Answer Key

MAT 320 Fall 2021, Final Exam, 8:00am - 10:45am Tuesday, December 14, 2021

Name			ID		Section
1-20	21	22	23	24	total

THIS EXAM IS WORTH 100 POINTS. THERE ARE 20 TRUE/FALSE QUESTIONS WORTH 2 POINTS EACH, AND 4 PROOFS WORTH 15 POINTS EACH. NO BOOKS OR NOTES ARE ALLOWED. THERE ARE SIX PRINTED PAGES AND TWO BLANK PAGES.

- (1)-(20) TRUE/FALSE: put a T or F in each box.
 - (1) \square A continuous function on \mathbb{R} that only takes rational values must be constant.
 - (2) If f is strictly increasing and continuous on \mathbb{R} , then its inverse f^{-1} is also strictly increasing and continuous.
 - (3) $\boxed{\mathsf{F}}$ There is an increasing function on \mathbb{R} that is discontinuous at every point.
 - (4) If f is differentiable everywhere on [a, b] and f'(x) > 0 everywhere, then f is strictly increasing on [a, b].
 - (5) F If f is differentiable everywhere on [a, b] then f' bounded on [a, b].
 - (6) If f is Riemann integrable on [a, b] and $\int_c^d f = 0$ for every $a \le c < d \le b$, then f is the constant zero function.
 - (7) A countable union of zero length sets also has zero length.
 - (8) If f is Riemann integrable on [a,b] and g is continuous on \mathbb{R} , then $g \circ f$ is Riemann integrable on [a,b].

- (9) If $\{f_n\}$ converges uniformly on [a, b] to a continuous function f on [a, b] then the $\{f_n\}$ are bounded, i.e., there is an $M < \infty$ so that $|f_n(x)| \leq M$ for all $n \in \mathbb{N}$ and all $x \in [a, b]$.
- (10) F If $\{f_n\}$ are Riemann integrable on [a, b] and converge pointwise everywhere on [a, b] to f, then f is Riemann integrable on [a, b].
- (11) If $f_1 \ge f_2 \ge f_3 \ge \dots$ are continuous and converge pointwise everywhere to f, then f is continuous.
- (12) \square If $\sum x_n$ converges, then $\sum x_{2n}$ converges.
- (13) If $\sum y_n$ converges, then $\sum \frac{1}{n} y_n$ also converges.
- (14) $f(x) = \sum_{n=1}^{\infty} n^{-2} \sin(n^2 x) \text{ converges for all } x \in \mathbb{R}.$
- (15) There is a re-arrangement of $\sum_{1}^{\infty} (-1)^{n}/n$ that converges to -2.
- (16) \square Every non-empty open set in \mathbb{R} contains a rational number.
- (17) A set $K \subset \mathbb{R}$ is compact iff it is closed and bounded.
- (18) \vdash Any intersection of open sets in \mathbb{R} is open.
- (19) A non-empty subset of a metric space is always a metric space with the restricted metric.

In problems 21-24, you may use a result from the class or textbook without proof if you name it or quote it correctly.

(21) Suppose (a_n) is a real sequence so that $\sum na_n$ converges. Prove that $\sum a_n$ also converges.

Let $x_n = \frac{1}{n}$

Let yn = nan.

Then { Xn } is moverone and

convergent and Zyn is

convergent so by Abel's Test

(Thm 9.3.5)

Zan = Zhinian = Zxnyn

is convergent, []

(22) Suppose $\{f_n\}$ are continuous functions on a closed, bounded interval [a,b] and $f_1(x) \leq f_2(x) \leq \ldots$ for all $x \in [a,b]$. If f is continuous and $f_n(x) \to f(x)$ for all $x \in [a,b]$ prove that

 $\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f.$

By Dini's theorem (Thm 8.2.6),

fn > f uniformly. Since {fn}, f

are continuous on a bounded

interval they are Riemann integrable

and uniform convergence of

integrable functions implies the

integrable converge, i.e.,

lim Sofn = Sof

how Sofn = Sof

by Theorem 8.2.4. II (goo don't

have to quote the theorem number).

(23) Show that if f, g are both continuous functions on \mathbb{R} , then $\{x : f(x) > g(x)\}$ is an open set.

Since fond g are continuous,

so ar is h = f - g. Then $\{x: f(x) - g(x)\} = \{x: h(x) > 0\}$ $= h^{-1}((o, \infty))$.

Finally, the inverse image of an open set under a continuous function is eas open.

(24) Suppose $A \subset \mathbb{R}$ is closed. Show there is a countable subset $B \subset A$ so that every point of A is the limit point of a sequence in B.

The set of intervals I = (r,s)with rational endpoints is countable, since $Q \times Q$ is countable.

For each such interval I choose a point be I MA if the intersection is non-empty. Let B be the union of chosen points. Clearly B is a countable subset of A.