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Section 9.1: Absolute Convergence

1. Defn: We say ) x, is absolutely convergent if ) |z,| converges. If > x,
converges, but not absolutely, then it is conditionally convergent.

2. Theorem 9.1.2: If a series is absolutely convergent then it converges.

Proof: Use the triangle inequality and the Cauchy criterion:
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to show:
> |z,| converges = > |x,| Cauchy

= > " ux, Cauchy

= > "z, converges.
3. Theorem 9.1.3: if ) x, is convergent, then any series obtained by grouping
terms is also convergent and to the same value.
Proof: The partial sums of the grouped series form a subsequence of the partial
sums of the un-grouped series, and hence converge to the same limit.
4. Same does not hold for un-grouping, e.g. (—=14+1,(—=14+1)+....
5. Defn: )"y, is a rearrangement of )  z,, if y, = x4 for some bijection f : N —
N.
6. Rearrangement Theorem: If )z, is absolutely convergent then any rearrange-
ment also converges to the same limit.
Proof: Suppose >z, = x. If € > 0 choose N so that

n
|z — s,| < € and Zxk<e,
N

for all n > N. Choose M so that all the terms x4, ...z y are contained in yy,...ya.
If m > M then the difference of partial sums sy — s,, is a finite sum of terms z; that
come after N and so is bounded by e. Therefore

lsm — x| < |z —sn|+ sy — sm| <2 O

Section 9.2: Tests for Absolute Convergence

1. Limit Comparison Test: If (z,), (y,) are non-zero sequences
. In
lim— =r
" Yn
exists, then
(a) if 0 <7 < oo then ) x, is absolutely convergent iff " y, is.
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(b) if r =0 and >y, is absolutely convergent then ) x, is.
2. Root test: Let (z,, be a sequence in R.
(a) if there is 7 € [0,1) and K € N so that n > K implies

|za|l/n <,

then > z,, is absolutely convergent.
(b) if there is a K € N so that n > K implies

|zn|1/n <1,

then >z, is divergence..
3. Corollary 9.2.3: If r = lim 2™ exists then > x, is convergent if r < 1 and
divergent if r > 1.
4. Ratio Test:
(a) if there is an r € (0,1) and a K € N so that n > K implies

’xn+1|
|Zn|

then > z,, is absolutely convergent.
(b) if there is a K € N so that n > K implies

|$n+1|
|0

<1,

then >z, is divergent.

5. Corollary 9.2.5: If r = lim |z, +|/|z,| exists then ) x, is convergent if r < 1
and divergent if r > 1.

6. The Integer-Al Test: Let f be a positive, decreasing function on [1,00). Then
the series s = ), f(k) converges iff the improper integral

/100 f(@)dz = lim /1bf(x)dx

b—oo

exists. If if converges, the partial sums of the series satisfy

| swirss—s< [ @ar
n+1 n

7. Examples:
Son2

1
Z nlog§ n

8. Raabe’s Test: Let (z,) be a sequence of non-zero reals.
(a) if there are a > 1 and K € N so that n > K implies
a

<1--.
n

Tn41
T

then > z,, is absolutely convergent.



(b) if there are a < and K € N so that n > K implies

a
>1—-—.
n

xn+1

Ty,
then >z, is absolutely convergent.
Proof:
(a) Rearranging, We get
(k= Dlae) = klzpa] = (@ — 1)l
for kgeqK. Hence k|xyy1| is decreasing. If we note the left sides telescopes,
(K = DIKk) = nlona] = (@ = D(fex| + -+ |aal).

This shows the partial sums are bounded, and hence the series Y x,, converges ab-
solutely.

(b) The same reasoning shows k|zjy1| is eventually increasing and hence x,, is
bounded below by C'/(n—). Since the harmonic series diverges, so does ().
10. Corollary: Assume

a = lim(n(1 —

exists. If @ > 1 then )z, is absolutely convergent, and if @ < 1 is it is not absolutely
convergent.
Proof: Suppose the limit exists and is > 1. If 1 < a; < a then a1 < n(1 —|z,11/%,])
for sufficiently large n, so |x,+1/2,| <1 —a;/n and Raabe’s test applies.

If a < 1, the argument is similar.

Section 9.3: Test for Non-absolute Convergence

1. Defn: A non-zero series (z,) is alternating if the x,; has the opposite sign to
Ty
2. Alternating Series Test: If (z,) decreases to 0 then the alternating series
> (=1)"z, converges.
Proof: Note that

Son = (21 — 22) + ... (Zon—1 — 22n),
is increasing and bounded above by

Son =21 — (20 —23) + -+ —22,) < 2

Hence the even partial sums converge to a limit L by the Monotone convergence
theorem.

A similar argument show the odd partial sums are decreasing and bounded, so
converge to some M. But

|S2n — Sont1| = |z2n41] = 0

so the two sequence have the same limit, hence the whole sequence converges.
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3. Abel’s lemma: Let (z,), (y,) be sequences in R and let s, = > ,_, y, with
so = 0. If m > n, then

m m—1

Z Tk = (TnSn — Tpi18n) + Z (Tr — Try1)Sk-
k=n+1 k=n+1
Proof: Since y, = s — sg_1, the left side is If m > n, then

m

Z Tr(5k—=5k-1) = (Tnt15n41—Tns150) T (Tni28ni2—Tni2Sns1)+ - (TmSm—TmSm—1),
k=n+1

which is the right hand side.
4. Dirichlet’s Test: If (x,,) decreases to 0 and if the partial sums (s,) of > v, are

bounded, then > s,y, is convergent.
Proof: Suppose |s,| < B. Since z — x4 > 0,

m m—1
> wpl < (@m+an)BE Y (0 —2601)B
k=n+1 k=n+1
S (J:m + $n+1) + (wn+1 - xB)B

= an+1B.

Since x,, — 0, the series satisfies the Cauchy criterion and converges.
Special case is alternating series y, = (—1)".

d.
1

sin acos § = §(sin(oz + ) —sin(f — «)).
Hence

.1 ) 1 _ 1

281n(§x)(cos kx) = sin(k + §)x — sin(k — §)x,
.1 ) 1 o1
QSID(§CL’)(COSI + -+ cosnz) = sin(n + 5)1’ —sin g,
implies
1
|cosx + -+ - 4 cosnx| < {2/’

so if a,, decreases to 0,

Z a, cos(nx)

converges for x # 2mn.
Similar result for > a, sinnz.

Section 9.4: Series of functions.
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1. Defn: If (f,,) is a sequence of functions, let (s,) denote the sequence of partial
sums

sn(x) = fi(@) + - + ful2).
If the partial sums converge (pointwise) to f we say > f,, converges to f.
2. Can define absolutely convergent or uniformly convergent in obvious way.
3. Theorem 9.4.2: If (f,) are all continuous and converge uniformly to f, then f

is continuous.
3. Theorem 9.4.3: If (f,) are all Riemann integrable on J = [a,b] and ) f,

converges uniformly to f, then

3. Theorem 9.4.4: If (f,) are all differentiable on J = [a, b], that ) f,, converges
at some point of J and that ) f! converges uniformly on J. Then there is a f so
that £ — 3 f, and f' = 3 f!]

4. Theorem 9.4.5: If (f,) are functions D — R. The series ) f,, is uniformly
convergent iff for all € > 0 there is a M so that n > M implies

[frr1 (@) + . ()] <6

for all x € D.

5. Weierstrass M-test: Let M, be real numbers so that |f,(z)| < M, for all x € D.
If > M, converges, then ) f, is uniformly convergent.

6. Defn: a power series around ¢ € R is a series of the form

Z an(x —c)".

Most common case is ¢ = 0.

6. A power series may converge only at ¢, on an interval (¢ — r, ¢+ r) or on all on
R.The limit of a convergent power series is called analytic.

8. Define

p = limsup |a,|"/".

The radius of convergence is R =01if p =00, 1/pif 0 < p < oo and R = o0 if p = 0.
9. Cauchy-Hadamard: If R is the radius of convergence of a power series > a,z",
then the series is absolutely convergent for |z| < R and divergent for |x| > R.

10. All behaviors possible on boundary

n 1 2 1 n
Yoy ley Lo
11. Theorem 9.4.10: If > a,2™ has radius on convergence R then it converges on
any closed, bounded interval K C (—R, R).
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12. Theorem 9.4.11: The limit of a power series is continuous on its interval of
convergence. On any closed bounded subinterval, it can be integrated term-by-term

13. Theorem 9.4.12: The limit of a power series is differentiable on its open interval
of convergence. If f(x) =" a,x, then

f(x) = Znana:”_l.
and both functions have the same radius of convergence.
14. Theorem 9.4.13: If > a,z, and ) b,x,, converge to the same function on the
same interval (—r,r), then a, = b, for all n.
Proof: by above a, = f™(0)/n=b,. O
15. If f has infinitely many derivatives, its Taylor series is given by

0 £(n) (.
Zf ()(ZL‘—C)n

n

If a power series converges to f it is the Taylor series of f.
But, just because a function is infinitely differentiable, its Taylor series need not
converge to it. If the Taylor series of f does converge to f, then f is called analytic.
It is possible the Taylor series converges to the “wrong” function.
16. Examples:

n

: _ G (_1) 2n+1
SIN T = % <2n i 1)33

o0

S,
COS%’—;} (271)

expr = Z %L:C"

n=0




