320 Fall 2021, Tuesday, Nov 16, 2021

Section 8.1: Pointwise and Uniform Convergence

1. Defn: A sequence of functions (f,,) is a choice of function f,, : A — R for each
n € Z. The domain A should be the same for every n.
2. We say f, converges pointwise to f on A if f,(z) — f(x) for every z € A.
3. Examples:

fa(z) =2/n on R

fo(z) =2 on [0, 1].
4. Defn: We say f, converges to f uniformly on A if for all ¢ > 0 there is a K so
that n > K implies | f,(z) — f(z)| < € for all z € A.
5. Uniform convergence implies pointwise convergence, but not conversely. We say
uniform convergence is “stronger” than pointwise convergence.
6. Lemma 8.1.5: f, does not converge uniformly on A to f iff there is some ¢y > 0
and a subsequence f,,, and a sequence (zy) so that

| (@) = flz)] = €o.
7. Defn: We say ¢ : A — R is bounded if ¢(A) is a bounded set, i.e., |p(z)] < M
for some M and all z € A. Define
lella = sup{le(z)] : = € A}.

8. Bounded functions on a set form a vector space. This is a norm on that vector
space.
9. Lemma 8.1.8: A sequence f, converges uniformly to f on A iff

[fn = flla—0.
Proof: If f, — f uniformly then for all ¢ there is a K so that n > K implies

| o — flla = sup{|fu(z) — f(z) : 2z € A} = 0.

Conversely, if |f, — flla — 0, then for all € there is a K so that n > K implies
|fu — flla < €, which is the same as |f,(x) — f(x)| < € for all x € A.
10. Cauchy Criterion for Uniform Convergence: Suppose f, is sequence of
bounded functions on A. Then f, converges uniformly on A to a bounded function
f iff for all € > 0 there is a H so that for all n,m > H we have ||f, — fil|la < €.
Proof: If f, — uniformly then for any € > 0 there is a K so that n > K implies
lf — fulla < €/2, so n,m > K implies

[fn = fullallf = fulla +[[f = fnlla < €/2+€/2 <€

Conversely, if the Cauchy condition holds for f,,, then for each x € A we have
|fa(@) = fn (@) < N foo = finll s
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so (fn(x)) is a Cauchy sequence of real numbers and hence converge so some limit we
call f(x). Since

[f(@) = fn()] < limsup | fo(z) = fin(2)] < €

if m > H, we see that f,, — f uniformly.
Section 8.2: Interchange of Limits

1. Questions:

Is a limit of continuous functions continuous? x"

Is a limit of differentiable functions differentiable?

Is a limit of Riemann integrable functions Riemann integrable? Sliding tent.
2. Theorem 8.2.2: If (f,,) is a sequence of continuous function converging uniformly
on A to f, then f is continuous on A.
Proof: Given € > 0 there is a H so that n > H implies |f,(z) — f(x)| < €/3
for all x € A. Also, given ¢ € A there exists § > 0 so that |z — ¢| < ¢ implies
|fn(x) — fu(c)|] < €/3. Thus for |x — ¢| < §, we have

[f(@) = fO < |f(@) = ful@)| + [fal@) = fule)| + | fule) = fc)] < e

3. Partial sums of >~ | 27" cos(3"x) show that differentiable functions can converge
uniformly to a nowhere differentiable function.
4. Theorem 8.2.3: Let J = [a,b] C R be a bounded interval and (f,,) a sequence
of functions on J. Suppose there is a xg € J so that f,(zg) converges and that
fl converge uniformly to g on J. Then f, converges uniformly to a a differentiable
function f on J. so that ' = g.

Proof: Take some x € J. Apply the mean value theorem to f, — f,, to find a
point y between xy and x so that

fn(@) = ful@) = filx0) = fulwo) + (2 = 20) (£, (y) — fr(v))-
Thus

[fm(2) = fu(@)ls < [fm(x0) = fulzo)| + [0 —al - [[f7(y) = fLOll-

Hence {f,} is Cauchy and therefore convergent. Thus it has a continuous limit f.
Take ¢ € J. To prove f'(c) exists, apply the mean value theorem between = and ¢
to find a z between them so that

Ful@) = Fu@) — (Fule) = £u(6)) = (2 = A F(2) — Fo(2).
D 2 Inle) W@ =IOy <y 2y - ol

xr—c x
For any € > 0 there is an H so that n,m > H imply

fn () = fmlc) _ fulx) = fulc)

| <e
xr —C xr —C




Take the limit over m
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Since g(c) = lim,, f/ (c), there is an N so that n > N implies

l9(c) = fale)] <€
Let K = max(H,N). Since fj(c) exists, there is a 6 > 0 so that 0 < |[x —¢| < ¢

implies
!fK(Z):é];K(C) — fi(e) <.
Hence if 0 < |z — ¢| < §, we have
|f<£li'> _ f(C) —g(c)| < 3e.
r—c
Hence f'(c) = g(c). O

5. Theorem 8.2.4: If (f,) are Riemann integrable functions converging uniformly
to f then f is Riemann integrable and

/ableiin/abfn.

Proof: Given any € > 0 there is an N so that n > N implies

a(z) = fu(r) — € < f(r) Sw(r) = folz) + €

Both a and w are Riemann integrable and

/anw—a:e(b—a).

Thus by the squeeze theorem f is Riemann integrable and for all n

/abfn(x)—G(b—a)S/abf(x)g/abfn(x)JrE(b_a)

\/abf—/abfn!<6-

Thus [ f, — [ f. O
Both a and w are Riemann integrable and

6. Theorem 8.2.5: Suppose (f,,) are Riemann integrable functions on [a,b] con-

verging pointwise to a to a Riemann integrable function f. Suppose also that there

exists a B so that |f,(z)| < B for all n and all « € [a,b]. Then [ f, — [ f.

Proof: see link on class webpage.

6. Dini’s Theorem: Suppose (f,) is a monotone sequence of continuous function

on I = [a,b] that converges pointwise to f. Then f, — f uniformly.

Proof: We assume f; > fo > .... Let g, = f, — f > 0. It is enough to show g, — 0

uniformly.



Given € > 0 and t € [ there is a M so that 0 < g,,(t) < € for m > M. Since g,, is
continuous there is a 0(¢) > 0 so that |z —t| < 6(¢) implies |gm(t) — gm(x)| < €. Take
d(t) as a guage on [ and let P be a d-fine tagged partition. Let M = max(my,,...my,).
If m > M and x € I then there is an index k with |x — ;| < d(¢x) so

0 < gm(z) < gy () <€
Thus g, — 0 uniformly. 0

Planning to skip Sections 8.3 and 8.4 in text.
Section 9.1: Absolute Convergence

1. Defn: We say ) x, is absolutely convergent if ) |z,| converges. If > x,
converges, but not absolutely, then it is conditionally convergent.

2. Theorem 9.1.2: If a series is absolutely convergent then it converges.

Proof: Use the triangle inequality and the Cauchy criterion:

T e o o) I S o

to show:
> |2,| converges = > |x,| Cauchy

= > ", Cauchy

= > ", converges.
3. Theorem 9.1.3: if ) x, is convergent, then any series obtained by grouping
terms is also convergent and to the same value.
Proof: The partial sums of the grouped series form a subsequence of the partial
sums of the un-grouped series, and hence converge to the same limit.
4. Same does not hold for un-grouping, e.g. (=1 4+ 1,(—=14+1)+....
5. Defn: )y, is a rearrangement of ) _ x,, if y, = x () for some bijection f : N —
N.
6. Rearrangement Theorem: If )z, is absolutely convergent then any rearrange-
ment also converges to the same limit.
Proof: Suppose >z, = x. If € > 0 choose N so that

|z — s,| < € and Zxk <€,
N
for all n > N. Choose M so that all the terms zy, ... 2y are contained in yy,...ya.

If m > M then the difference of partial sums sy — s,, is a finite sum of terms z; that
come after N and so is bounded by e. Therefore

|8 — x| < |z —sn|+ sy —sm| <26 O

Section 9.2: Tests for Absolute Convergence



1. Limit Comparison Test: If (z,), (y,) are non-zero sequences

x?’l
lim— =r7r
n yn

exists, then
(a) if 0 < 7 < oo then ) x, is absolutely convergent iff " y,, is.
(b) if r =0 and )y, is absolutely convergent then ) z,, is.

2. Root test: Let (z,, be a sequence in R.
(a) if there is 7 € [0,1) and K € N so that n > K implies

|[za|1/n <7,
then > z,, is absolutely convergent.
(b) if there is a K € N so that n > K implies
[z [1/n < 1,
then >z, is divergence..

3. Corollary 9.2.3: If r = lim 2x/™ exists then > x, is convergent if r < 1 and
divergent if r > 1.
4. Ratio Test:

(a) if there is an r € (0,1) and a K € N so that n > K implies

|xn+1|

|xn|

then >z, is absolutely convergent.
(b) if there is a K € N so that n > K implies

|Trg1

<1,
-

then >z, is divergent.

5. Corollary 9.2.5: If r = lim |z, 1|/|2,| exists then ) x, is convergent if r < 1

and divergent if r > 1.

6. The Integer-Al Test: Let f be a positive, decreasing function on [1,00). Then

the series s = ), f(k) converges iff the improper integral

/ fla)da = lim 1bf()w

exists. If if converges, the partial sums of the series satisfy

/Oo flx)dr <s—s, < /oof(x)dx
n+1 n

7. Examples:
Son2
1
Z nlog?n

8. Raabe’s Test: Let (z,) be a sequence of non-zero reals.




(a) if there are a > 1 and K € N so that n > K implies

a
<I1--.
n

$n+1

T

then > z,, is absolutely convergent.
(b) if there are a < and K € N so that n > K implies

Tn+41
Tp

>1—-—.
n

then >z, is absolutely convergent.
Proof:
(a) Rearranging, We get

(k= Dlew) — Flagal > (a— 1o,
for kgeqK. Hence k|zy,1| is decreasing. If we note the left sides telescopes,
(K = D[EKy) = nlzna| = (@ = D)(lzk| 4 - + |2a]).

This shows the partial sums are bounded, and hence the series ) x,, converges ab-
solutely.

(b) The same reasoning shows k|xpi1| is eventually increasing and hence x,, is
bounded below by C'/(n—). Since the harmonic series diverges, so does ().
10. Corollary: Assume

a =lim(n(1 —

exists. If @ > 1 then ) x,, is absolutely convergent, and if a < 1 is it is not absolutely
convergent.
Proof: Suppose the limit exists and is > 1. If 1 < a1 < a then a1 < n(1l — |xp41/24])
for sufficiently large n, so |z,41/2z,| < 1 —ay/n and Raabe’s test applies.

If a < 1, the argument is similar.

Section 9.3: Test for Non-absolute Convergence

1. Defn: A non-zero series (z,) is alternating if the z,; has the opposite sign to
-
2. Alternating Series Test: If (z,) decreases to 0 then the alternating series
> (=1)"z, converges.
Proof: Note that

son = (21 — 22) + ... (22n-1 — 220),

is increasing and bounded above by

Son =21 — (20— 23) + - —20,) <21
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Hence the even partial sums converge to a limit L by the Monotone convergence
theorem.

A similar argument show the odd partial sums are decreasing and bounded, so
converge to some M. But

|52n - 52n+1| = ‘Z2n+1| — 0

so the two sequence have the same limit, hence the whole sequence converges.
3. Abel’s lemma: Let (z,), (y,) be sequences in R and let s, = Y ,_, v, with
so = 0. If m > n, then

m m—1
Z Ty = (TnSp — Tn+15n) + Z (Tk — Tpt1) Sk
k=n+1 k=n+1

Proof: Since y, = s — sg_1, the left side is If m > n, then

Z xk(sk_sk—1> = (xn-l—lsn—f—l_xn—f—lSn)+(xn+23n+2_xn+2sn+l)+- .- (xmsm_xmsm—l)a
k=n-+1
which is the right hand side.
4. Dirichlet’s Test: If (x,) decreases to 0 and if the partial sums (s,) of >_ v, are
bounded, then > s,y, is convergent.

Proof: Suppose |s,| < B. Since xp — x4 > 0,

m m—1
| Z Teyr] < (T + Tpp1) B+ Z (v — xps1)B
k=n+1 k=n+1
< (m+ Tny1) + (¥p1 —2B)B

= 2I'n+1B.

Since x,, — 0, the series satisfies the Cauchy criterion and converges.
Special case is alternating series y,, = (—1)".

D.
sin awcos f = %(sin(a + f) —sin(f — a)).
Hence 1 . ]
28iﬂ(§[£)(COS kz) = sin(k + §)x —sin(k — 5)9&,
2sin(%x)(cosa: + -+ cosnz) = sin(n + %)x — sin %x,
implies

|cosz + -+ + cosnz| <

Z a, cos(nx)

sin(z/2)’
so if a,, decreases to 0,

converges for x # 2mn.
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Similar result for ) a, sinnz.
Section 9.4: Series of functions.

1. Defn: If (f,,) is a sequence of functions, let (s,) denote the sequence of partial
sums
sn(z) = fil@) + - + ful2).
If the partial sums converge (pointwise) to f we say > f,, converges to f.
2. Can define absolutely convergent or uniformly convergent in obvious way.
3. Theorem 9.4.2: If (f,) are all continuous and converge uniformly to f, then f

is continuous.
3. Theorem 9.4.3: If (f,) are all Riemann integrable on J = [a,b] and )_ f,

converges uniformly to f, then

3. Theorem 9.4.4: If (f,) are all differentiable on J = [a, b, that ) f,, converges
at some point of J and that ) f/ converges uniformly on J. Then there is a f so
that £ — " fu and f' = 3 f1

4. Theorem 9.4.5: If (f,) are functions D — R. The series »_ f, is uniformly
convergent iff for all € > 0 there is a M so that n > M implies

|fn+1(x) + . fm(x)| <€

for all x € D.

5. Weierstrass M-test: Let M, be real numbers so that |f,(z)| < M, for all x € D.
If > M, converges, then Y f, is uniformly convergent.

6. Defn: a power series around ¢ € R is a series of the form

Z an(x —c)".

Most common case is ¢ = 0.
6. A power series may converge only at ¢, on an interval (¢ — r, ¢+ r) or on all on

R.The limit of a convergent power series is called analytic.

8. Define

p = limsup |a,|*/".

The radius of convergence is R =01if p =00, 1/pif 0 < p < 0o and R = oo if p = 0.
9. Cauchy-Hadamard: If R is the radius of convergence of a power series > a,z",
then the series is absolutely convergent for |z| < R and divergent for |z| > R.

10. All behaviors possible on boundary

1 1
Z x", Z 5302, Z ﬁx”
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11. Theorem 9.4.10: If ) a,2™ has radius on convergence R then it converges on
any closed, bounded interval K C (—R, R).

12. Theorem 9.4.11: The limit of a power series is continuous on its interval of
convergence. On any closed bounded subinterval, it can be integrated term-by-term

13. Theorem 9.4.12: The limit of a power series is differentiable on its open interval
of convergence. If f(x) = > a,x, then

f(z) = Znanx"_l.
and both functions have the same radius of convergence.
14. Theorem 9.4.13: If > a,z, and ) _ b,x, converge to the same function on the
same interval (—r,r), then a, = b, for all n.
Proof: by above a, = f™(0)/n=b,. O
15. If f has infinitely many derivatives, its Taylor series is given by

0 pn)(p
Z—f n( )(x—c)".

If a power series converges to f it is the Taylor series of f.
But, just because a function is infinitely differentiable, its Taylor series need not
converge to it. If the Taylor series of f does converge to f, then f is called analytic.
It is possible the Taylor series converges to the “wrong” function.
16. Examples:

2n +1

LD
COSLE—Z (2n)

n=0

sinz = N ﬂx%ﬂ
; ( )




