MAT 319 & 320 Fall 2021, Lecture 2, Thursday, Aug 26, 2021

1. Questions from last time?

2. Lemma: $1 + 2 + 4 + \dots + 2^n < 2^{n+1}$ for $n = 1, 2, 3 \dots$

Proof: Base case n = 1, 1 + 2 = 3 < 4.

Assume true for n, prove for n + 1:

$$(1 + \dots + 2^n) + 2^{n+1} < 2^{n+1} + 2^{n+1} = 2 \cdot 2^{n+1} = 2^{n+2}.$$

3. Which color of paper there more of? Counting by bijections.

4. Definitions:

- (a) empty set has zero elements
- (b) A set S has n elements if there is a bijection from S to \mathbb{N}_n .
- (c) A set is finite it is has n elements for some $n \in \mathbb{N}$.
- (d) A set is infinite if it not finite.

5. Theorem B.1: Let $m, n \in \mathbb{N}$ with m > n. Then there does not exist a bijection h from \mathbb{N}_n to \mathbb{N}_m .

Sketch: Induct on n, easy for n = 1, since h is constant. Assume 1 < n < m. Let $h : \mathbb{N}_m \to \mathbb{N}_m$. If $n \notin h(\mathbb{N}_m)$, then h maps into \mathbb{N}_{n-1} so is not a bijection by induction. Otherwise, there is a p than maps to n. Define $h_1(q) = h(q)$ for q < p and $h_1(q) = h(q+1)$ for q > p. This is a map \mathbb{N}_{m-1} into \mathbb{N}_{n-1} so is not a bijection by induction. Hence h was not a bijection.

6. Theorem 1.3.2: For a finite set S, the number of elements in S is a unique element of \mathbb{N} .

Proof: If S has bijections to both \mathbb{N}_m and \mathbb{N}_m , then there is a bijection between \mathbb{N}_m and \mathbb{N}_m . Hence n < m and m < n are both impossible by Thm B.1, so m = n.

7. Theorem B.2: If $n \in \mathbb{N}$ there is not a bijection from \mathbb{N} to \mathbb{N}_n .

Proof: If there were such a map then restriction gives an injection from \mathbb{N}_{n+1} into \mathbb{N}_n , a contradiction.

8. Theorem 1.3.3: \mathbb{N} is an infinite set.

Proof: If \mathbb{N} were finite there would be a bijection from \mathbb{N} to \mathbb{N}_n . This contradicts Theorem B.2, so \mathbb{N} is not finite.

9. This is an example of an "impossibility proof". Showing something can't happen.

10. **Defn:** denumerable = has bijection with \mathbb{N} . Aka "countably infinite".

countable = finite or denumerable.

11. Theorem 1.3.8: $\mathbb{N} \times \mathbb{N}$ is denumerable.

Sketch diagonal argument for constructing bijections. Details are checked in Appendix B of text.

We will give a different proof after giving some more results.

12. Theorem B.3: If $A \subset \mathbb{N}$ is infinite, then there is an increasing bijection from \mathbb{N} to A.

Proof: We will define $\varphi : \mathbb{N} \to A$.

Since A is not empty, by the well ordering principle, it has a smallest element, that we call $\varphi(1)$. Note that $\varphi(1) \ge 1$.

Since A is infinite, $A_1 = A \setminus \{\varphi(1)\}$ is not empty, so it has a smallest element called $\varphi(2)$. Note that $\varphi(1) < \varphi(2)$, since $\varphi(1)$ was smallest element of A. Hence $\varphi(2) \ge 2$. In general, suppose $\varphi(1) < \varphi(2) < \cdots < \varphi(k)$ have been defined. Since A is infinite, removing these from A leaves a non-empty set A_k , that has a smallest element, that we set to be $\varphi(k+1)$. Also $\varphi(k+1) > \varphi(k) \ge k$, so $\varphi(k+1) \ge k+1$.

By induction φ is defined on all of Ni and satisfies $\varphi(n) \ge n$ for all n.

To see φ is 1-1, suppose $n \neq m$. We may assume n < m. Then $\varphi(n) < \varphi(n+1) < \cdots < \varphi(m)$, so $\varphi(n) \neq \varphi(m)$.

To prove φ is surjective, we use a proof by contradiction. Assume φ is not onto. Then there is an element $p \in A$ not in the image of φ . In particular,

$$p \in A_p = A \setminus \{\phi(1), \dots, \phi(p)\}$$

But $\varphi(p+1) \ge p+1 > p$ and it was defined to be the **smallest** element of A_p . This is a contradiction, so φ must be onto.

13. Theorem B.4: If $A \subset \mathbb{N}$, then A is countable.

Proof: For finite sets this is the definition. For infinite sets, the previous result give a bijection from \mathbb{N} to A.

14. Theorem 1.3.9: Suppose $T \subset S$.

(a) if S is countable, so is T

(b) if T is uncountable, so is S.

Proof:

(a) If S is finite, Theorem 1.3.5(a) says T is finite. If S is infinite, there is a bijection $\psi : S \to \mathbb{N}$. Theorem B.3 gives a bijection φ between $A = \psi(T)$ and \mathbb{N} . Composing these maps gives a bijection between T and \mathbb{N} .

(b) is contrapositive of (a), so is equivalent (true iff (a) is true).

15. **Theorem 1.3.10:** The following are equivalent (TFAE):

(a) S is countable.

- (b) there is a surjection from \mathbb{N} onto S.
- (c) there is an injection from S into \mathbb{N} .

Proof:

(a) \rightarrow (b) If S is denumerable, there is a bijection between S and N. This is also a surjection. If S is finite there is a bijection from $\mathbb{N}_n = \{1, \ldots, n\}$ to S and a surjection $\psi(k) = \min(k, n)$ from N to \mathbb{N}_n .

(b) \rightarrow (c) Suppose $\psi : \mathbb{N} \rightarrow S$ is onto. Then for every $x \in S$, the set $\psi^{-1}(x) \subset \mathbb{N}$. Let $\varphi(x)$ be the smallest element of this set. This gives a map $S \rightarrow \mathbb{N}$ and it is 1-1 because $x \neq y$ implies the sets $\psi^{-1}(x)$ and $\psi^{-1}(y)$ are disjoint (ψ can't take different values at the same point).

16. Corollary: If S is countable and $f: S \to T$ is onto then T is countable.

16. Theorem 1.3.12: If A_n is a countable set for each n, then $\bigcup_{n=1} \infty A_n$ is countable. Proof: Let $A_n = \{a_1^n, a_2^n, \dots\}$. then $(n, m) \to a_m^n$ is surjective from $\mathbb{N} \times \mathbb{N}$ to $\bigcup A_n$.

17. Theorem 1.3.8: $\mathbb{N} \times \mathbb{N}$ is countable.

Proof:

First show $A = \{(n,m) : n < m\}$ is countable. Define a map $f(n,m) = 2^n + 2^m$ from A to N. We claim this is injective. Suppose $(n,m) \neq (p,q)$. If m = q, then we must have $n \neq q$

$$f(n,m) = 2^{n} + 2^{m} = 2^{n} + 2^{q} \neq 2^{p} + 2^{q} = f(p,q).$$

If $m \neq q$ then we may assume m < q or $m + 1 \leq q$. Then

$$f(n,m) = 2^{n} + 2^{m} < 2^{m+1} \le 2^{q} < 2^{p} + 2^{q} = f(p,q).$$

In both cases, $f(n,m) \neq f(p,q)$, so f is an injection from $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

The set $B = \{(n,m) : n > m\}$ is also countable since it is bijective to A by $(n,m) \to (m,n)$. Finally, $\{(n,m) : n = m\}$ is bijective to \mathbb{N} by $n \to (n,n)$. Thus $\mathbb{N} \times \mathbb{N}$ is a union of three countable sets, hence is countable.

If you known that every integer has a unique factorization into primes, you can make an easier proof using the map $f(n,m) = 2^n \cdot 3^m$.

For a proof of unique factorization, see

https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic

18. Theorem 1.3.11: The set \mathbb{Q} of rational numbers is countable.

Proof: $(n,m) \to n/m$ is surjective from $\mathbb{N} \times \mathbb{N}$ to positive rationals. Negative rationals are bijective positives by $r \to -r$. All rationals are union of two countable sets plus the finite set $\{0\}$.

19. There are uncountable sets. Later we will prove \mathbb{R} is uncountable. The subsets of \mathbb{N} is an uncountable collections.

20. Define power set to be set of all subsets (including empty set). Power set of a finite set with n elements has 2^n elements. So a set and its power sets have different numbers of elements. Sometimes denoted 2^S . What about infinite sets?

21. Theorem 1.3.13 (Cantor's theorem): If A is a set then there is no surjection from A to $\mathcal{P}(A)$, the set of all subsets of A.

Proof: Suppose φ is such a surjection. We will obtain a contradiction.

Let $D = \{a \in A : a \notin \phi(a)\}$. *D* is a subset of *A*, so $D = \phi(b)$ for some $b \in A$. Either $b \in D$ or $b \notin D$. If $b \in D$ then by definition of *D*, we have $b \notin D = \phi(b)$, a contradiction. Thus $b \notin D = \phi(b)$. By definition of *D*, we get $b \in D$, another contradiction.

Therefore there is no b so that $D = \phi(b)$. Hence there is no surjection from A to its power set.

22. There are uncountably many subsets of \mathbb{N} .

They each subset corresponds to a sequence of zeros and ones. These can be associated to real numbers via binary expansions. Later we will use this idea to show \mathbb{R} is uncountable.

23. We say two infinite sets have the same cardinality if there is a bijection between them. Cantor's theorem implies there are an infinite number of different possible infinite cardinalities. Most of mathematics only needs the first few infinities to deal with \mathbb{N} , \mathbb{R} ,... The study of all cardinalities is part of mathematical logic.

The cardinality of \mathbb{R} is sometimes denoted c or "the continuum". More about this later.

Some extra material, if there is time.

23. Theorem: If S is infinite, then there is an injection $f : \mathbb{N} \to S$.

Since S is infinite, it is non-empty so there is some $s_1 \in S$. Let $f(1) = s_1$. Assume we have defined f for $1, \ldots, n$. Since S is infinite $S \setminus \{f(1), \ldots, f(n)\}$ is not empty so there is a point s_{n+1} in this set. Let $f(n+1) = s_{n+1}$. By induction, the set of n's where f is defined is all of N. f is injective because of n < m, then f(m) was chosen not to be $f(1), \ldots, f(m-1)$, so is not f(n).

24. Theorem: A set S is infinite if and only if there is an injection from S to a proper subset of itself.

Proof sketch: If S is finite, there is no such injection by Theorem 1.3.2. If S is infinite, then let $f : \mathbb{N} \to S$ be the injection above. Define a map from S to itself as follows. If x = f(n) for some $n \ge 1$, let h(x) = f(n+1). Otherwise h(x) = x. This is injective, but f(1) is not in the image, so the map is not onto. The range (co-domain) is a proper subset of S.

25. Schröder-Bernstein theorem: if there exist injective functions $f: A \rightarrow B$ and $g: B \rightarrow A$ between the sets A and B, then there exists a bijective function $h: A \rightarrow B$.

See https://en.wikipedia.org/wiki/Schr der-Bernstein_theorem