MIDTERM 2
MAT 142
11/11/05 \square Sec.

ID number
TA's name

1	2	3	4	5	total

THIS EXAM IS WORTH 50 POINTS. PUT ALL ANSWERS IN THE SPACE PROVIDED. NO NOTES OR CALCULATORS ALLOWED.

1. (Part A, $\mathbf{6} \mathbf{p t s}$) Put the letter of the slope field in the box of the corresponding equation. All slope fields are graphed on $[-2,2] \times[-2,2]$.

A

i.

iii.

v. \square $y^{\prime}=(-2 x y) /\left(1+x^{2}\right)$
ii.
 $y^{\prime}=y(1-y)$
iv. \square $y^{\prime}=e^{x-y}$
vi. \square $y^{\prime}=\sin (3 x)$
(Part B, 4 pts) Match each differential equation to the corresponding solution.
i.

iii. \square $\sin (x)$
A $y^{\prime}+y=e^{x}$
C $x y^{\prime}=2 y$
ii.

iv. \square
B $y^{\prime \prime}=\left(2+4 x^{2}\right) y$
D $y^{\prime \prime}=-y$
2. (2 pts each, 10 pts total) Put a 'C' (for converges) or ' D ' (for diverges) in the box next to each infinite series and explain why this is correct using tests from the textbook.
(a) \square $\sum_{n=1}^{\infty} \frac{1}{n+10}$
(b) \square $\sum_{n=1}^{\infty} \frac{n}{1+n^{3}}$
(c) \square $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{n \sqrt{n}}$
(d) \square $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{n}}$
\square $\sum_{n=1}^{\infty} a_{n}$, where $a_{1}=1$ and $a_{n+1}=\frac{1}{2}\left(a_{n}+1\right)$ for $n>1$.
3. ($\mathbf{1 0} \mathbf{~ p t s}, 2 \mathrm{pts}$ each) Evaluate each of the following infinite series. Put the final answer in the box and show your work below.
(a) $\sum_{n=1}^{\infty} 3^{n} 4^{1-n}=\square$
(b) $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}=$ \square
(c) $1+\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\ldots=$ \square
(d) $\sum_{n=0}^{\infty} \sin ^{n}(x)=\square$
(e) $\sum_{n=1}^{\infty}\left(1+(-1)^{n}\right) 2^{-n}=$ \square
4. (10pts; 2pts each) Solve each of the following differential equations.
(a) $\frac{d y}{d x}=e^{x-y}$
(b) $\frac{d y}{d x}=2 x \sqrt{1-y^{2}}, \quad|y|<1$
(c) $\frac{d y}{d x}=\left(1+y^{2}\right) e^{x}, \quad y(0)=0$
(d) $e^{x} \frac{d y}{d x}+2 e^{x} y=1$
(e) $x \frac{d y}{d x}=x^{2}+3 y$ with $y(1)=1, x>0$
5. (5 pts each, 10 pts total) Do TWO of the following problems (your choice). Put a mark in the box next to the two problems you want to be graded.
(a) \square A tank contains 100 gallons of fresh water. A solution containing $1 \mathrm{lb} / \mathrm{gal}$ of soluble fertilizer runs into the tank at a rate of $1 \mathrm{gal} / \mathrm{min}$ and the well stirred mixture is drawn from the tank at a rate of $3 \mathrm{gal} / \mathrm{min}$. Find the amount of fertilizer in the tank as a function of time.
(b) \square Suppose Euler's method with $n=100$ is applied to the differential equation $\frac{d y}{d x}=x+y$ with initial condition $y(0)=1$ to estimate $y(1)$. Is the resulting estimate y_{100} larger or smaller than the actual value $y(1)$ of the real solution? Explain why.
(c) \square If $\left\{a_{n}\right\}$ is a positive sequence and if $\sum_{n=1}^{\infty} a_{n}$ converges then prove that $\sum_{n=1}^{\infty}\left(a_{n}\right)^{2}$ also converges.
(d) \square Does the improper integral $\int_{1}^{\infty} \frac{|\sin x|}{x} d x$ diverge or converge? Justify your answer.

