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Section 7.2: Riemann Integrable Functions

1. 7.2.1 Cauchy Criterion: A function f : [a,b] — R is Riemann integrable iff
for every e there is a n > 0 so that if P, Q are tagged partitions with ||P| < n and
|9l < n, then

[S(f,P)S(f, Q) <e
Proof:

On direction is easy. If f is Riemann integrable, and ¢ > 0, choose  so that
|P|| < 6 implies the Riemann sums are within €/2 of [ f, and then any two of them
are with e of each other.

Conversely, for each n € N, choose §; > dy > ... so that ||P]],[Q] < J, implies
the corresponding Riemann sums are within 1/n of each other. Choose a sequence
of partitions P, with ||P,|| < 0,. Then the Riemann sums {s,,} form a Cauchy
sequence and hence converge to some limit A and

IS(f; Pn) = All < 6.
Then for any tagged partition with |P|| < 4,

2. 7.2.3 Squeeze Theorem: f : [a,b] — R is Riemann integrable iff for every € > 0
there exist integrable functions o, and w, so that

a(r) < f(r) < we(z)

/we — e < €.
Proof:

If f is integrable take a, = w. = f.
For the converse, assume € > 0 and a,w are as in the theorem. Choose a § > 0 so
that ||P|| < d implies

for all x € [a,b] and

S@.P) - [al <e
1S(w, P) —/wl <.

Since

S(e,P) < S(f,P) < S(w,P)

/a—ESS(f,P)S/ere.
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we get
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The same is true for any other partition Q with ||QJ| < §, s0O

IS(f,P) = S(f, Q)| < 2e.

Thus the Cauchy criterion holds. O
3. Lemma 7.2.4: If J C I = [a,b] is a subinterval with endpoints ¢ < d, and if
@s(x) =1 on J and 0 otherwise, then ¢, is integrable and [¢; =d — c.

Proof: Changing values at two points does not alter the integrability or integral so
we may assume J = [a,b]. If we take a partition with norm §, then the intervals
outside J contribute zero and the intervals inside J contribute between d — ¢ and
d — ¢ — 20. There are at most 4 subintervals the hit the endpoints of J and these
contribute between 0 and 4¢6. Thus

1S(¢s,P) — (d = )| <60,

which is < € if 6 < €/6. O
4. Theorem 7.2.5: Any step function is Riemann integrable.

Proof: Every step function is a finite sum of functions as in the lemma, and we know
finite sums of Riemann integrable functions is also integrable.

5. Theorem 7.2.7: Any continuous f : [a,b] — R is Riemann integrable.

Proof: By Theorem 5.4.3, f is uniformly continuous. Given ¢ > 0 choose ¢ so that
|z —y| < ¢ implies | f(x) — f(y)| < €/(b—a). Then for any tagged partition P define
step functions «, w that are constant on [zj_;may) and equal to the min and max of
f on the interval. Then

S(w,P)=8(a,P)<d(b—a)<e.

Thus f is integrable by the Squeeze theorem. O
6. Theorem 7.2.8: Any monotone f : [a,.b] — R is Riemann integrable.

Proof: Assume f is increasing (otherwise take — f). Partition [a,b] and define « on
I by a = f(xp_1) and define w on Iy by w = f(xy). Then a < f < w. Also

[a- D=8 o) o+ flann),

n

[ =200t + -+ 1),

/w_/a:b;%ﬂ%%wu@

and this tends to zero at n " cc. O

SO

Finished here last time.

7. 7.2.9 Additivity Theorem: Let f : [a,b] — R and suppose a < ¢ < b. Then
f € Rla,b] iff it restrictions are in R[a, ] and R]c,b], and fabf = [ f+ fcb f
Proof:
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(<) First suppose the restriction are integrable. Given € > 0 choose § > 0 so that
given tagged partitions of [a, ¢| and [c, b] the corresponding Riemann sums are within

e of the integrals f: f and fcb f. Since f is integrable on each interval, it is bounded
on each and hence |f| is bounded by some M on their union. By making ¢ smaller,
we may assume 0 < €/6M.

Let Q be a tagged partition of [a, b] with norm < d. We claim

S(f,Q) - fl<e/3.
[+]

If ¢ is a partition point of Q then this is easy, since the Riemann sum for Q splits
into sums for the two subintervals.

Otherwise ¢ € [, for some k. We form partitions Q; and Qy of [a, ] and [c, b] by
adding ¢ to the partition Q. Then

1S(f, Q) — S(f, Q1) — S(f, Qa)| < 2M6 < €/3.
This implies

|S( /f/f\<|/f Sf,Q1|+|/ S(f, Qo) <e. O

8. Corollary 7.2.10: Restricting an integrable function to a subinterval gives an
integrable function.

9. Defn: fbaf——fbfandfaf—O
10. Theorem 7.2.13: If f € Vla,b] and «, 5,7 € [a, b] then

[o=[o]

Proof: several cases to check. See text.
Section 7.3: The Fundamental Theorem

1. Defn: Suppose f : [a,b] — R and z € [a,b] we define the indefinite integral

9= [ o

2. Theorem 7.3.1 Fundamental Thm of Calculus 1st Form: Suppose there is
a finite set F in [a, b] and functions f, F' so that

(a) F'is continuous on |a, b]

(b) F'(z) = f(z) for all x € [a,b] \ E.

(c) f € Rla,]
The we have f: f=F(b)— F(a).
Proof: We preove this when E = {a, b}; the general case canbe obtained by breaking
the interval into a finite number of subintervals.



Let € > 0. There is a 6 > 0 so that for any tagged partition with norm < ¢ the
correspodning Riemann sum is within € of fab f- The mean value theorm appplied to
each subinterval implies

F(xy) = F(rgp—1) = F'(ug)(2p — 2-1)

for some uy, € (xg, xx_1). Thus

a) = ZF(xk) — F(zp_1) Zf wr) — flop-1) = S(f, Q),

for some parition Q with norm < §. Thus

F(b) — F(a) - / f1=15(.Q) - / fl<e O

2. Theorem 7.3.4: The indefinite integral is continuous. In fact it is Lipschitz:
|F(2) = F(w)| < M|z — wl
where M = sup; | f].
Proof: B
F(2) = F(w) = |/ F@)dz| < M|z —w|. O
3. Fundamental Theorem of Calculus: Let f € Rla,b] and let f be continuous
at z € [1,b]. Then the indefinite integral F of f is differentiable at ¢ and F'(c) = f(c).

Proof: Suppose ¢ € [a,b) and consider the right hand derivative. Given € > 0 choose
0 > 0 so that for e 0 < h < § we have

fle)—e<flz) < fle)+e
for c < x < x + 6. By the Additivity theorem

F(c+h)— f

(f(c) —e)h < F(c+h)— F(C) f(c) +e)h)
F(c+h)— F(c)<

fle) = e < f(e)+ ¢
F h)—F
€ < (et l)l (c)—f(c)<e
Thus Flet h) — F(o
. c+n)—ric
hll>%l+ h = /).
The proof for the left hand derivative is similar, and proves the theorem. O

4. Theorem 7.3.6: If f € C([a,b]) (f is continuous on [a,b]), then its indefinite
integral F' is differentiable on [a,b] and F' = f.
5. Examples:

Step function



Thomae’s function
6. 7.3.8 Substitution Theorem: Let J = [a, ] and ¢ : J — R have a continuous
derivative. If f: I — R is continuous on an interval I containing ¢(.J) then

B ©(B)
| sewwi= [ s
a o(a)
Proof: Exercise 17.
7. Defn: A set Z C R is a null set (or has zero length) if for any € > 0 there is a
countable set of intervals {I,} = {(an,b,)} so that

Z C U]” and Z(b” —a,) < €.

Lemma: A subset of a null set is also a null set.

Lemma: A countable union of null sets is null.
8. Q is a null set. Any countable set is null.
9. Cantor’s Middle third set. Give non-rigorous discussion.
10. Defn: A statement holds almost everywhere it is true for every real number in
R\ Z where Z is a null set.

For example, almost every real number is irrational.
11. Lebesgue’s Integrability Criterion: A bounded function f : [a,b] :— R is
Riemann integrable iff it is continuous almost everywhere on [a, b].
12. Composition theorem: If f : [a,b] — [c,d] is Riemann integrable and ¢ is
continuous on [c, d] then ¢ o f is Riemann integrable,
Proof: the composition is continuous everywhere f is, so the discontinuity set of po f
is a subset of the discontinuities of f. Hence it is also a null set, so the composition
is integrable.
13. Corollary 7.3.15: If f € Rla,b] so is |f] and f2.
14. The Product Theorem: If f, g € R|a,b] then fg € R[q,b].
Proof:

fg=5((f +9) ~ "~ ),

and everything on the right is integrable since sums of integrable functions are inte-
grable and f? is the composition of f with the continuous function 2.

15. Integration by Parts: Let F, g be differentiable on [a,b] and assume f = F”
and g = G’ are Riemann integrable on [a, b]. Then

b b
/ fG:FG|Z—/ Fg.
Proof: By the product rule

(FGY = F'G+ FG' = fG + Fg
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and functions on right are both integrable. So Fundamental theorem says

b b
FG|§:/fG+/fG. O

16. Taylor’s Theorem with the Remainder: Suppose f/,... f("*1 exist of [a, ]
and that the last is Riemann integrable. Then

F) = fla)+ f(2)+ f'(a)b—a)+-- +

L ey n
?_z/a fUD@) (b —t)"dt.

Proof: Apply integration by parts to the remainder term with F(t) = f(t) and
G(t) = (b—1t)"/nto get

where

Ro = —fO00- 0"+ Yt
o f(n)(a) n) n 1
) (b—a) (n—1 / / a dt

Continuing in this was we eventually reach the desired equation.
Appendix C: Riemann and Lebesgue Criteria

1. Riemann Integrability Criterion: Suppose f : [a,b] — R is bounded. TFAE:
(a) f is Riemann integrable.
(b) For every € > 0 there is partition P so that if Py, Py are tagged partitions with
the same intervals as P then

|S(f77)1) - S(falpl)’ < €.
(c) For every € > 0 there is partition P so that if my = inf;, f and Mj = inf;, f
then

Z(Mk — mk)(:vk — xk—l) < 2e.

Proof:
(a) = (b) is the Cauchy Criterion
(b) = (c) On each interval I, choose tags uy, vy so that
flur) < my +¢/(b—a), f(vr) > My — €/(b—a)
Then for these tagged partitions
Z(Mk —m)(zk —zp-1) < [S(fP) = S P2) + Z fur))e/ (b — a)

k
< €+4¢€



(c) = (a) Define step functions o = my, on I, and w = My, on I;. Then

/w —a = Z(Mk —my)(z — Tp—1) < 2€
k
so f is integrable by the Squeeze theorem. O
2. Defn: Suppose f: A — R is bounded. For § C A define the osscilation of f on
S to be

W(f,S)= Sl;pf — i%ff.
3. Defn: An r-neighborhood of a point ¢ € A is
Vile)={x € A:|z—c| <r}.
4. Defn: If ¢ € A, the oscillation of f at c is
w(f,e) = WE{W(f,V(r,e)) s 7> 0} = inf W(f,Vi(c))

Also if ¢ is a cluster point of A, then
W (f,c) =limsup f(z) — liminf f(x).
r—rcC

r—C

If f has a jump discontinuity at c, this is the size of the jump.
From Section 5.5:
5. Defn: A gauge on I = [a,b] is a positive function.
6. Defn: Given a gauge on I = [a,b], a tagged partition is called d-fine if for all k
we have I}, C Vs, (tr).
7. Theorem 5.5.5: If § is a gauge on [a, b] then there exists a d-fine partition.
Proof: Let E be the set of « € [a, b] so that there is a 0 fine partition of [a, z]. Then
E is not empty since z € E if x < a+J(a) (we can use one interval for the partition).

Since E C [a,b], u = sup E exists and u < b. We want to prove u € E and u = b.

Choose v € F with © — §(u) < v < u. Then [a,v] has a -fine partition and adding
[v,u] gives a d-fine partition of [a,u]. Thus u € E.

If u < b then choose v so that u < v < min(b,u + §(u)) and add [u,v] to a d-fine
partition of [a,u] to get a d-fine partition of [a,v]. This contradicts definition of
supremum, so v = b. U
8. Lebesgue’s Criterion: A bounded function f : [a,b] — R is Riemann integrable
iff it is continuous almost everywhere on [a, b].

Proof:

(= integrable implies a.e. continuous)

Let H, = {z € [a,b] : w(f,x) > 27"}. It is enough to show each Hj has measure
zero. Thus for any e it is enough to show H,, is covered by intervals with total length
< €.

We use Part (3) of Riemann’s criterion. Suppose we have a partition P so that

Z(Mk — mk)(xk — xk—l) < 27 "€
k
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If x € H, N (xg, x)_1) then My —my > 27" so

27" Z(.Tk — I'kfl) < 27"
k
Z(a:k — 1) <€

k
Since H, is contained in these intervals, plus their finite set of endpoints, H, has
length < € for all € > 0. Hence H,, is a null set, as desired.

(«<: a.e. continuous implies integrable)

Suppose |f| < M on [a,b] and assume the set D of discontinuities is a null set.
Given € > 0 there is a covering of D by open intervals {J;} so that >, ((J;) < €/4M.
Define a gauge on [a, b] so that

(i) if « € D then Vj(,)(x) C Ji for some k.

(ii) if = & D, then y € V() implies |f(x) — f(y)] < €/2(b— a).

By Theorem 5.5.5 there is a d-fine partition P of [a,b]. Choose some tags {t;} for
P. Split the indices into two groups Sy and S. depending on whether ¢, € D or not.
Then

Z(Mk —my) (T — Th—1) = Z(Mk —my) (@ — Tp—1) + Z(Mk — my) () — Tp—1)

< Z(e/Z)(az‘k — Tp_1) + Z 2M (zy, — wp—1)
< (e/2(b—a))(b—a)+2M(e/4M)

= €.

Thus f is Riemann integrable by Part (3) of Riemann’s criterion. O



