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Section 7.2: Riemann Integrable Functions

1. 7.2.1 Cauchy Criterion: A function f : [a, b] → R is Riemann integrable iff
for every ǫ there is a η > 0 so that if P , Q are tagged partitions with ‖P‖ < η and
‖Q‖ < η, then

|S(f,P)S(f,Q)| < ǫ.

Proof:

On direction is easy. If f is Riemann integrable, and ǫ > 0, choose δ so that
‖P‖ < δ implies the Riemann sums are within ǫ/2 of

∫
f , and then any two of them

are with ǫ of each other.
Conversely, for each n ∈ N, choose δ1 > δ2 > . . . so that ‖P‖, ‖Q‖ < δn implies

the corresponding Riemann sums are within 1/n of each other. Choose a sequence
of partitions Pn with ‖Pn‖ < δn. Then the Riemann sums {sm} form a Cauchy
sequence and hence converge to some limit A and

‖S(f,Pn)− A‖ ≤ δn.

Then for any tagged partition with ‖P‖ < δn

|S(f,P)− A| ≤ +|S(f,Pn)− A|+ |S(f,Pn)− S(f,P)| ≤ ǫ. �

2. 7.2.3 Squeeze Theorem: f : [a, b] → R is Riemann integrable iff for every ǫ > 0
there exist integrable functions αǫ and ωǫ so that

αǫ(x) ≤ f(x) ≤ ωǫ(x)

for all x ∈ [a, b] and ∫
ωǫ − αǫ < ǫ.

Proof:

If f is integrable take αǫ = ωǫ = f .
For the converse, assume ǫ > 0 and α, ω are as in the theorem. Choose a δ > 0 so

that ‖P‖ < δ implies

|S(α,P)−

∫
α| ≤ ǫ,

|S(ω,P)−

∫
ω| ≤ ǫ.

Since
S(α,P) ≤ S(f,P) ≤ S(ω,P)

we get ∫
α− ǫ ≤ S(f,P) ≤

∫
ω + ǫ.
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The same is true for any other partition Q with ‖Q‖ < δ, s0

|S(f,P)− S(f,Q)| < 2ǫ.

Thus the Cauchy criterion holds. �

3. Lemma 7.2.4: If J ⊂ I = [a, b] is a subinterval with endpoints c < d, and if
ϕJ(x) = 1 on J and 0 otherwise, then ϕJ is integrable and

∫
ϕJ = d− c.

Proof: Changing values at two points does not alter the integrability or integral so
we may assume J = [a, b]. If we take a partition with norm δ, then the intervals
outside J contribute zero and the intervals inside J contribute between d − c and
d − c − 2δ. There are at most 4 subintervals the hit the endpoints of J and these
contribute between 0 and 4δ. Thus

|S(ϕJ ,P)− (d− c)| ≤ 6δ,

which is < ǫ if δ < ǫ/6. �

4. Theorem 7.2.5: Any step function is Riemann integrable.
Proof: Every step function is a finite sum of functions as in the lemma, and we know
finite sums of Riemann integrable functions is also integrable.
5. Theorem 7.2.7: Any continuous f : [a, b] → R is Riemann integrable.
Proof: By Theorem 5.4.3, f is uniformly continuous. Given ǫ > 0 choose δ so that
|x− y| < δ implies |f(x)− f(y)| < ǫ/(b− a). Then for any tagged partition P define
step functions α, ω that are constant on [xk−1mxk) and equal to the min and max of
f on the interval. Then

S(ω,P)− S( α,P) ≤ δ(b− a) < ǫ.

Thus f is integrable by the Squeeze theorem. �

6. Theorem 7.2.8: Any monotone f : [a, .b] → R is Riemann integrable.
Proof: Assume f is increasing (otherwise take −f). Partition [a, b] and define α on
Ik by α = f(xk−1) and define ω on Ik by ω = f(xk). Then α ≤ f ≤ ω. Also∫

α =
b− a

n
(f(x0) + · · ·+ f(xn−1),

∫
ω =

b− a

n
(f(x1) + · · ·+ f(xn),

so ∫
ω −

∫
α =

b− a

n
(f(xn)− f(x0),

and this tends to zero at n ր ∞. �

Finished here last time.

7. 7.2.9 Additivity Theorem: Let f : [a, b] → R and suppose a < c < b. Then

f ∈ R[a, b] iff it restrictions are in R[a, c] and R[c, b], and
∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

Proof:
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(⇐) First suppose the restriction are integrable. Given ǫ > 0 choose δ > 0 so that
given tagged partitions of [a, c] and [c, b] the corresponding Riemann sums are within

ǫ of the integrals
∫ c

a
f and

∫ b

c
f . Since f is integrable on each interval, it is bounded

on each and hence |f | is bounded by some M on their union. By making δ smaller,
we may assume δ < ǫ/6M .
Let Q be a tagged partition of [a, b] with norm < δ. We claim

S(f,Q)−

∫ c

a

f −

∫ b

c

f | < ǫ/3.

If c is a partition point of Q then this is easy, since the Riemann sum for Q splits
into sums for the two subintervals.
Otherwise c ∈ Ik for some k. We form partitions Q1 and Q2 of [a, c] and [c, b] by

adding c to the partition Q. Then

|S(f,Q)− S(f,Q1)− S(f,Q2)| ≤ 2Mδ < ǫ/3.

This implies

|S(f,Q)−

∫ c

a

f

∫ b

c

f | ≤ |

∫ c

a

f − S(f,Q1)|+ |

∫ b

c

−S(f,Q2)| < ǫ. �

8. Corollary 7.2.10: Restricting an integrable function to a subinterval gives an
integrable function.

9. Defn:
∫ a

b
f = −

∫ b

a
f and

∫ a

a
f = 0.

10. Theorem 7.2.13: If f ∈ ∇[a, b] and α, β, γ ∈ [a, b] then∫ β

α

f =

∫ γ

α

f +

∫ α

γ

f.

Proof: several cases to check. See text.

Section 7.3: The Fundamental Theorem

1. Defn: Suppose f : [a, b] → R and z ∈ [a, b] we define the indefinite integral

F (z) =

∫ z

a

f(x)dx

2. Theorem 7.3.1 Fundamental Thm of Calculus 1st Form: Suppose there is
a finite set E in [a, b] and functions f, F so that
(a) F is continuous on [a, b]
(b) F ′(x) = f(x) for all x ∈ [a, b] \ E.
(c) f ∈ R[a, b]

The we have
∫ b

a
f = F (b)− F (a).

Proof: We preove this when E = {a, b}; the general case canbe obtained by breaking
the interval into a finite number of subintervals.
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Let ǫ > 0. There is a δ > 0 so that for any tagged partition with norm < δ the

correspodning Riemann sum is within ǫ of
∫ b

a
f . The mean value theorm appplied to

each subinterval implies

F (xk)− F (xk−1) = F ′(uk)(xk − xk−1)

for some uk ∈ (xk, xk−1). Thus

F (b)− F (a) =
n∑

k=1

F (xk)− F (xk−1) =
n∑

k=1

f(xk)− f(xk−1) = S(f,Q),

for some parition Q with norm < δ. Thus

|F (b)− F (a)−

∫ b

a

f | = |S(f,Q)−

∫ b

a

f | < ǫ. �

2. Theorem 7.3.4: The indefinite integral is continuous. In fact it is Lipschitz:

|F (z)− F (w)| ≤ M |z − w|

where M = supI |f |.
Proof:

|F (z)− F (w) = |

∫ z

w

f(x)dx| ≤ M |z − w|. �

3. Fundamental Theorem of Calculus: Let f ∈ R[a, b] and let f be continuous
at z ∈ [1, b]. Then the indefinite integral F of f is differentiable at c and F ′(c) = f(c).
Proof: Suppose c ∈ [a, b) and consider the right hand derivative. Given ǫ > 0 choose
δ > 0 so that for e 0 < h < δ we have

f(c)− ǫ < f(x) < f(c) + ǫ

for c < x < x+ δ. By the Additivity theorem

F (c+ h)− F (c) =

∫ c+h

c

f

(f(c)− ǫ)h < F (c+ h)− F (c) < (f(c) + ǫ)h)

f(c)− ǫ <
F (c+ h)− F (c)

h
< f(c) + ǫ

ǫ <
F (c+ h)− F (c)

h
− f(c) < ǫ

Thus

lim
h→0+

F (c+ h)− F (c)

h
= f(c).

The proof for the left hand derivative is similar, and proves the theorem. �

4. Theorem 7.3.6: If f ∈ C([a, b]) (f is continuous on [a, b]), then its indefinite
integral F is differentiable on [a, b] and F ′ = f .
5. Examples:
Step function
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Thomae’s function
6. 7.3.8 Substitution Theorem: Let J = [α, β] and φ : J → R have a continuous
derivative. If f : I → R is continuous on an interval I containing ϕ(J) then

∫ β

α

f(ϕ(t))ϕ′(t)dt =

∫ ϕ(β)

ϕ(α)

f(x)dx.

Proof: Exercise 17.
7. Defn: A set Z ⊂ R is a null set (or has zero length) if for any ǫ > 0 there is a
countable set of intervals {In} = {(an, bn)} so that

Z ⊂
⋃

In and
∑
n

(bn − an) < ǫ.

Lemma: A subset of a null set is also a null set.
Lemma: A countable union of null sets is null.

8. Q is a null set. Any countable set is null.
9. Cantor’s Middle third set. Give non-rigorous discussion.
10. Defn: A statement holds almost everywhere it is true for every real number in
R \ Z where Z is a null set.
For example, almost every real number is irrational.

11. Lebesgue’s Integrability Criterion: A bounded function f : [a, b] :→ R is
Riemann integrable iff it is continuous almost everywhere on [a, b].
12. Composition theorem: If f : [a, b] → [c, d] is Riemann integrable and ϕ is
continuous on [c, d] then ϕ ◦ f is Riemann integrable,
Proof: the composition is continuous everywhere f is, so the discontinuity set of ϕ◦f
is a subset of the discontinuities of f . Hence it is also a null set, so the composition
is integrable.
13. Corollary 7.3.15: If f ∈ R[a, b] so is |f | and f 2.
14. The Product Theorem: If f, g ∈ R[a, b] then fg ∈ R[q, b].
Proof:

fg =
1

2
((f + g)2 − f 2 − g2),

and everything on the right is integrable since sums of integrable functions are inte-
grable and f 2 is the composition of f with the continuous function x2.
15. Integration by Parts: Let F, g be differentiable on [a, b] and assume f = F ′

and g = G′ are Riemann integrable on [a, b]. Then

∫ b

a

fG = FG|ba −

∫ b

a

Fg.

Proof: By the product rule

(FG)′ = F ′G+ FG′ = fG+ Fg



6

and functions on right are both integrable. So Fundamental theorem says

FG|ba =

∫ b

a

fG+

∫ b

a

fG. �

16. Taylor’s Theorem with the Remainder: Suppose f ′, . . . f (n+1) exist of [a, b]
and that the last is Riemann integrable. Then

f(b) = f(a) + f(z) + f ′(a)(b− a) + · · ·+
f (n)(a)

n
(b− a)n +Rn

where

Rn =
1

n

∫ b

a

f (n+1)(t)(b− t)ndt.

Proof: Apply integration by parts to the remainder term with F (t) = f (n)(t) and
G(t) = (b− t)n/n to get

Rn =
1

n
f (n)(t)(b− t)n|ba +

1

(n− 1)

∫ b

a

f (n)(t)(b− a)n−1dt

= −
f (n)(a)

n
(b− a)n +

1

(n− 1)

∫ b

a

f (n)(t)(b− a)n−1dt

Continuing in this was we eventually reach the desired equation.

Appendix C: Riemann and Lebesgue Criteria

1. Riemann Integrability Criterion: Suppose f : [a, b] → R is bounded. TFAE:
(a) f is Riemann integrable.
(b) For every ǫ > 0 there is partition P so that if P2, P2 are tagged partitions with

the same intervals as P then

|S(f,P1)− S(f,P1)| < ǫ.

(c) For every ǫ > 0 there is partition P so that if mk = infIk f and Mk = infIk f
then ∑

k

(Mk −mk)(xk − xk−1) < 2ǫ.

Proof:

(a) ⇒ (b) is the Cauchy Criterion
(b) ⇒ (c) On each interval Ik choose tags uk, vk so that

f(uk) < mk + ǫ/(b− a), f(vk) > Mk − ǫ/(b− a)

Then for these tagged partitions∑
k

(Mk −mk)(xk − xk−1) ≤ |S(f,P1)− S(f,P2)|+
∑

(f(vk)− f(uk))ǫ/(b− a)

< ǫ+ ǫ
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(c) ⇒ (a) Define step functions α = mk on Ik and ω = Mk on Ik. Then∫
ω − α =

∑
k

(Mk −mk)(xk − xk−1) < 2ǫ

so f is integrable by the Squeeze theorem. �

2. Defn: Suppose f : A → R is bounded. For S ⊂ A define the osscilation of f on
S to be

W (f, S) = sup
S

f − inf
S
f.

3. Defn: An r-neighborhood of a point c ∈ A is

Vr(c) = {x ∈ A : |x− c| < r}.

4. Defn: If c ∈ A, the oscillation of f at c is

w(f, c) = inf{W (f, V (r, c)) : r > 0} = inf
r→0+

W (f, Vr(c)).

Also if c is a cluster point of A, then

W (f, c) = lim sup
x→c

f(x)− lim inf
x→c

f(x).

If f has a jump discontinuity at c, this is the size of the jump.
From Section 5.5:

5. Defn: A gauge on I = [a, b] is a positive function.
6. Defn: Given a gauge on I = [a, b], a tagged partition is called δ-fine if for all k
we have Ik ⊂ Vδ(tk)(tk).
7. Theorem 5.5.5: If δ is a gauge on [a, b] then there exists a δ-fine partition.
Proof: Let E be the set of x ∈ [a, b] so that there is a δ fine partition of [a, x]. Then
E is not empty since x ∈ E if x < a+δ(a) (we can use one interval for the partition).
Since E ⊂ [a, b], u = supE exists and u ≤ b. We want to prove u ∈ E and u = b.
Choose v ∈ E with u− δ(u) < v < u. Then [a, v] has a δ-fine partition and adding

[v, u] gives a δ-fine partition of [a, u]. Thus u ∈ E.
If u < b then choose v so that u < v < min(b, u + δ(u)) and add [u, v] to a δ-fine

partition of [a, u] to get a δ-fine partition of [a, v]. This contradicts definition of
supremum, so u = b. �

8. Lebesgue’s Criterion: A bounded function f : [a, b] → R is Riemann integrable
iff it is continuous almost everywhere on [a, b].
Proof:

(⇒: integrable implies a.e. continuous)
Let Hn = {x ∈ [a, b] : w(f, x) > 2−n}. It is enough to show each Hk has measure

zero. Thus for any ǫ it is enough to show Hn is covered by intervals with total length
< ǫ.
We use Part (3) of Riemann’s criterion. Suppose we have a partition P so that∑

k

(Mk −mk)(xk − xk−1) < 2−nǫ
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If x ∈ Hn ∩ (xk, xk−1) then Mk −mk ≥ 2−n, so

2−n
∑
k

(xk − xk−1) < 2−nǫ

∑
k

(xk − xk−1) < ǫ

Since Hn is contained in these intervals, plus their finite set of endpoints, Hn has
length < ǫ for all ǫ > 0. Hence Hn is a null set, as desired.
(⇐: a.e. continuous implies integrable)
Suppose |f | ≤ M on [a, b] and assume the set D of discontinuities is a null set.

Given ǫ > 0 there is a covering of D by open intervals {Jk} so that
∑

k ℓ(Jk) < ǫ/4M .
Define a gauge on [a, b] so that
(i) if x ∈ D then Vδ(x)(x) ⊂ Jk for some k.
(ii) if x 6∈ D, then y ∈ Vδ(x)(x) implies |f(x)− f(y)| < ǫ/2(b− a).
By Theorem 5.5.5 there is a δ-fine partition P of [a, b]. Choose some tags {tk} for

P . Split the indices into two groups Sd and Sc depending on whether tk ∈ D or not.
Then∑
k

(Mk −mk)(xk − xk−1) =
∑
Sc

(Mk −mk)(xk − xk−1) +
∑
Sd

(Mk −mk)(xk − xk−1)

≤
∑
Sc

(ǫ/2)(xk − xk−1) +
∑
Sd

2M(xk − xk−1)

≤ (ǫ/2(b− a))(b− a) + 2M(ǫ/4M)

= ǫ.

Thus f is Riemann integrable by Part (3) of Riemann’s criterion. �


