MIDTERM 2
MAT 141
Name
Sec.
11/17/00

ID number

1	2	3	4	total

THIS EXAM IS WORTH 40 POINTS. PUT ALL ANSWERS IN THE SPACE PROVIDED. YOU MAY USE THE BACKS OF PAGES FOR SCRATCH WORK.

1. ($\mathbf{1} \mathbf{~ p t ~ e a c h , ~} \mathbf{2 0} \mathbf{~ p t s ~ t o t a l) ~ P l a c e ~ t h e ~ l e t t e r ~ c o r r e s p o n d i n g ~ t o ~ t h e ~ c o r r e c t ~ a n s w e r ~ i n ~ t h e ~ b o x ~}$ next to each question. Each correct answer is worth 2 points.
(i) \square Suppose $f(x)=x^{4}+x^{3}+1$. Then f has
(a) an absolute maximum at $x=0$ (b) an absolute minimum at $x=0$ (c) a local minimum at $x=3 / 4(\mathrm{~d})$ an absolute minimum at $x=-3 / 4(\mathrm{e})$ a local minumum at $x=0(\mathbf{f})$ none of these.
(ii)
 Suppose f, g, h are graphed on the left below. Which of the following is a possible relationship based on the graphs?
(a) $g=f^{\prime}, h=g^{\prime}$
(b) $g=h^{\prime}, f=g^{\prime}$
(c) $f=g^{\prime}, h=f^{\prime}$
(d) $f=h^{\prime}, g=f^{\prime}$
(e) $h=f^{\prime}$, $g=h^{\prime}(\mathbf{f}) h=g^{\prime}, f=h^{\prime}$

(iii) \square Suppose f is graphed on the right above. If we use Newton's method with initial guess $x_{0}=3$, then our next guess with be approximately $x_{1}=$
(a) 9 (b) 7 (c) 6 (d) 4 (e) 3 (f) 1
(iv) \square Suppose f has values given by the following table. What is the derivative of $h(x)=f^{2}(2 x)$ at $x=2$?

x	0	1	2	3	4
$f(x)$	2	3	5	4	4
$f^{\prime}(x)$	0	2	-1	-1	1

(a) -4 (b)
8 (c) 12
(d) 16
(e) 20 (f) none of these.
(v) \qquad What is the slope of the curve given by $x^{2}-x y+y^{2}=7$ at the point $(x, y)=$
(a) 1 (b) $\frac{4}{5}$
(c) $\frac{3}{4}$
(d) $0(e) \frac{6}{5}(\mathbf{f})$ none of these.
(vi) \qquad
(a) $\frac{d y}{d x}=\frac{-2 x y}{x^{2}+1}$
(b) $\frac{d y}{d x}=\frac{2 x y}{x^{2}-1}$
(c) $\frac{d y}{d x}=\frac{x y}{2 y+x^{2}}$
(d) $\frac{d y}{d x}=\frac{-2 x y}{y+x}$
(e) $\frac{d y}{d x}=(1-2 x y)\left(x^{2}-1\right)$
(f) none of these.
(vii) \square Suppose we try to find roots of $x^{3}-x-2=0$ by Newton's method using the intial guess $x_{0}=1$. The next guess with be
(a) $x_{1}=0$
(b) $x_{1}=1.5$
(c) $x_{1}=2$
(d) $x_{1}=3$
(e) $x_{1}=-1$
(f) none of these.
(viii) \square Suppose $f(x)=\frac{1}{x}-3$. Then the recursion formula in Newton's method is
(a) $x_{n+1}=x_{n}-3$ (b) $x_{n+1}=2 x_{n}-3 x_{n}^{2}$ (c) $x_{n+1}=x_{n}+3 x_{n}^{2}$ (d) $x_{n+1}=x_{n}-x_{n}^{2}$ (e) $x_{n+1}=x_{n}-3 / x_{n}^{2}$ (f) none of these.
(ix)
 Suppose $f^{\prime}(x)=x^{2}+\sin ^{2}(x)$. Then on $(-\infty, \infty) f$ is
(a) concave up (b) concave down (c) increasing (d) decreasing (e) constant (f) none of these.
(x)
 Suppose f is as graphed on the left below. The set of critical points of f is
(a) $\{2,4\}$
(b) $\{2,7\}$ (c) $\{4,6\}$
(d) $\{2,4,6,7\}$
(e) $\{0,2,4,6,7,10\}$ (f) none of these.

(xi)
 Suppose g^{\prime} is graphed on the right above. Then g is increasing and concave up on the interval
(a) $[0,1]$
(b) $[1,3]$
(c) $[3,5]$
(d) $[5,6]$
(e) $[6,9]$
(f) none of these.
(xii) \square Suppose g^{\prime} is graphed on ther right above. The local maximum(s) of g (excluding endpoints) are exactly
(a) 1,9
(b) 5
(c) 3
(d) 1
(e) 6 (f) none of these.
(xiii)
 Suppose g^{\prime} is graphed on the right above. The inflection points of g are exactly (a) 1,9 (b) 1 (c) 3,6 (d) 5 (e) $1,5,9$ (f) none of these.
(xiv) \qquad Find the linearization of $f(x)=x^{2}+x$ at $x=1$.
(a) $L(x)=3 x$ (b) $L(x)=(x-1)$ (c)
(d) $L(x)=2 x+1$ $L(x)=3(x-1)+2(\mathbf{f})$ none of these.
(xv) \qquad Use differentials to estimate the change in the volume of a cube $S=x^{3}$ when the edge length goes from x_{0} to $x_{0}+d x$
(a) $3 x_{0}^{2} d x$
(b) $6 x_{0} d x$
(c) $12 x_{0}^{2} d x$
(d) $3 d x$
(e) $3 x_{0} d x$ (f) none of these.
(xvi)
 The solution of the inital value problem $\frac{d y}{d x}=\cos (x)+1, y(\pi)=0$ is
(a) $y=\sin (x)+1$ (b) $y=\sin (x)+x$ (c) $y=\sin (x)+x-\pi$ (d) $y=\sin (x)+x+\pi$ (e) $y=\sin (x)+\pi(\mathbf{f})$ none of these.
(xvii)
 Suppose $f^{\prime}(x)=1-\sin ^{10}(x)$. Then on the interval $\left[0, \frac{1}{2} \pi\right]$ the function f is (a) increasing and concave down (b) increasing and concave up (c) decreasing and concave down (d) decreasing and concave up (e) constant (f) none of these.
(xviii) \square What is the name of the following result: "Suppose f is continuous on $[a, b]$, differentiable on (a, b) and $f(a)=f(b)=0$. Then there is a point $c \in(a, b)$ such that $f^{\prime}(c)=0$."
(a) The intermediate value theorem (b) Green's theorem (c) Rolle's theorem (d) The mean value theorem (e) The min-max theorem (f) none of these.
(xix) \square The function $f(x)=x^{3}+3 x^{2}-3 x+1$ has a point of inflection at $x=$?
$\begin{aligned} & \text { (a) }-2 \text { (b) }-1 \text { (c) } 0 \text { (d) } 1 \text { (e) } 2 \text { (f) none of these. }\end{aligned}$
(xx) \square Use the linearization of $x^{1 / 3}$ at $x=27$ to approximate $29^{1 / 3}$.
(a) $3 \frac{1}{3}$
(b) $3 \frac{1}{2}$
(c) $3 \frac{7}{12}$
(d) $3 \frac{2}{27}$
(e) $3 \frac{5}{6}$ (f) none of these.
2. (2 pts each, 10 pts total) Find each of the following indefinite integrals
(i) $\int\left(x^{3}-x^{2}+2\right) d x$, \square
(ii) $\int \sec ^{2}(x) d x$,

(iii) $\int(3 x+2)^{9} d x$,

(iv) $\int \sin ^{4}(t) \cos (t) d t$,

(v) $\int 6 \sin ^{2}\left(t^{2}\right) \cos \left(t^{2}\right) t d t d t$,
3. (5 pts) The coordinates of a particle in the $x y$-plane are differentiable functions of time t satisfying $d x / d t=-1 m / \sec$ and $d y / d t=5 \mathrm{~m} / \mathrm{sec}$. How fast is the particle's distance to the origin changing as it passes through the point $(x, y)=(5,12)$?
4. (5 pts) Your company can manufacture x hundred grade A tires and y hundred grade B tires a day where $0 \leq x \leq 4$ and

$$
y=\frac{42-10 x}{5-x}
$$

Your profit on grade A tires is twice the profit on grade B tires. Find the most profitable number of each kind of tire to make.

