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Section 9.1: Absolute Convergence

1. Defn: We say
∑

n xn is absolutely convergent if
∑

n |xn| converges. If
∑

n xn

converges, but not absolutely, then it is conditionally convergent.
2. Theorem 9.1.2: If a series is absolutely convergent then it converges.
Proof: Use the triangle inequality and the Cauchy criterion:

|xn + . . . xm| ≤ |xn|+ . . . |xm|.

to show:
∑

|xn| converges ⇒
∑m |xn| Cauchy

⇒
∑m xn Cauchy

⇒
∑m xn converges.

3. Theorem 9.1.3: if
∑

xn is convergent, then any series obtained by grouping
terms is also convergent and to the same value.
Proof: The partial sums of the grouped series form a subsequence of the partial
sums of the un-grouped series, and hence converge to the same limit.
4. Same does not hold for un-grouping, e.g. (−1 + 1+(−1 + 1) + . . . .
5. Defn:

∑

yn is a rearrangement of
∑

xn if yk = xf(k) for some bijection f : N →
N.
6. Rearrangement Theorem: If

∑

xn is absolutely convergent then any rearrange-
ment also converges to the same limit.
Proof: Suppose

∑

xn = x. If ǫ > 0 choose N so that

|x− sn| < ǫ and
n

∑

N

xk < ǫ,

for all n > N . Choose M so that all the terms x1, . . . xN are contained in y1, . . . yM .
If m > M then the difference of partial sums sN − sm is a finite sum of terms xk that
come after N and so is bounded by ǫ. Therefore

|sm − x| ≤ |x− sN |+ |sN − sm| ≤ 2ǫ. �

Section 9.2: Tests for Absolute Convergence

1. Limit Comparison Test: If (xn), (yn) are non-zero sequences

lim
n

xn

yn
= r

exists, then
(a) if 0 < r < ∞ then

∑

xn is absolutely convergent iff
∑

yn is.
1
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(b) if r = 0 and
∑

yn is absolutely convergent then
∑

xn is.
2. Root test: Let (xn be a sequence in R.
(a) if there is r ∈ [0, 1) and K ∈ N so that n ≥ K implies

|xn|1/n ≤ r,

then
∑

xn is absolutely convergent.
(b) if there is a K ∈ N so that n ≥ K implies

|xn|1/n ≤ 1,

then
∑

xn is divergence..

3. Corollary 9.2.3: If r = lim x
1/n
n exists then

∑

xn is convergent if r < 1 and
divergent if r > 1.
4. Ratio Test:

(a) if there is an r ∈ (0, 1) and a K ∈ N so that n ≥ K implies

|xn+1|

|xn|
≤ r,

then
∑

xn is absolutely convergent.
(b) if there is a K ∈ N so that n ≥ K implies

|xn+1|

|xn|
≤ 1,

then
∑

xn is divergent.
5. Corollary 9.2.5: If r = lim |xn+1|/|xn| exists then

∑

xn is convergent if r < 1
and divergent if r > 1.
6. The Integer-Al Test: Let f be a positive, decreasing function on [1,∞). Then
the series s =

∑

k f(k) converges iff the improper integral
∫

∞

1

f(x)dx = lim
b→∞

∫ b

1

f(x)dx

exists. If if converges, the partial sums of the series satisfy
∫

∞

n+1

f(x)dx ≤ s− sn ≤

∫

∞

n

f(x)dx.

7. Examples:
∑

n−2.
∑

1
n log2 n

8. Raabe’s Test: Let (xn) be a sequence of non-zero reals.
(a) if there are a > 1 and K ∈ N so that n > K implies

∣

∣

∣

∣

xn+1

xn

∣

∣

∣

∣

≤ 1−
a

n
.

then
∑

xn is absolutely convergent.
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(b) if there are a ≤ and K ∈ N so that n > K implies
∣

∣

∣

∣

xn+1

xn

∣

∣

∣

∣

≥ 1−
a

n
.

then
∑

xn is absolutely convergent.
Proof:

(a) Rearranging, We get

(k − 1)|xk)− k|xk+1| ≥ (a− 1)|xk|.

for kgeqK. Hence k|xk+1| is decreasing. If we note the left sides telescopes,

(K − 1)|Kk)− n|xn+1| ≥ (a− 1)(|xK |+ · · ·+ |xn|).

This shows the partial sums are bounded, and hence the series
∑

xn converges ab-
solutely.
(b) The same reasoning shows k|xk+1| is eventually increasing and hence xn is

bounded below by C/(n−). Since the harmonic series diverges, so does (xn).
10. Corollary: Assume

a = lim(n(1−
|xn+1|

|xn|

exists. If a > 1 then
∑

xn is absolutely convergent, and if a < 1 is it is not absolutely
convergent.
Proof: Suppose the limit exists and is > 1. If 1 < a1 < a then a1 < n(1−|xn+1/xn|)
for sufficiently large n, so |xn+1/xn| < 1− a1/n and Raabe’s test applies.
If a < 1, the argument is similar.

Section 9.3: Test for Non-absolute Convergence

1. Defn: A non-zero series (xn) is alternating if the xn+1 has the opposite sign to
xn.
2. Alternating Series Test: If (zn) decreases to 0 then the alternating series
∑

(−1)nzn converges.
Proof: Note that

s2n = (z1 − z2) + . . . (z2n−1 − z2n),

is increasing and bounded above by

s2n = z1 − (z2 − z3) + · · · − z2n) ≤ z1

Hence the even partial sums converge to a limit L by the Monotone convergence
theorem.
A similar argument show the odd partial sums are decreasing and bounded, so

converge to some M . But

|s2n − s2n+1| = |z2n+1| → 0

so the two sequence have the same limit, hence the whole sequence converges.
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3. Abel’s lemma: Let (xn), (yn) be sequences in R and let sn =
∑n

k=1 yk, with
s0 = 0. If m > n, then

m
∑

k=n+1

xkyk = (xnsn − xn+1sn) +
m−1
∑

k=n+1

(xk − xk+1)sk.

Proof: Since yk = sk − sk−1, the left side is If m > n, then

m
∑

k=n+1

xk(sk−sk−1) = (xn+1sn+1−xn+1sn)+(xn+2sn+2−xn+2sn+1)+. . . (xmsm−xmsm−1),

which is the right hand side.
4. Dirichlet’s Test: If (xn) decreases to 0 and if the partial sums (sn) of

∑

yn are
bounded, then

∑

snyn is convergent.
Proof: Suppose |sn| ≤ B. Since xk − xk+1 ≥ 0,

|

m
∑

k=n+1

xkyk| ≤ (xm + xn+1)B +
m−1
∑

k=n+1

(xk − xk+1)B

≤ (xm + xn+1) + (xn+1 − xB)B

= 2xn+1B.

Since xn → 0, the series satisfies the Cauchy criterion and converges.
Special case is alternating series yn = (−1)n.
5.

sinα cos β =
1

2
(sin(α + β)− sin(β − α)).

Hence

2 sin(
1

2
x)(cos kx) = sin(k +

1

2
)x− sin(k −

1

2
)x,

2 sin(
1

2
x)(cos x+ · · ·+ cosnx) = sin(n+

1

2
)x− sin

1

2
x,

implies

| cos x+ · · ·+ cosnx| ≤
1

sin(x/2)
,

so if an decreases to 0,
∑

an cos(nx)

converges for x 6= 2πn.
Similar result for

∑

an sinnx.

Section 9.4: Series of functions.



5

1. Defn: If (fn) is a sequence of functions, let (sn) denote the sequence of partial
sums

sn(x) = f1(x) + · · ·+ fn(x).

If the partial sums converge (pointwise) to f we say
∑

fn converges to f .
2. Can define absolutely convergent or uniformly convergent in obvious way.
3. Theorem 9.4.2: If (fn) are all continuous and converge uniformly to f , then f
is continuous.
3. Theorem 9.4.3: If (fn) are all Riemann integrable on J = [a, b] and

∑

fn
converges uniformly to f , then

∫

f =
∑

∫

fn.

3. Theorem 9.4.4: If (fn) are all differentiable on J = [a, b], that
∑

fn converges
at some point of J and that

∑

f ′

n converges uniformly on J . Then there is a f so
that f −

∑

fn and f ′ =
∑

f ′

n.
4. Theorem 9.4.5: If (fn) are functions D → R. The series

∑

fn is uniformly
convergent iff for all ǫ > 0 there is a M so that n > M implies

|fn+1(x) + . . . fm(x)| < ǫ,

for all x ∈ D.
5. Weierstrass M-test: Let Mn be real numbers so that |fn(x)| ≤ Mn for all x ∈ D.
If
∑

Mn converges, then
∑

fn is uniformly convergent.
6. Defn: a power series around c ∈ R is a series of the form

∞
∑

n=0

an(x− c)n.

Most common case is c = 0.
6. A power series may converge only at c, on an interval (c − r, c + r) or on all on
R.The limit of a convergent power series is called analytic.
8. Define

ρ = lim sup |an|
1/n.

The radius of convergence is R = 0 if ρ = ∞, 1/ρ if 0 < ρ < ∞ and R = ∞ if ρ = 0.
9. Cauchy-Hadamard: If R is the radius of convergence of a power series

∑

anx
n,

then the series is absolutely convergent for |x| < R and divergent for |x| > R.
10. All behaviors possible on boundary

∑

xn,
∑ 1

n
x2,

∑ 1

n2
xn.

11. Theorem 9.4.10: If
∑

anx
n has radius on convergence R then it converges on

any closed, bounded interval K ⊂ (−R,R).
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12. Theorem 9.4.11: The limit of a power series is continuous on its interval of
convergence. On any closed bounded subinterval, it can be integrated term-by-term
.
13. Theorem 9.4.12: The limit of a power series is differentiable on its open interval
of convergence. If f(x) =

∑

anxn then

f ′(x) =
∑

nanx
n−1.

and both functions have the same radius of convergence.
14. Theorem 9.4.13: If

∑

anxn and
∑

bnxn converge to the same function on the
same interval (−r, r), then an = bn for all n.
Proof: by above an = f (n)(0)/n= bn. �

15. If f has infinitely many derivatives, its Taylor series is given by
∞
∑

n=0

f (n)(c)

n
(x− c)n.

If a power series converges to f it is the Taylor series of f .
But, just because a function is infinitely differentiable, its Taylor series need not

converge to it. If the Taylor series of f does converge to f , then f is called analytic.
It is possible the Taylor series converges to the “wrong” function.

16. Examples:

sin x =
∞
∑

n=0

(−1)n

(2n+ 1)
x2n+1

cos x =
∞
∑

n=0

(−1)n

(2n)
x2n

exp x =
∞
∑

n=0

1

n
xn


