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Section 9.2: Tests for Absolute Convergence

8. Raabe’s Test: Let (xn) be a sequence of non-zero reals.
(a) if there are a > 1 and K ∈ N so that n > K implies
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then
∑

xn is absolutely convergent.
(b) if there are a ≤ and K ∈ N so that n > K implies
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then
∑

xn is absolutely convergent.



Proof:

(a) Rearranging, We get

(k − 1)|xk)− k|xk+1| ≥ (a− 1)|xk|.

for k ≥ K. Hence k|xk+1| is decreasing. If we note the left sides telescopes,

(K − 1)|Kk)− n|xn+1| ≥ (a− 1)(|xK| + · · · + |xn|).

This shows the partial sums are bounded, and hence the series
∑

xn
converges absolutely.

(b) The same reasoning shows k|xk+1| is eventually increasing and hence
xn is bounded below by C/n. Since the harmonic series diverges, so does
(xn).



10. Corollary: Assume

a = lim(n(1−
|xn+1|

|xn|
))

exists. If a > 1 then
∑

xn is absolutely convergent, and if a < 1 is it is
not absolutely convergent.

Proof: Suppose the limit exists and is > 1. If 1 < a1 < a then a1 <
n(1 − |xn+1/xn|) for sufficiently large n, so |xn+1/xn| < 1 − a1/n and
Raabe’s test applies.

If a < 1, the argument is similar.



Section 9.3: Test for Non-absolute Convergence

1. Defn: A non-zero series (xn) is alternating if the xn+1 has the
opposite sign to xn.

2. Alternating Series Test: If (zn) decreases to 0 then the alternating
series

∑

(−1)nzn converges.



Proof: Note that

s2n = (z1 − z2) + . . . (z2n−1 − z2n),

is increasing and bounded above by

s2n = z1 − (z2 − z3) + · · · − z2n ≤ z1

Hence the even partial sums converge to a limit L by the Monotone con-
vergence theorem.

A similar argument show the odd partial sums are decreasing and bounded,
so converge to some M . But

|s2n − s2n+1| = |z2n+1| → 0

so the two sequence have the same limit, hence the whole sequence con-
verges.



3. Abel’s lemma: Let (xn), (yn) be sequences in R and let sn =
∑n

k=1 yk, with s0 = 0. If m > n, then

m
∑

k=n+1

xkyk = (xnsn − xn+1sn) +

m−1
∑

k=n+1

(xk − xk+1)sk.

Proof: Since yk = sk − sk−1, the left side is
m
∑

k=n+1

xk(sk − sk−1)

= (xn+1sn+1 − xn+1sn) + (xn+2sn+2 − xn+2sn+1) +

. . . (xmsm − xmsm−1),

which is the right hand side.



4. Dirichlet’s Test: If (xn) decreases to 0 and if the partial sums (sn)
of

∑

yn are bounded, then
∑

xnyn is convergent.

Proof: Suppose |sn| ≤ B. Since xk − xk+1 ≥ 0,

|

m
∑

k=n+1

xkyk| ≤ (xm + xn+1)B +

m−1
∑

k=n+1

(xk − xk+1)B

= (xm + xn+1)B + B

m−1
∑

k=n+1

(xk − xk+1)

≤ B[(xm + xn+1) + (xn+1 − xm)]

= 2xn+1B.

Since xn → 0, the series satisfies the Cauchy criterion and converges.

Special case is alternating series yn = (−1)n.



5. Example: recall

sinα cos β =
1

2
(sin(α + β)− sin(β − α)).

Hence

2 sin(
x

2
)(cos kx) = sin(k +

1

2
)x− sin(k −

1

2
)x,

2 sin(
x

2
)(cos x + · · · + cosnx) = sin(n +

1

2
)x− sin

x

2
,

implies

| cos x + · · · + cosnx| ≤
1

sin(x/2)
,

so if an decreases to 0,
∑

an cos(nx)

converges for x 6= 2πn. Similar result for
∑

an sinnx.



Section 9.4: Series of functions.

1. Defn: If (fn) is a sequence of functions, let (sn) denote the sequence
of partial sums

sn(x) = f1(x) + · · · + fn(x).

If the partial sums converge (pointwise) to f we say
∑

fn converges to f .

2. Define absolutely convergent or uniformly convergent in obvious way.



3. Theorem 9.4.2: If (fn) are all continuous and converge uniformly to
f , then f is continuous.

3. Theorem 9.4.3: If (fn) are all Riemann integrable on J = [a, b] and
∑

fn converges uniformly to f , then
∫

f =
∑

∫

fn.



3. Theorem 9.4.4: If (fn) are all differentiable on J = [a, b], that
∑

fn
converges at some point of J and that

∑

f ′n converges uniformly on J .
Then there is a f so that f −

∑

fn and f ′ =
∑

f ′n.



4. Theorem 9.4.5: If (fn) are functions D → R. The series
∑

fn is
uniformly convergent iff for all ǫ > 0 there is a M so that n > M implies

|fn+1(x) + · · · + fm(x)| < ǫ,

for all x ∈ D.

This is just the Cauchy criteria for uniform convergence.

This is just the Cauchy criteria for uniform convergence.



5. Weierstrass M-test: LetMn be real numbers so that |fn(x)| ≤ Mn

for all x ∈ D. If
∑

Mn converges, then
∑

fn is uniformly convergent.



6. Defn: a power series around c ∈ R is a series of the form
∞
∑

n=0

an(x− c)n.

Most common case is c = 0.



7. A power series may converge only at c, on an interval (c− r, c + r) or
on all on R.The limit of a convergent power series is called analytic.



8. Define
ρ = lim sup |an|

1/n.

The radius of convergence is R = 0 if ρ = ∞, 1/ρ if 0 < ρ < ∞ and
R = ∞ if ρ = 0.



9. Cauchy-Hadamard: If R is the radius of convergence of a power
series

∑

anx
n, then the series is absolutely convergent for |x| < R and

divergent for |x| > R.



10. All behaviors possible on boundary
∑

xn,
∑ 1

n
x2,

∑ 1

n2
xn.



11. Theorem 9.4.10: If
∑

anx
n has radius on convergence R then it

converges uniformly on any closed, bounded interval K ⊂ (−R,R).



12. Theorem 9.4.11: The limit of a power series is continuous on its
interval of convergence. On any closed bounded subinterval, it can be
integrated term-by-term .



13. Theorem 9.4.12: The limit of a power series is differentiable on its
open interval of convergence. If f (x) =

∑

anxn then

f ′(x) =
∑

nanx
n−1.

and both functions have the same radius of convergence.



14. Theorem 9.4.13: If
∑

anxn and
∑

bnxn converge to the same
function on the same interval (−r, r), then an = bn for all n.

Proof: by above an = f (n)(0)/n! = bn.



15. If f has infinitely many derivatives, its Taylor series is given by
∞
∑

n=0

f (n)(c)

n!
(x− c)n.

If a power series converges to f it is the Taylor series of f .

But, just because a function is infinitely differentiable, its Taylor series
need not converge to it. If the Taylor series of f does converge to f , then
f is called analytic.

It is possible the Taylor series converges to the “wrong” function.



16. Examples:

sin x =

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1

cos x =

∞
∑

n=0

(−1)n

(2n)!
x2n

exp x =

∞
∑

n=0

1

n!
xn



17. The Fourier series associated to f on [−π, π] is

a0 +

∞
∑

n=1

an cos(nx) + bn sin(nx),

where

a0 =
1

2π

∫ π

−π
f (x)dx,

an =
1

π

∫ π

−π
f (x) cos(nx)dx,

bn =
1

π

∫ π

−π
f (x) sin(nx)dx.



Fourier series of continuous function need not converge to f everywhere.

Famous (and hard) theorem of Lennart Carleson says it does converge to
f except on set of zero length.

If f is “nice”, e.g., Lipschitz or Hölder, then Fourier series does converge
to f everywhere.

Study of Fourier series is vast topic. Many, many generalizations.










