MAT 319 & 320 Fall 2021, Lecture 2, Thursday, Aug 26, 2021

1. Questions from last time?
2. Lemma: 1 +24+4+---+2" <2l forn=1,2,3....
Proof: Base case n=1,1+2=3 < 4.

Assume true for n, prove for n + 1:

(1 + o4 2”) + 2”"’1 < 2n+1 + 2n+1 9. 2n+1 — 2n+2.

3. Which color of paper there more of? Counting by bijections.
4. Definitions:

(a) empty set has zero elements

(b) A set S has n elements if there is a bijection from S to N,,.

(c) A set is finite it is has n elements for some n € N.

(d) A set is infinite if it not finite.

5. Theorem B.1: Let m,n € N with m > n. Then there does not exist a bijection
h from N,, to N,,,.

Sketch: Induct on n, easy for n = 1, since h is constant. Assume 1 < n < m.
Let h : N,, = N,,. If n € h(N,,), then h maps into N,,_; so is not a bijection by
induction. Otherwise, there is a p than maps to n. Define hy(q) = h(q) for ¢ < p and
hi(q) = h(q+ 1) for ¢ > p. This is a map N,,,_; into N,,_; so is not a bijection by
induction. Hence h was not a bijection.

6. Theorem 1.3.2: For a finite set S, the number of elements in S is a unique

element of N.

Proof: If S has bijections to both N,, and N,,, then there is a bijection between N,,

and N,,,. Hence n < m and m < n are both impossible by Thm B.1, so m = n.

7. Theorem B.2: If n € N there is not a bijection from N to N,,.

Proof: If there were such a map then restriction gives an injection from N, into

N,,, a contradiction.

8. Theorem 1.3.3: N is an infinite set.

Proof: If N were finite there would be a bijection from N to N,,. This contradicts

Theorem B.2, so N is not finite.

9. This is an example of an “impossibility proof”. Showing something can’t happen.

10. Defn: denumerable = has bijection with N. Aka “countably infinite”.
countable = finite or denumerable.

11. Theorem 1.3.8: N x N is denumerable.

Sketch diagonal argument for constructing bijections. Details are checked in Ap-
pendix B of text.

We will give a different proof after giving some more results.

12. Theorem B.3: If A C N is infinite, then there is an increasing bijection from N
to A.
Proof: We will define ¢ : N — A.



Since A is not empty, by the well ordering principle, it has a smallest element, that
we call ¢(1). Note that ¢(1) > 1.

Since A is infinite, A; = A\ {((1)} is not empty, so it has a smallest element called
©(2). Note that ¢(1) < ¢(2), since p(1) was smallest element of A. Hence p(2) > 2.

In general, suppose ¢(1) < ¢(2) < --- < (k) have been defined. Since A is infinite,
removing these from A leaves a non-empty set Ay, that has a smallest element, that
we set to be o(k +1). Also p(k+1) > p(k) >k, so p(k+1) > k+ 1.

By induction ¢ is defined on all of Ni and satisfies p(n) > n for all n.

To see ¢ is 1-1, suppose n # m. We may assume n < m. Then ¢(n) < p(n+1) <
o+ < pl(m), 50 9(n) # p(m).

To prove ¢ is surjective, we use a proof by contradiction. Assume ¢ is not onto.
Then there is an element p € A not in the image of . In particular,

pe A, =A\{o(1),....¢(p)}.

But ¢(p+1) > p+1 > p and it was defined to be the smallest element of A,. This
is a contradiction, so ¢ must be onto. 0
13. Theorem B.4: If A C N, then A is countable.
Proof: For finite sets this is the definition. For infinite sets, the previous result give
a bijection from N to A.
14. Theorem 1.3.9: Suppose T' C S.

(a) if S is countable, so is T

(b) if T is uncountable, so is S.
Proof:

(a) If S is finite, Theorem 1.3.5(a) says T is finite. If S is infinite, there is a
bijection ¢ : S — N. Theorem B.3 gives a bijection ¢ between A = ¥ (T") and N.
Composing these maps gives a bijection between 7" and N.

(b) is contrapositive of (a), so is equivalent (true iff (a) is true).

15. Theorem 1.3.10: The following are equivalent (TFAE):

(a) S is countable.

(b) there is a surjection from N onto S.

(c) there is an injection from S into N.

Proof:
(a) — (b) If S is denumerable, there is a bijection between S and N. This is also a
surjection. If S is finite there is a bijection from N,, = {1, ..., n} to S and a surjection

(k) = min(k,n) from N to N,,.

(b) — (c) Suppose 9 : N — S is onto. Then for every x € S, the set ¥~!(z) C N.
Let ¢(z) be the smallest element of this set. This gives a map S — N and it is 1-1
because x # y implies the sets ¢~ (z) and ¥~ (y) are disjoint (1) can’t take different
values at the same point).

16. Corollary: If S is countable and f : S — T is onto then T is countable.
16. Theorem 1.3.12: If A, is a countable set for each n, then U, _100A4,, is countable.

Proof: Let A, = {a},a},...}. then (n,m) — a}, is surjective from N x N to UA,,.



17. Theorem 1.3.8: N x N is countable.
Proof:

First show A = {(n,m) : n < m} is countable. Define a map f(n,m) = 2" + 2™
from A to N. We claim this is injective. Suppose (n,m) # (p,q). If m = ¢, then we
must have n # ¢

f(n,m) =2" 42" =2" 429 £ 2P + 29 = f(p,q).
If m # ¢ then we may assume m < g or m + 1 < ¢g. Then
fln,m) =20 42™ <2 <27 < 2P 427 = f(p,q).

In both cases, f(n,m) # f(p,q), so f is an injection from N x N — N,

The set B = {(n,m) : n > m} is also countable since it is bijective to A by
(n,m) — (m,n). Finally, {(n,m) : n = m} is bijective to N by n — (n,n). Thus
N x N is a union of three countable sets, hence is countable. U

If you known that every integer has a unique factorization into primes, you can
make an easier proof using the map f(n,m) = 2"-3™.

For a proof of unique factorization, see

https://en.wikipedia.org/wiki/Fundamental_theorem _of arithmetic
18. Theorem 1.3.11: The set QQ of rational numbers is countable.

Proof: (n,m) — n/m is surjective from N x N to positive rationals. Negative
rationals are bijective positives by r — —r. All rationals are union of two countable
sets plus the finite set {0}.

19. There are uncountable sets. Later we will prove R is uncountable. The subsets
of N is an uncountable collections.

20. Define power set to be set of all subsets (including empty set). Power set of a
finite set with n elements has 2" elements. So a set and its power sets have different
numbers of elements. Sometimes denoted 2°. What about infinite sets?

21. Theorem 1.3.13 (Cantor’s theorem): If A is a set then there is no surjection
from A to P(A), the set of all subsets of A.

Proof: Suppose ¢ is such a surjection. We will obtain a contradiction.

Let D={a€ A:a¢ ¢(a)}. D is asubset of A, so D = ¢(b) for some b € A.
Either b € D or b ¢ D. If b € D then by definition of D, we have b ¢ D = ¢(b),
a contradiction. Thus b € D = ¢(b). By definition of D, we get b € D, another
contradiction.

Therefore there is no b so that D = ¢(b). Hence there is no surjection from A to
its power set.

22. There are uncountably many subsets of N.

They each subset corresponds to a sequence of zeros and ones. These can be
associated to real numbers via binary expansions. Later we will use this idea to show
R is uncountable.

23. We say two infinite sets have the same cardinality if there is a bijection between
them. Cantor’s theorem implies there are an infinite number of different possible
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infinite cardinalities. Most of mathematics only needs the first few infinities to deal
with N, R,... The study of all cardinalities is part of mathematical logic.

The cardinality of R is sometimes denoted ¢ or “the continuum”. More about this
later.
Some extra material, if there is time.
23. Theorem: If S is infinite, then there is an injection f: N — S.
Since S is infinite, it is non-empty so there is some s; € S. Let f(1) = s;.
Assume we have defined f for 1,...,n. Since S is infinite S\ {f(1),..., f(n)}
is not empty so there is a point s,,; in this set. Let f(n + 1) = s,.1.
By induction, the set of n’s where f is defined is all of N. f is injective
because of n < m, then f(m) was chosen not to be f(1),..., f(m — 1), so is
not f(n). O
24. Theorem: A set S is infinite if and only if there is an injection from S
to a proper subset of itself.
Proof sketch: If S is finite, there is no such injection by Theorem 1.3.2.
If S is infinite, then let f : N — S be the injection above. Define a map
from S to itself as follows. If © = f(n) for some n > 1, let h(z) = f(n+1).
Otherwise h(zr) = x. This is injective, but f(1) is not in the image, so the
map is not onto. The range (co-domain) is a proper subset of S.
25. Schroder—Bernstein theorem: if there exist injective functions f: A —
B and g : B — A between the sets A and B, then there exists a bijective
function h: A — B.

See https://en.wikipedia.org/wiki/Schr der-Bernstein_theorem



