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Section 8.1: Pointwise and Uniform Convergence

1. Defn: A sequence of functions (fn) is a choice of function fn : A → R for each
n ∈ Z. The domain A should be the same for every n.
2. We say fn converges pointwise to f on A if fn(x) → f(x) for every x ∈ A.
3. Examples:
fn(x) = x/n on R

fn(x) = xn on [0, 1].
4. Defn: We say fn converges to f uniformly on A if for all ǫ > 0 there is a K so
that n ≥ K implies |fn(x)− f(x)| < ǫ for all x ∈ A.
5. Uniform convergence implies pointwise convergence, but not conversely. We say
uniform convergence is “stronger” than pointwise convergence.
6. Lemma 8.1.5: fn does not converge uniformly on A to f iff there is some ǫ0 > 0
and a subsequence fnk

and a sequence (xk) so that

|fnk
(xk)− f(xk)| ≥ ǫ0.

7. Defn: We say ϕ : A → R is bounded if ϕ(A) is a bounded set, i.e., |ϕ(x)| ≤ M
for some M and all x ∈ A. Define

‖ϕ‖A = sup{|ϕ(x)| : x ∈ A}.

8. Bounded functions on a set form a vector space. This is a norm on that vector
space.
9. Lemma 8.1.8: A sequence fn converges uniformly to f on A iff

‖fn − f‖A → 0.

Proof: If fn → f uniformly then for all ǫ there is a K so that n ≥ K implies

|fn − f‖A = sup{|fn(x)− f(x) : x ∈ A} → 0.

Conversely, if |fn − f‖A → 0, then for all ǫ there is a K so that n ≥ K implies
|fn − f‖A < ǫ, which is the same as |fn(x)− f(x)| < ǫ for all x ∈ A.
10. Cauchy Criterion for Uniform Convergence: Suppose fn is sequence of
bounded functions on A. Then fn converges uniformly on A to a bounded function
f iff for all ǫ > 0 there is a H so that for all n,m ≥ H we have ‖fn − fm‖A < ǫ.
Proof: If fn → uniformly then for any ǫ > 0 there is a K so that n ≥ K implies
‖f − fn‖A < ǫ/2, so n,m ≥ K implies

‖fm − fn‖A‖f − fn‖A + ‖f − fm‖A < ǫ/2 + ǫ/2 < ǫ.

Conversely, if the Cauchy condition holds for fn, then for each x ∈ A we have

|fn(x)− fm(x)| ≤ ‖fn − fm‖A,
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so (fn(x)) is a Cauchy sequence of real numbers and hence converge so some limit we
call f(x). Since

|f(x)− fm(x)| ≤ lim sup
n

|fn(x)− fm(x)| ≤ ǫ

if m ≥ H, we see that fm → f uniformly.

Section 8.2: Interchange of Limits

1. Questions:
Is a limit of continuous functions continuous? xn

Is a limit of differentiable functions differentiable?
Is a limit of Riemann integrable functions Riemann integrable? Sliding tent.

2. Theorem 8.2.2: If (fn) is a sequence of continuous function converging uniformly
on A to f , then f is continuous on A.
Proof: Given ǫ > 0 there is a H so that n ≥ H implies |fn(x) − f(x)| < ǫ/3
for all x ∈ A. Also, given c ∈ A there exists δ > 0 so that |x − c| < δ implies
|fn(x)− fn(c)| < ǫ/3. Thus for |x− c| < δ, we have

|f(x)− f(c)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− f(c)| ≤ ǫ.

3. Partial sums of
∑

∞

n=1
2−n cos(3nx) show that differentiable functions can converge

uniformly to a nowhere differentiable function.
4. Theorem 8.2.3: Let J = [a, b] ⊂ R be a bounded interval and (fn) a sequence
of functions on J . Suppose there is a x0 ∈ J so that fn(x0) converges and that
f ′

n
converge uniformly to g on J . Then fn converges uniformly to a a differentiable

function f on J . so that f ′ = g.
Proof: Take some x ∈ J . Apply the mean value theorem to fn − fm to find a

point y between x0 and x so that

f ′

m
(y)− f ′

n
(y) = fm(x0)− fn(x0) + (x− x0)(fm(x)− fn(x)).

Thus

‖f ′

m
(y)− f ′

n
(y)‖J ≤ |fm(x0)− fn(x0)|+ |b− a| · ‖fm(x)− fn(x)‖J .

Hence {fn} is Cauchy and therefore convergent. Thus it has a continuous limit f .
Take c ∈ J . To prove f ′(c) exists, apply the mean value theorem between x and c

to find a z between them so that

fm(x)− fn(x)− (fm(c)− fn(c)) = (x− c)(fm(z)− fn(z)).

|
fm(x)− fm(c)

x− c
−

fn(x)− fn(c)

x− c
| ≤ ‖fm(z)− fn(z)‖J .

For any ǫ > 0 there is an H so that n,m ≥ H imply

|
fm(x)− fm(c)

x− c
−

fn(x)− fn(c)

x− c
| ≤ ǫ.
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Take the limit over m

|
f(x)− f(c)

x− c
−

fn(x)− fn(c)

x− c
| ≤ ǫ.

Since g(c) = limn f
′

n
(c), there is an N so that n ≥ N implies

|g(c)− f ′

n
(c)| < ǫ.

Let K = max(H,N). Since f ′

K
(c) exists, there is a δ > 0 so that 0 < |x − c| < δ

implies

|
fK(x)− fK(c)

x− c)
− f ′

K
(c) < ǫ.

Hence if 0 < |x− c| < δ, we have

|
f(x)− f(c)

x− c
− g(c)| < 3ǫ.

Hence f ′(c) = g(c). �

5. Theorem 8.2.4: If (fn) are Riemann integrable functions converging uniformly
to f then f is Riemann integrable and∫

b

a

f = lim
n

∫
b

a

fn.

Proof: Given any ǫ > 0 there is an N so that n > N implies

α(x) = fn(x)− ǫ ≤ f(x) ≤ ω(x) = fn(x) + ǫ

Both α and ω are Riemann integrable and∫
n

a

ω − α = ǫ(b− a).

Thus by the squeeze theorem f is Riemann integrable and for all n∫
b

a

fn(x)− ǫ(b− a) ≤

∫
b

a

f(x) ≤

∫
b

a

fn(x) + ǫ(b− a)

|

∫
b

a

f −

∫
b

a

fn| < ǫ.

Thus
∫
fn →

∫
f . �

Both α and ω are Riemann integrable and
6. Theorem 8.2.5: Suppose (fn) are Riemann integrable functions on [a, b] con-
verging pointwise to a to a Riemann integrable function f . Suppose also that there
exists a B so that |fn(x)| ≤ B for all n and all x ∈ [a, b]. Then

∫
fn →

∫
f .

Proof: see link on class webpage.
6. Dini’s Theorem: Suppose (fn) is a monotone sequence of continuous function
on I = [a, b] that converges pointwise to f . Then fn → f uniformly.
Proof: We assume f1 ≥ f2 ≥ . . . . Let fn = fn − f ≥ 0. It is enough to show gn → 0
uniformly.
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Given ǫ > 0 and t ∈ I there is a M so that 0 ≤ gm(t) < ǫ. Since gm is continuous
there is a δ(t) > 0 so that |x − t| < δ(t) implies |gm(t) − gm(x)| < ǫ. Take δ(t) as
a guage on I and let P be a δ-fine tagged partition. Let M = max(mt1 , . . . mtn). If
m > M and x ∈ I then there is an index k with |x− tk| < δ(tk) so

0 ≤ gm(x) ≤ gmk
(x) < ǫ.

Thus gn → 0 uniformly. �

Planning to skip Sections 8.3 and 8.4 in text.


