
MAT 319 & 320 Fall 2021, Lecture 2, Thursday, Aug 26, 2021

1. Questions from last time?
2. Lemma: 1 + 2 + 4 + · · ·+ 2n < 2n+1 for n = 1, 2, 3 . . . .
Proof: Base case n = 1, 1 + 2 = 3 < 4.
Assume true for n, prove for n+ 1:

(1 + · · ·+ 2n) + 2n+1 < 2n+1 + 2n+1 = 2 · 2n+1 = 2n+2.

3. Which color of paper there more of? Counting by bijections.
4. Definitions:
(a) empty set has zero elements
(b) A set S has n elements if there is a bijection from S to Nn.
(c) A set is finite it is has n elements for some n ∈ N.
(d) A set is infinite if it not finite.

5. Theorem B.1: Let m,n ∈ N with m > n. Then there does not exist a bijection
h from Nn to Nm.
Sketch: Induct on n, easy for n = 1, since h is constant. Assume 1 < n < m.

Let h : Nm → Nm. If n 6∈ h(Nm), then h maps into Nn−1 so is not a bijection by
induction. Otherwise, there is a p than maps to n. Define h1(q) = h(q) for q < p and
h1(q) = h(q + 1) for q > p. This is a map Nm−1 into Nn−1 so is not a bijection by
induction. Hence h was not a bijection.
6. Theorem 1.3.2: For a finite set S, the number of elements in S is a unique
element of N.
Proof: If S has bijections to both Nm and Nm, then there is a bijection between Nm

and Nm. Hence n < m and m < n are both impossible by Thm B.1, so m = n.
7. Theorem B.2: If n ∈ N there is not a bijection from N to Nn.
Proof: If there were such a map then restriction gives an injection from Nn+1 into
Nn, a contradiction.
8. Theorem 1.3.3: N is an infinite set.
Proof: If N were finite there would be a bijection from N to Nn. This contradicts
Theorem B.2, so N is not finite.
9. This is an example of an “impossibility proof”. Showing something can’t happen.
10. Defn: denumerable = has bijection with N. Aka “countably infinite”.
countable = finite or denumerable.

11. Theorem 1.3.8: N× N is denumerable.
Sketch diagonal argument for constructing bijections. Details are checked in Ap-

pendix B of text.
We will give a different proof after giving some more results.

12. Theorem B.3: If A ⊂ N is infinite, then there is an increasing bijection from N

to A.
Proof: We will define ϕ : N → A.
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Since A is not empty, by the well ordering principle, it has a smallest element, that
we call ϕ(1). Note that ϕ(1) ≥ 1.
Since A is infinite, A1 = A\{ϕ(1)} is not empty, so it has a smallest element called

ϕ(2). Note that ϕ(1) < ϕ(2), since ϕ(1) was smallest element of A. Hence ϕ(2) ≥ 2.
In general, suppose ϕ(1) < ϕ(2) < · · · < ϕ(k) have been defined. Since A is infinite,

removing these from A leaves a non-empty set Ak, that has a smallest element, that
we set to be ϕ(k + 1). Also ϕ(k + 1) > ϕ(k) ≥ k, so ϕ(k + 1) ≥ k + 1.
By induction ϕ is defined on all of Ni and satisfies ϕ(n) ≥ n for all n.
To see ϕ is 1-1, suppose n 6= m. We may assume n < m. Then ϕ(n) < ϕ(n+ 1) <

· · · < ϕ(m), so ϕ(n) 6= ϕ(m).
To prove ϕ is surjective, we use a proof by contradiction. Assume ϕ is not onto.

Then there is an element p ∈ A not in the image of ϕ. In particular,

p ∈ Ap = A \ {φ(1), . . . , φ(p)}.

But ϕ(p+ 1) ≥ p+ 1 > p and it was defined to be the smallest element of Ap. This
is a contradiction, so ϕ must be onto. �

13. Theorem B.4: If A ⊂ N, then A is countable.
Proof: For finite sets this is the definition. For infinite sets, the previous result give
a bijection from N to A.
14. Theorem 1.3.9: Suppose T ⊂ S.
(a) if S is countable, so is T
(b) if T is uncountable, so is S.

Proof:
(a) If S is finite, Theorem 1.3.5(a) says T is finite. If S is infinite, there is a

bijection ψ : S → N. Theorem B.3 gives a bijection ϕ between A = ψ(T ) and N.
Composing these maps gives a bijection between T and N.
(b) is contrapositive of (a), so is equivalent (true iff (a) is true).

15. Theorem 1.3.10: The following are equivalent (TFAE):
(a) S is countable.
(b) there is a surjection from N onto S.
(c) there is an injection from S into N.

Proof:
(a) → (b) If S is denumerable, there is a bijection between S and N. This is also a

surjection. If S is finite there is a bijection from Nn = {1, . . . , n} to S and a surjection
ψ(k) = min(k, n) from N to Nn.
(b) → (c) Suppose ψ : N → S is onto. Then for every x ∈ S, the set ψ−1(x) ⊂ N.

Let ϕ(x) be the smallest element of this set. This gives a map S → N and it is 1-1
because x 6= y implies the sets ψ−1(x) and ψ−1(y) are disjoint (ψ can’t take different
values at the same point).
16. Corollary: If S is countable and f : S → T is onto then T is countable.
16. Theorem 1.3.12: If An is a countable set for each n, then ∪n=1∞An is countable.
Proof: Let An = {an1 , a

n
2 , . . . }. then (n,m) → anm is surjective from N×N to ∪An.
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17. Theorem 1.3.8: N× N is countable.
Proof:
First show A = {(n,m) : n < m} is countable. Define a map f(n,m) = 2n + 2m

from A to N. We claim this is injective. Suppose (n,m) 6= (p, q). If m = q, then we
must have n 6= q

f(n,m) = 2n + 2m = 2n + 2q 6= 2p + 2q = f(p, q).

If m 6= q then we may assume m < q or m+ 1 ≤ q. Then

f(n,m) = 2n + 2m < 2m+1 ≤ 2q < 2p + 2q = f(p, q).

In both cases, f(n,m) 6= f(p, q), so f is an injection from N× N → N.
The set B = {(n,m) : n > m} is also countable since it is bijective to A by

(n,m) → (m,n). Finally, {(n,m) : n = m} is bijective to N by n → (n, n). Thus
N× N is a union of three countable sets, hence is countable. �

If you known that every integer has a unique factorization into primes, you can
make an easier proof using the map f(n,m) = 2n · 3m.
For a proof of unique factorization, see
https://en.wikipedia.org/wiki/Fundamental theorem of arithmetic

18. Theorem 1.3.11: The set Q of rational numbers is countable.
Proof: (n,m) → n/m is surjective from N × N to positive rationals. Negative

rationals are bijective positives by r → −r. All rationals are union of two countable
sets plus the finite set {0}.
19. There are uncountable sets. Later we will prove R is uncountable. The subsets
of N is an uncountable collections.
20. Define power set to be set of all subsets (including empty set). Power set of a
finite set with n elements has 2n elements. So a set and its power sets have different
numbers of elements. Sometimes denoted 2S. What about infinite sets?
21. Theorem 1.3.13 (Cantor’s theorem): If A is a set then there is no surjection
from A to P(A), the set of all subsets of A.
Proof: Suppose ϕ is such a surjection. We will obtain a contradiction.
Let D = {a ∈ A : a 6∈ φ(a)}. D is a subset of A, so D = φ(b) for some b ∈ A.

Either b ∈ D or b 6∈ D. If b ∈ D then by definition of D, we have b 6∈ D = φ(b),
a contradiction. Thus b 6∈ D = φ(b). By definition of D, we get b ∈ D, another
contradiction.
Therefore there is no b so that D = φ(b). Hence there is no surjection from A to

its power set.
22. There are uncountably many subsets of N.
They each subset corresponds to a sequence of zeros and ones. These can be

associated to real numbers via binary expansions. Later we will use this idea to show
R is uncountable.
23. We say two infinite sets have the same cardinality if there is a bijection between
them. Cantor’s theorem implies there are an infinite number of different possible
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infinite cardinalities. Most of mathematics only needs the first few infinities to deal
with N, R,... The study of all cardinalities is part of mathematical logic.
The cardinality of R is sometimes denoted c or “the continuum”. More about this

later.
Some extra material, if there is time.
23. Theorem: If S is infinite, then there is an injection f : N → S.
Since S is infinite, it is non-empty so there is some s1 ∈ S. Let f(1) = s1.
Assume we have defined f for 1, . . . , n. Since S is infinite S \{f(1), . . . , f(n)}
is not empty so there is a point sn+1 in this set. Let f(n + 1) = sn+1.
By induction, the set of n’s where f is defined is all of N. f is injective
because of n < m, then f(m) was chosen not to be f(1), . . . , f(m − 1), so is
not f(n). �

24. Theorem: A set S is infinite if and only if there is an injection from S
to a proper subset of itself.
Proof sketch: If S is finite, there is no such injection by Theorem 1.3.2.
If S is infinite, then let f : N → S be the injection above. Define a map
from S to itself as follows. If x = f(n) for some n ≥ 1, let h(x) = f(n + 1).
Otherwise h(x) = x. This is injective, but f(1) is not in the image, so the
map is not onto. The range (co-domain) is a proper subset of S.
25. Schröder–Bernstein theorem: if there exist injective functions f : A→
B and g : B → A between the sets A and B, then there exists a bijective
function h : A→ B.
See https://en.wikipedia.org/wiki/Schr der-Bernstein theorem


