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Section 8.1: Pointwise and Uniform Convergence

1. Defn: A sequence of functions (f,,) is a choice of function f,, : A — R for each
n € Z. The domain A should be the same for every n.
2. We say f, converges pointwise to f on A if f,(z) — f(x) for every z € A.
3. Examples:

fa(z) =2/n on R

fo(z) =2 on [0, 1].
4. Defn: We say f, converges to f uniformly on A if for all ¢ > 0 there is a K so
that n > K implies | f,(z) — f(z)| < € for all z € A.
5. Uniform convergence implies pointwise convergence, but not conversely. We say
uniform convergence is “stronger” than pointwise convergence.
6. Lemma 8.1.5: f, does not converge uniformly on A to f iff there is some ¢y > 0
and a subsequence f,,, and a sequence (zy) so that

| (@) = flz)] = €o.
7. Defn: We say ¢ : A — R is bounded if ¢(A) is a bounded set, i.e., |p(z)] < M
for some M and all z € A. Define
lella = sup{le(z)] : = € A}.

8. Bounded functions on a set form a vector space. This is a norm on that vector
space.
9. Lemma 8.1.8: A sequence f, converges uniformly to f on A iff

[fn = flla—0.
Proof: If f, — f uniformly then for all ¢ there is a K so that n > K implies

| o — flla = sup{|fu(z) — f(z) : 2z € A} = 0.

Conversely, if |f, — flla — 0, then for all € there is a K so that n > K implies
|fu — flla < €, which is the same as |f,(x) — f(x)| < € for all x € A.
10. Cauchy Criterion for Uniform Convergence: Suppose f, is sequence of
bounded functions on A. Then f, converges uniformly on A to a bounded function
f iff for all € > 0 there is a H so that for all n,m > H we have ||f, — fil|la < €.
Proof: If f, — uniformly then for any € > 0 there is a K so that n > K implies
lf — fulla < €/2, so n,m > K implies

[fn = fullallf = fulla +[[f = fnlla < €/2+€/2 <€

Conversely, if the Cauchy condition holds for f,,, then for each x € A we have
|fa(@) = fn (@) < N foo = finll s
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so (fn(x)) is a Cauchy sequence of real numbers and hence converge so some limit we
call f(x). Since

[f(@) = fn()] < limsup | fo(z) = fin(2)] < €

if m > H, we see that f,, — f uniformly.
Section 8.2: Interchange of Limits

1. Questions:

Is a limit of continuous functions continuous? x"

Is a limit of differentiable functions differentiable?

Is a limit of Riemann integrable functions Riemann integrable? Sliding tent.
2. Theorem 8.2.2: If (f,,) is a sequence of continuous function converging uniformly
on A to f, then f is continuous on A.
Proof: Given € > 0 there is a H so that n > H implies |f,(z) — f(x)| < €/3
for all x € A. Also, given ¢ € A there exists § > 0 so that |z — ¢| < ¢ implies
|fn(x) — fu(c)|] < €/3. Thus for |x — ¢| < §, we have

[f(@) = fO < |f(@) = ful@)| + [fal@) = fule)| + | fule) = fc)] < e

3. Partial sums of >~ | 27" cos(3"x) show that differentiable functions can converge
uniformly to a nowhere differentiable function.
4. Theorem 8.2.3: Let J = [a,b] C R be a bounded interval and (f,,) a sequence
of functions on J. Suppose there is a xg € J so that f,(zg) converges and that
fl converge uniformly to g on J. Then f, converges uniformly to a a differentiable
function f on J. so that ' = g.

Proof: Take some x € J. Apply the mean value theorem to f, — f,, to find a
point y between xy and x so that

fuW) = £2(y) = finlzo) = fulxo) + (z — m0) (fin(@) — ful2)).
Thus

1) = Fa@)lls < (o) = fal@o)l +[b—al - | fm(z) = ful@)l]s.

Hence {f,} is Cauchy and therefore convergent. Thus it has a continuous limit f.
Take ¢ € J. To prove f'(c) exists, apply the mean value theorem between = and ¢
to find a z between them so that

Ful@) = Fu@) = (Fule) = £u(6)) = (2 = (Ful2) — £u(2)).
Il 2 Inle) W@ =IOy 52y - ol
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For any € > 0 there is an H so that n,m > H imply

fn() = fmlc) _ fulx) = fulc)

| <e
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Take the limit over m
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Since g(c) = lim,, f/ (c), there is an N so that n > N implies

l9(c) = fale)] <€
Let K = max(H,N). Since fj(c) exists, there is a 6 > 0 so that 0 < |[x —¢| < ¢

implies
!fK(Z):é];K(C) — fi(e) <.
Hence if 0 < |z — ¢| < §, we have
|f<£li'> _ f(C) —g(c)| < 3e.
r—c
Hence f'(c) = g(c). O

5. Theorem 8.2.4: If (f,) are Riemann integrable functions converging uniformly
to f then f is Riemann integrable and

/ableiin/abfn.

Proof: Given any € > 0 there is an N so that n > N implies

a(z) = fu(r) — € < f(r) Sw(r) = folz) + €

Both a and w are Riemann integrable and

/anw—a:e(b—a).

Thus by the squeeze theorem f is Riemann integrable and for all n

/abfn(x)—G(b—a)S/abf(x)g/abfn(x)JrE(b_a)

\/abf—/abfn!<6-

Thus [ f, — [ f. O
Both a and w are Riemann integrable and

6. Theorem 8.2.5: Suppose (f,,) are Riemann integrable functions on [a,b] con-

verging pointwise to a to a Riemann integrable function f. Suppose also that there

exists a B so that |f,(z)| < B for all n and all « € [a,b]. Then [ f, — [ f.

Proof: see link on class webpage.

6. Dini’s Theorem: Suppose (f,) is a monotone sequence of continuous function

on I = [a,b] that converges pointwise to f. Then f, — f uniformly.

Proof: We assume f; > fo > .... Let f,, = f, — f > 0. It is enough to show g, — 0

uniformly.



Given € > 0 and t € [ there is a M so that 0 < g,,(f) < €. Since g,, is continuous
there is a 0(f) > 0 so that |z — t| < 0(¢) implies |gm(t) — gm(x)| < €. Take 6(¢) as
a guage on I and let P be a d-fine tagged partition. Let M = max(my,,...my, ). If
m > M and x € I then there is an index k with |x — x| < 0(x) so

0 < gu(®) < g (@) <
Thus g, — 0 uniformly. O

Planning to skip Sections 8.3 and 8.4 in text.



