MIDTERM 2 MAT 142 11/11/05	Name	Name			
ID number TA's name					
1	2	3	4	5	total

THIS EXAM IS WORTH 50 POINTS. PUT ALL ANSWERS IN THE SPACE PROVIDED. NO NOTES OR CALCULATORS ALLOWED.

1. (Part A, 6 pts) Put the letter of the slope field in the box of the corresponding equation. All slope fields are graphed on $[-2, 2] \times [-2, 2]$.

2. (2 pts each, 10 pts total) Put a 'C' (for converges) or 'D' (for diverges) in the box next to each infinite series and explain why this is correct using tests from the textbook.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n+10}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n}{1+n^3}$$

(c)
$$\sum_{n=1}^{\infty} \frac{\sin^2(n)}{n\sqrt{n}}$$

(d)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^n}$$

(e)
$$\sum_{n=1}^{\infty} a_n$$
, where $a_1 = 1$ and $a_{n+1} = \frac{1}{2}(a_n + 1)$ for $n > 1$.

3. (10 pts, 2 pts each) Evaluate each of the following infinite series. Put the final answer in the box and show your work below.

(a)
$$\sum_{n=1}^{\infty} 3^n 4^{1-n} =$$

(b)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} =$$

(c)
$$1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots =$$

(d)
$$\sum_{n=0}^{\infty} \sin^n(x) =$$

(e)
$$\sum_{n=1}^{\infty} (1 + (-1)^n) 2^{-n} =$$

4. (10pts; 2pts each) Solve each of the following differential equations.

(a)
$$\frac{dy}{dx} = e^{x-y}$$

(b)
$$\frac{dy}{dx} = 2x\sqrt{1-y^2}, \quad |y| < 1$$

(c)
$$\frac{dy}{dx} = (1+y^2)e^x$$
, $y(0) = 0$

(d)
$$e^x \frac{dy}{dx} + 2e^x y = 1$$

(e)
$$x\frac{dy}{dx} = x^2 + 3y$$
 with $y(1) = 1, x > 0$

- 5. (5 pts each, 10 pts total) Do TWO of the following problems (your choice). Put a mark in the box next to the two problems you want to be graded.
 - (a) A tank contains 100 gallons of fresh water. A solution containing 1 lb/gal of soluble fertilizer runs into the tank at a rate of 1 gal/min and the well stirred mixture is drawn from the tank at a rate of 3 gal/min. Find the amount of fertilizer in the tank as a function of time.
 - (b) Suppose Euler's method with n = 100 is applied to the differential equation $\frac{dy}{dx} = x + y$ with initial condition y(0) = 1 to estimate y(1). Is the resulting estimate y_{100} larger or smaller than the actual value y(1) of the real solution? Explain why.
 - (c) If $\{a_n\}$ is a positive sequence and if $\sum_{n=1}^{\infty} a_n$ converges then prove that $\sum_{n=1}^{\infty} (a_n)^2$ also converges.
 - (d) Does the improper integral $\int_1^\infty \frac{|\sin x|}{x} dx$ diverge or converge? Justify your answer.