We note that if we reverse the order. then the composition fo g is given by the formula

(Fog)®) =1—x,
but only for those x in the domain D(g) = Vi x = 0). O

We now give the relationship between composite functions and inverse images. The
proof is left as an instructive exercise.

1.1.14 Theorem Letf:A — B and 8:B — C be functions and let H be a subset of C.
Then we have

(gof)™'(H) =7 (¢™\(H)).

Note the reversal in the order of the functions.

Restrictions of Functions

If f:A — B is a function and if A; C A, we can define a function fi: 4, — B by
filx) =f(x) for xecA,.

The function f; is called the restriction of Sfto Ay. Sometimes it is denoted by f1 =flA;.

It may seem strange to the reader that one would ever choose to throw away a part of a
function, but there are some good reasons for doing so. For example, if f : R — R is the
squaring function:

flx) =0 for xek,

then fis not injective, so it cannot have an inverse function. However, if we restrict fto the set
Ay = {x:x >0}, then the restriction flA1 is a bijection of A; onto A,. Therefore, this
restriction has an inverse function, which is the positive square root function. (Sketch a
graph.)

Similarly, the trigonometric functions S(x) := sin x and C(x) := cos x are not injective on
all of R. However, by making suitable restrictions of these functions, one can obtain the inverse
sine and the inverse cosine functions that the reader has undoubtedly already encountered.

Exercises for Section 1.1

1. LetA:={k:keNk<20}, B:={3k—-1 tkeN} andC:= {2k +1:k e N}.
Determine the sets:
(a) AnBNC,
() (ANB)\C,
© (ANC)\B.

2. Draw diagrams to simplify and identify the following sets:
@ A\(B\A),
(b) A\@A\B),
©) AN(B\A).

3. If A and B are sets, show that A C B if and only if ANB =A.
4. Prove the second De Morgan Law [Theorem 1.1.4(b)].

5. Prove the Distributive Laws:
@ AN(BUC)=(ANB)UANC),
(b) AU(BNC) = (AUB)N (A uc).
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The symmetric difference of two sets A and B is the set D of all elements that belong to either A
or B but not both. Represent D with a diagram.

(a) Show that D = (A\B) U (B\A).

(b) Show that D is also given by D = (4 U B)\(A N B).

Foreachn e N, let A, = {(n+ 1)k : k € N}.

(a) Whatis A; NA,?

(b) Determine the sets U{A, : n € N} and N{4, :n € N}.

Draw diagrams in the plane of the Cartesian products A x B for the given sets A and B.

(@ A={xeR:1<x<203<x<4},B={xcR: x=1lorx=2}.

() A={1,2,3},B={xeR:1<x<3}

LetA:=B:={x€R : -1 < x < 1} and consider the subset C := {(x, y) : x2 + 3% = 1} of
A x B. Is this set a function? Explain,

Let f(x} :=1/x*, x#0, x e R.

(a) Determine the direct image f(E) where E:={x€R : 1 <x < 2}

(b) Determine the inverse image f~'(G) where G:= {x € R : 1< x <4}.

Let g(x) = x> and f(x) ;= x + 2 for x € R, and let & be the composite function % ;= gof
{a) Find the direct image /{E) of E:={xc R : 0 < x < 1}.

(b) Find the inverse image & '(G) of G:={x€eR : 0 < x < 43
Letf(x):=x*forx € R,andlet E:= {x e R : -1 < x<0landF:={xeR:0<x<1}.
Show that ENF = {0} and f(ENF) = {0}, while f(E) =f(F)={ycR: 0<y<1}.
Hence f{ EM F) is a proper subset of f(E) N f(F). What happens if 0 is deleted from the sets £
and F?

Letfand E, F be as in Exercise 12. Find the sets E\F and f(E)\ f(f) and show that it is not true

that f( E\F) C f(E)\ f(F).

Show that if f : A — B and E, F arc subsets of A, then f(EUF) = f(E) Uf(F) and

F(ENF) Cf(E)Nf(F).

Show that if f: A — B and G, H are subsets of B, then f ' (GUH) =f ~'(G) Uf ' (H) and

fHenHE) =f G nf\(H).

Show that the function f defined by f(x) :=x/vx2 41, x € R, is a bijection of R onto

fy:-1<y<1}

For a, b € R with @ < b, find an explicit bijection of A :={x:a< x < b} onto

B:={y:0<y<1}h

(a) Give an example of two functions f, g on R to R such that f # g, but such that fo g = gof

(b) Give an example of three functions f, g, 2 on R such that f o(g + h)#fog+foh

(2) Show thatif f: A — B is injective and E C A4, then f ~'(f(E)) = E. Give an example to
show that equality need not hold if £ is not injective.

(b) Show thatiff: A — B is surjective and H C B, then f(f (H)) = H. Give an example to
show that equality need not hold if fis not surjective.

(a) Suppose that fis an injection. Show thatf ™' o f(x) = xforall x € D(f) and that fo £ ~'(y) =y
for all y € R(f).

(b) If fis a bijection of A onto B, show that /™! is a bijection of B onto A.

Prove that if f: A — B is bijective and g : B — C is bijective, then the composite g o f is a

bijective map of A onto C.

Letf: A — Band g: B— C be functions.

(a) Show that if g o fis injective, then fis injective.

(b) Show that if g o fis surjective, then g is surjective.

Prove Theorem 1.1.14.

Letf, g be functions such that (g o f)(x) = x for all x € D(f) and (fog)y)=yforallye D(g).
Prove that g = f ~1.
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[This result can also be proved without using Mathematical Induction. If we let
Swi=1+r+r* 4.4+ then rs, =r+4 5+ 4 5o that

(=7 =5, —rs, =1 — L.
If we divide by 1 — 7, we obtain the stated formula.]

(g) Careless use of the Principle of Mathematical Induction can lead to obviously absurd
conclusions. The reader is invited to find the error in the “proof” of the following assertion.

Claim: If n € N and if the maximum of the natural numbers p and ¢ is n, then p = q.

“Proof.”” Let S be the subset of I for which the claim is true. Evidently, 1 € § since if
7> q € Nand their maximum is 1, then both equal | and so p = ¢. Now assume that k € S and
that the maximum of p and qis k + 1. Then the maximum of £ —land g — 1is k. But since
k€S, thenp — 1 =g — 1 and therefore P =4q.Thus, k + 1 € §, and we conclude that the
assertion is true for all n € N,

(h) There are statements that are true for many natural numbers but that are not true for
all of them.

For example, the formula p (n) := »n® — n + 41 gives a prime number for 57 — L:2% s o
40. However, p(41) is obviously divisible by 41, so it is not a prime number.

Another version of the Principle of Mathematical Induction is sometimes quite useful.
Itis called the “Principle of Strong Induction,” even though it is in fact equivalent to 1.2.2.

1.2.5 Principle of Strong Induction Let S be a subset of N such that

1" 18
(2") For every k € N, ¥{1,2, ..., k}C S, thenk +1€5.
Then § = N,

We will leave it to the reader to establish the equivalence of 1.2.2 and 1.2.5.

Exercises for Section 1.2

L. Prove that 1/1-241/2.3+... + I/n(n+1) =n/(n+1) for all n € N.

2. Provethat 13423 4... p p3 = [%n(n-fl)}zfor all n e N,

3. Provethat 3+ 11+ -+ (82— 5) =412 —n forall n € N.

4. Prove that 1+ 3% 4.  (2n — 1) = (4n* —n)/3 for all n € N,

5. Prove that 12 — 2% 432 ... 4 (=112 — (—1)"™'n(n+1)/2 for all n € N,
6. Prove that n° + 5n is divisible by 6 for all n € N,

7. Prove that 5*" — 1 is divisible by 8 for all 7 & N,

8. Prove that 5 — 4n — 1 is divisible by 16 for all n € .

9. Prove that n* + (n + 1)> + (n + 2)° is divisible by 9 for all n € .

10.  Conjecture a formula for the sum 1/1-34+1/3-5+--.+1/(2n— 1)(2n 4 1), and prove your
conjecture by using Mathematical Induction.

11. Conjecture a formula for the sum of the first 7 odd natural numbers 1+ 3 4 .- 4 (272 — 1), and
prove your formula by using Mathematical Induction.

12, Prove the Principle of Mathematical Induction 1.2.3 (second version).




16 CHAPTER 1 PRELIMINARIES

13. Prove that n < 2" for all n € N,

14. Prove that 27 < pn! foralln > 4, n € N.

15. Prove that 2n —3 < 2" 2 foralln > 5, n € N.

16. Find all natural numbers » such that n? < 2", Prove your assertion.

17. Find the largest natural number m such that n° — n is divisible by m for all n € N. Prove your
assertion.

18. Prove that 1/v/1 4 1/vV2+---+1/yn> yunforalne N, n > 1.

19. Let § be a subset of I such that (a) 2° € § for all k € N, and (b) if k € S and k& > 2, then
k — 1€ S. Prove that § =N.

20. Let the numbers x,, be defined as follows: x; := 1, x5 := 2, and X472 := %(x,ﬁ_] + x,) for all
n € N. Use the Principle of Strong Induction (1.2.5) to show that 1 < x, <2 foralln € N.

Section 1.3 Finite and Infinite Sets

When we count the elements in a set, we say ‘“‘one, two, three, . . . ,”” stopping when we
have exhausted the set. From a mathematical perspective, what we are doing is defining a
bijective mapping between the set and a portion of the set of natural numbers. If the set is
such that the counting does not terminate, such as the set of natural numbers itself, then we
describe the set as being infinite.

The notions of “finite” and “infinite” are extremely primitive, and it is very likely that
the reader has never examined these notions very carefully. In this section we will define
these terms precisely and establish a few basic results and state some other important
results that seem obvious but whose proofs are a bit tricky. These proofs can be found in
Appendix B and can be read later.

1.3.1 Definition (a) The empty set () is said to have O elements.

(b) If n € N, a set S is said to have n elements if there exists a bijection from the set
N,:={l,2,..., n} onto S.

(¢) A set S is said to be finite if it is either empty or it has » elements for some n € N.

(d) A set S is said to be infinite if it is not finite.

Since the inverse of a bijection is a bijection, it is easy to see that a set S has n
clements if and only if there is a bijection from S onto the set {1, 2, ..., n}. Also,
since the composition of two bijections is a bijection, we see that a set $; has »
elements if and only if there is a bijection from S; onto another set S, that has =
elements. Further, a set T is finite if and only if there is a bijection from T; onto
another set 75 that is finite.

It is now necessary to establish some basic properties of finite sets to be sure that the
definitions do not lead to conclusions that conflict with our experience of counting. From
the definitions, it is not entirely clear that a finite set might not have n elements for more
than one value of n. Also it is conceivably possible that the set N := {1, 2, 3....} mightbe
a finite set according to this definition. The reader will be relieved that these possibilities do
not occur, as the next two theorems state. The proofs of these assertions, which use the
fundamental properties of IN described in Section 1.2, are given in Appendix B.

1.3.2 Uniqueness Theorem If § is a finite set, then the number of elements in S is a
unigue number in N.
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Exercises for Section 1.3

2 On LA g

10.

11.

12.
13.

Prove that a nonempty set T} is finite if and only if there is a bijection from T, onto a finite set 75.
Prove parts (b) and (c) of Theorem 1.3.4.

Let $:={1,2} and T:= {a, b, c}.
(a) Determine the number of different injections from S into T.
(b) Determine the number of different surjections from T onto S.

Exhibit a bijection between N and the set of all odd integers greater than 13.
Give an cxplicit definition of the bijection f from I onto Z described in Example 1.3.7(b).
Exhibit a bijection between NN and a proper subset of itself.

Prove that a set T; is denumerable if and only if there is a bijection from T onto a denumerable
set 75.

Give an example of a countable collection of finite sets whose union is not finite.
Prove in detail that if § and T are denumerable, then S U T is denumerable.

(a) If (m, n) is the 6th point down the 9th diagonal of the array in Figure 1.3.1, calculate its
number according to the counting method given for Theorem 1.3.8.
(b) Given that A(m, 3) = 19, find m.

Determine the number of elements in P(S), the collection of all subsets of S, for each of the
following sets:

(a) §:={L 2},

®) 8 =41,2:3)

©) S:=1{1,2,3 4}

Be sure to include the empty set and the set § itself in P(S).

Use Mathematical Induction to prove that if the set S has n elements, then P(S) has 2" elements.
Prove that the collection F{N) of all finite subsets of N is countable.




