrable and

6. Theorem 8.2.5: Suppose (f_n) are Riemann integrable functions on [a, b] converging pointwise to a to a Riemann integrable function f. Suppose also that there exists a B so that $|f_n(x)| \leq B$ for all n and all $x \in [a, b]$. Then $\int f_n \to \int f$. **Proof:** see link on class webpage.

6. **Dini's Theorem:** Suppose (f_n) is a monotone sequence of continuous function on I = [a, b] that converges pointwise to f. Then $f_n \to f$ uniformly.

Proof: We assume $f_1 \ge f_2 \ge \ldots$. Let $f_n = f_n - f \ge 0$. It is enough to show $g_n \to 0$ uniformly.

4

Given $\epsilon > 0$ and $t \in I$ there is a M so that $0 \leq g_m(t) < \epsilon$. Since g_m is continuous there is a $\delta(t) > 0$ so that $|x - t| < \delta(t)$ implies $|g_m(t) - g_m(x)| < \epsilon$. Take $\delta(t)$ as a guage on I and let \mathcal{P} be a δ -fine tagged partition. Let $M = \max(m_{t_1}, \ldots, m_{t_n})$. If m > M and $x \in I$ then there is an index k with $|x - t_k| < \delta(t_k)$ so

$$0 \le g_m(x) \le g_{m_k}(x) < \epsilon.$$

Thus $g_n \to 0$ uniformly.

Planning to skip Sections 8.3 and 8.4 in text.