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MAT 320 Fall 2021, Final Exam, 8:00am - 10:45am Tuesday, De.cember 14, 2021

Name 1D Section

1-20 21 22 23 24 total

THIS EXAM IS WORTH 100 POINTS. THERE ARE 20 TRUE/FALSE QUES-
TIONS WORTH 2 POINTS EACH, AND 4 PROOFS WORTH 15 POINTS
EACH. NO BOOKS OR NOTES ARE ALLOWED. THERE ARE SIX PRINTED
PAGES AND TWO BLANK PAGES.

(1)-(20) TRUE/FALSE: put a T or F in each box.

(1) | 7V | A continuous function on R that only takes rational values must be constant.

(2) | 7\ | If f is strictly increasing and continuous on R, then its inverse f~! is also
strictly increasing and continuous.

g

(3) | ¥ | There is an increasing function on R that is discontinuous at every point.

(4) | TV |If f is differentiable everywhere on [a,b] and f'(z) > 0 everywhere, then f is
strictly increasing on [a, b].

(5) F If f is differentiable everywhere on [a, b] then f’ bounded on [a,d).

(6) b f is Riemann integrable on [a, b] and fcd f=0forevery a < c<d<b,then
f is the constant zero function.

(7) | 7V | A countable union of zero length sets also has zero length.

(8) | "V |If f is Riemann integrable on [a,b] and g is continuous on R, then go f is
Riemann integrable on [a, b].




(9) | ™V |If {fn} converges uniformly on [a,b] to a continuous function f on [a,b] then

the {f»} are bounded, i.e., there is an M < oo so that |fa(z)| < M for all n € N and
all z € [a, b].

(10) | ¥ |If {fa} are Riemann integrable on [a, b] and converge pointwise everywhere on
[a, 0] to f, then f is Riemann integrable on [a,b].

(11) | © |If fy > fo,> f3 > ... are continuous and converge pointwise everywhere to f,
then f is continuous.

12)| T i Y. T, converges, then 3z, converges.

13)| VI > YUn cohverges, then ) 2y, also converges.

14|V f(z) = > o, n~%sin(nz) converges for all z € R.

(15) |7\ | There is a re-arrangement of >7(=1)"/n that converges to —2.

(16) | ~\ | Every non-empty open set in R contains a rational number.

(17) VAset KCRis compact iff it is closed and bounded.

(18) = Any intersection of open sets in R is open.

(19) | =™V | A non-empty subset of a metric space is always a metric space with the
restricted metric.

(20) T d(z,y) = |z — y|? is a metric on R.
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In problems 21-24, you may use a result from the class or textbook without
proof if you name it or quote it correctly.

(21) Suppose (a,) is a real sequence so that >_na, converges. Prove that 3 a, also .

converges.
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(22) Suppose {f,} are continuous functions on a closed, bounded interval [a, b] and fi(z) <

fo(z) < ... for.all z € [a,b]. If f is continuous and fa(z) = f(z) for all z € [a, b]
prove that
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(23) Show that if f, g are both.continuous functions on R, then {z: f(z) > g(z)} is an

open set.
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(24) Suppose A C R is closed. Show there is a countable subset B C A so that Sery
point of A is the hmlt point of a sequence in B.
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