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Section 11.1: Open and closed sets

1. Defn: a neighborhood of a point x ∈ R is any set V that contains an open interval
around x, i.e., (x− δ, x+ δ) ⊂ V for some δ > 0.
2. Defn: A set G ⊂ R is open if for each x ∈ G there is a neighborhood V of x with
V ⊂ G.
3. Defn: A set is closed if its complement is open.
4. Examples:

every open interval
[0, 1] is closed
empty set
R is both open or closed
{ 1

n
} ∪ {0} is closed

rationals are neither
5. The difference between doors and sets.
6. Open Set Properties:

(a) any union of open sets is open.
(b) a finite intersection of open sets is open.

Proof:

(a) If x ∈ G = ∪λGλ then x is in some Gλ. Thus it has a neighborhood in Gλ and
hence in G. �

(b) Suppose x ∈ ∩n
1Gk. There are δk > 0 so that (x − δkx + δk) ⊂ Gk. So if

δ = min δk > 0 (positive since finite collection), then (x− δx+ δ) ⊂ Gk for all k and
hence (x− δx+ δ) ⊂ ∩kGk. �

7. Closed Set Properties:

(a) any intersection of closed sets is closed.
(b) a finite union of closed sets is closed.

Proof:

(a) follows from the previous result and

R \ ∩λFλ = ∪λ(R \ Fλ).

(b) Follows from the previous result and

R \ ∪λFλ = ∩λ(R \ Fλ).

8. The intersection of countable many open sets need not be open. For example the
irrationals.
A countable intersection of open sets is called Gδ.
A countable union of closed sets is called Fσ.
A countable union of Gδ sets is called Gδσ
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...
All these categories are different, they become larger and larger collections of sets.
This is the beginning of the Borel hierarchy of sets.
Not every set is in the hierarchy. There are non-Borel sets.

9. Theorem 11.1.7: A set F ⊂ R is closed iff every convergent sequence in F has
its limit in F .
Proof: Suppose (xn) ⊂ F and xn → x. We claim x ∈ F . If not, x is in the open
complement of F so there is an interval (x−δ, x+δ) ⊂ I ⊂ F c. But then |xn−x| > δ
for all n, a contradiction. Hence x ∈ F .
Conversely, if F is not closed then f c is not open, so there is a point x ∈ F c so

that every interval (x − 1

n
, x + 1

n
) contains a point xn ∈ F . Thus (xn) ⊂ F and

xn → x 6∈ F . �

10. Theorem 11.1.8: A set is closed iff it contains all its cluster points.
Proof: left to reader.
11. Theorem 11.1.9: A set in R is open iff it is a countable union of disjoint
intervals.
Proof: We already know that any union of open intervals in open.
Conversely, suppose G is non-empty and open. For x ∈ G let Cx be the collection

of open intervals I so that x ∈ I ⊂ G. Since G is open this is non-empty and its
union Ix is open and is contained in G.
If y ∈ G is another point and Ix∩ Iy 6= ∅ then Ix∪ Iy is an open interval containing

x and inside G so is in Cx. Hence Ix ∪ Iy ⊂ Ix and thus Iy ⊂ Ix.
But exchanging the roles of x and y proves Ix ⊂ Iy. Thus either Ix and Iy are

disjoint or they are the same.
Each Ix contains a rational point and disjoint intervals cannot contain the same

point, so there are only countable many different sets Ix that can occur. Thus G is
a union of countably many disjoint open intervals. �

12. The Middle Thirds Cantor set:

Define
Is closed.
Has zero length.
Ternary expansion
Contains no intervals (otherwise not null set)
Is uncountable.

13. There are many other types of Cantor set: closed, uncountable, nowhere dense,
every point is a cluster point.
13. There are Cantor sets of positive length (requires some measure theory to prove
this precisely).
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Section 11.2: Compact sets

1. Defn: an open cover of a set A is any collection of open sets whose union contains
A.
A finite subcover is a finite subcollection whose union also covers.

2. Defn: A set is compact iff every open cover contains a finite subcover.
This makes sense in arbitrary topological spaces. Very general, very useful concept.

3. Theorem 11.2.4: A compact set K ⊂ R must be closed an bounded.
Proof: If it is not bounded then (−n, n) is an open cover ofK with no finite subcover.
If it is not closed an x ∈ Kc is a limit point then {y : |y − x| > 1/n} is an open

cover of K with no finite subcover. �

4. Heine-Borel Theorem: A set K ⊂ R is compact iff it is closed and bounded.
Proof: we already proved these conditions are necessary.
Conversely, suppose K is closed and bounded and let {Gα} is any open cover of

K.
First do the case when K = I is a closed bounded interval. For each x ∈ I choose

δ = δ(x) so that (x − δ, x + δ) is inside some element Gα. This is a guage, so by
Theorem 5.5.5, there is a δ-fine partition. If for the kth partition element we take
the element of Gα of the cover that contains it, we get a finite subcover of I.
If K is not an interval, but K ⊂ I = [−n, n], then add Kc to the collection of open

sets. This covers I, hence has a finite subcover. Since Kc doesn’t cover any point of
K, the finitely many sets chosen from {Gα} must cover K. �

Theorem 11.2.6: A set K ⊂ R is compact iff every sequence in K has a convergent
subsequence.
Proof: Heine-Borel + Bolzano-Weierstrass.
6. Not true in all settings. In an infinite dimensional vector space, a set can be closed
and bounded but not compact.

Section 11.3: Continuous functions

1. Lemma 11.3.1: A function f : A → R is continuous at c ∈ A if for every
neighborhood U of f(c) there is a neighborhood V of c so that f(V ) ⊂ U .
Proof: If this conditions holds and ǫ > 0, then take U = (f(c)− ǫ, f(c)+ ǫ) and take
V so f(V ) ⊂ U . Since V is a neighborhood there is a δ < 0 so I = (c− δ, c+ δ) ⊂ V ,
so f(I) ⊂ U . Thus |x− c| < δ implies |f(x)− f(c)| < ǫ, i.e., f is continuous at c.
Conversely, if f is continuous at c then for any neighborhood of f(c) choose ǫ so

(f(c)− ǫ, f(c) + ǫ) ⊂ U , and take V = (c− δ, c+ δ). �

2. Defn: B ⊂ A is open in A if B = A ∩ U for some open U ⊂ R.
3. Theorem 11.3.2: f : A → R is continuous every where on A iff for every open
set G ⊂ R we have that f−1(G) is open in A.
Proof:
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First assume f is continuous andG is open. If x ∈ f−1(G) thenG is a neighborhood
of f(x), so there is an open neighborhood V of x so that f(V ) ⊂ G or V ⊂ f−1(G).
Then the union of these open neighborhoods is an open set whose intersection with
A is f−1(G).
Conversely, assume the condition holds. Let c ∈ A. For any open neighborhood G

of f(c) there is an open set H with H ∩A = f−1(G). Then c ∈ H. If x ∈ H ∩A then
f(x) ∈ G. Thus H is a neighborhood of c that maps into G, so f is continuous at c.
Hence f is continuous at every point of A. �

4. Corollary 11.3.3: A function f : R → R is continuous iff the inverse image of
every open set is open.
5. In topology, a function is defined to be continuous if the inverse image of every
open set is open.
6. The continuous image of an open set need not be open, e.g., sin(R).
7. Theorem 11.3.4: If K ⊂ R is compact and f : K → R is continuous, then f(K)
is compact.
Proof: Let {Gα} be an open cover of f(K). Then {f−1(Gα)} is an open cover of
K, so has a finite subcover. The corresponding Gα give an finite subcover of f(K).
Therefore every finite subcover of f(K) has a finite subcover, so f(K) is finite. �

8. Theorem 11.3.6: If K ⊂ R is compact and f : K → R is continuous and
injective, then f−1 is continuous.
Proof: By the last result f(K) is compact. If G is open in R then E = K ⊂ G is
closed and bounded, hence compact. Hence f(E) ⊂ f(K). Since f is 1-to-1,

f(G ∩K) = f(K) \ f(K \G)f(K) ∩ f(E)c.

Thus the inverse image under f−1 of any open set is open in f(K). Thus f−1 is
continuous. �

Section 11.4: Metric Spaces

1. Metric spaces have a notion of distance between points, but not of order, addition,
multiplication,... unless we assume this as extra.
2. Defn: A metric space is a set S with a function d : S × S → [0,∞) so that
(1) d(x, y) ≥ 0 for all x, y,
(2) d(x, y) = 0 iff x = y,
(3) d(x, y) = d(y, x),
(4) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ S.

3. Examples:

R with d(x, y) = |x− y|
Any subset of R with the same metric.
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Given an positive, continuous function f on reals, we can define for x ≤ y

d(x, y) =

∫ y

x

f.

and d(y, x) = d(x, y) if y < x.

R
n with d(x, y) =

√
∑n

1 (xk − yk)2.
R

n with d1(x, y) =
∑n

1 |xk − yk|
R

n with d∞(x, y) = supk |xk − yk|
Discrete metric on any set d(x, y) = 1 unless x = y; then d(x, x) = 0.
All bounded functions f : A → R with d(f, g) = supA |f(x)− g(x)|.
All continuous functions f : [0, 1] → R with d(f, g) = supA |f(x)− g(x)|.

All continuous functions f : [0, 1] → R with d(f, g) =
∫ 1

0
|f(x)− g(x)|.

All continuous functions f : [0, 1] → R with d(f, g) =
(

∫ 1

0
|f(x)− g(x)|2

)1/2

.

ℓ∞ = all bounded sequences (xn) with d((xn), (yn)) = supn |xn − yn|
c0 = all bounded sequences (xn) → 0 with d((xn), (yn)) = supn |xn − yn|
ℓ1 = all absolutely convergent sequences (xn) → 0 with d((xn), (yn)) =

∑

n |xn−yn|
On subsets of any finite set S, d(A,B) is number of elements in ∆(A,B) = (A ∪

B) \ (A ∩ B) (number of elements in one set but not the other).
Set of all finite strings of symbols from an alphabetA a1, a2, a3, . . . an with d((ak), b(k)) =

1/n where n = inf{N : ak = bk, k = 1, . . . , N}.
Edit distance between words = minimal number of replacements. deletions and

additions needed to convert one word to another, d(ball, ballon) = 2 to another,
d(ball, call) = 1
Graph distance. In graph theory, the distance between two vertices of a connected

graph is the fewest number of edges needed to connect them.
Many metrics between shapes. Hausdorff metric between compact sets E and F is

infimum of ǫ > 0 so that
E ⊂ {y : dist(y,F) < ǫ}

and
F ⊂ {y : dist(y,E) < ǫ}

where
dist(x,E) = inf

y∈E
{|x− y|}.

4. Defn: an ǫ-neighborhood of a point x ∈ S is Vǫ(x) = {y ∈ S : d(x, y) < ǫ}
Often denoted B(x, ǫ) to denote the ball of radius ǫ around x.
Given this we can define open sets, closed sets, compact sets.

5. Defn: a sequence (xn) in a metric space S converges to x ∈ S if d(xn, x) → 0.
Equivalently, for every neighborhood V of x, xn ∈ V for all n large enough.
6. Defn: a sequence in S is Cauchy if for all ǫ > 0 there is an H so that n,m > H
implies d(xn, xm) < ǫ.
6. Defn: a metric space is called complete if every Cauchy sequence converges.
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7. C[0, 1] is complete with the supremum metric.
8. Defn: A set G is open in S if it contains a neighborhood of each of its points.
A set is closed if its complement is open.
A set is compact if every open cover has a finite subcover.
A mapping f : S1 → S2 between metric spaces is continuous at a point c ∈ S1 if
for every neighborhood U ⊂ S2 of f(c) there is a a neighborhood V ⊂ S1 so that
f(V ) ⊂ U .
9. Theorem 11.4.11: a map between metric spaces is continuous iff the preimage
of every open set is open.
10. Theorem 11.4.12: If f : S1 → S2 is continuous, then the image of any compact
set is compact.
11. A subset K of metric space is compact iff every sequence in K has a convergent
subsequence.
12. A compact set of a metric space is closed and bounded (contained in a ball of
finite radius). The converse is not true. Thus the Heine-Borel theorem is not true in
general metric spaces.
The set of functions in C[0, 1] with I sup |f | ≤ 1 is closed and bounded, but is not
compact. Consider {xn} that has no uniformly convergent subsequence.
The closed unit ball of a normed vector space is compact iff the space is finite dimen-
sional.


