MIDTERM 1
MAT 141
10/13/00
Name
Sec.

ID number

1	2	3	4	total

THIS EXAM IS WORTH 40 POINTS. PUT ALL ANSWERS IN THE SPACE PROVIDED. YOU MAY USE THE BACKS OF PAGES FOR SCRATCH WORK.

1. ($\mathbf{1} \mathbf{~ p t ~ e a c h , ~} \mathbf{2 0} \mathbf{~ p t s ~ t o t a l) ~ P l a c e ~ t h e ~ l e t t e r ~ c o r r e s p o n d i n g ~ t o ~ t h e ~ c o r r e c t ~ a n s w e r ~ i n ~ t h e ~ b o x ~}$ next to each question. Each correct answer is worth 2 points.
(i) \square Suppose $a<0$ and $b>0$. Then which of the following must be true?
(a) $a b>0$
(b) $a-b>0$ (c) $b-a>0$
(d) $b^{2}-a^{2}>0$ (e) $a^{2}+b^{2}<0$ (f) none of these.
(ii)
 Suppose f is a linear function such that $f(1)=-1$ and $f(3)=2$. Then $f(4)=$?
(a) 3
(b) $3 \frac{1}{3}$
(c) $3 \frac{2}{3}$
(d) $3 \frac{1}{2}$
(e) $3 \frac{3}{4}(\mathbf{f})$ none of these.
(iii)

Which interval is the solution of $|x-2|<3$?
(a) $(0,3)$
(b) $[-1,3]$
(c) $(-2,5)$
(d) $[0,5]$
(e) $(-1,5)(f)$ none of these.
(iv)

(v)
 What is $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$?
(a) 1
(b) 2 (c) 3
(d) $4(e) \infty$
(f) none of these.
(vi)
 What is the natural domain of $\sqrt{x^{2}-\frac{1}{x}}$? (a) $x>0$ (b) $-1<x<1$ (c) $x>1$ (d) $x \geq 1$ and $x<0$ (e) $-1<x<0$ and $0<x<1$ (f) none of these.
(vii)
 Suppose that for all $C>0$ there is a $\epsilon>0$ so that $|x|<\epsilon$ implies $f(x)>C$. Then (a) $\lim _{x \rightarrow 0} f(x)=+\infty$ (b) $\lim _{x \rightarrow+\infty} f(x)=0$ (c) $\lim _{x \rightarrow+\infty} f(x)=1$ (d) $\lim _{x \rightarrow+\infty} f(x)=$ $+\infty$ (e) $\lim _{x \rightarrow 0} f(x)=0$. (f) none of these.
(viii)
 The derivative of g at x is defined to be
(a) $\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{x}$
(b) $\lim _{h \rightarrow 0} \frac{g(h)-g(x)}{x+h}$
(c) $\lim _{h \rightarrow 0} \frac{g(x-h)-g(x)}{h}$
(d) $\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}$
(e) $\lim _{h \rightarrow 0} \frac{g(x+h)+g(x)}{h}$
(f) none of these.
(ix) \qquad Which of the following is true?
(a) If f has a limit at x_{0} it is continuous at x_{0}. (b) If the left and right limits exist at x_{0} then the limit exists at x_{0}. (c) If f is continuous at x_{0} it has a limit at x_{0}. (d) If f is continuous at x_{0} then it is differentiable at x_{0}. (e) If f is continuous at x_{0} it is continuous on an interval around x_{0}. (f) none of these.
(x) \square Suppose f is continuous on the real line and $f(0)=0$ and $f(10)=2$. Then which of the following must be true?
(a) f attains a maximum which is >2. (b) f takes the value 1 somewhere between 0 and 10. (c) f is increasing between 0 and 10 . (d) f takes its maximum value between 0 and 10. (e) f is never negative. (f) none of these.
(xi) \square The derivative of $f(x)=x^{2}+x^{3}$ at $x=2$ is (a) 12 (b) 13 (c) 14 (d) 15 (e) 16 (f) none of these.
(xii) \square A car drives 30 miles at 60 mph and then another 50 miles at 50 mph . What is the average speed for the entire trip?
(a) 50 mph
(b) $52 \frac{1}{2} \mathrm{mph}$ (c) $53 \frac{1}{3} \mathrm{mph}$
(d) $55 \mathrm{mph}(\mathrm{e}) 57 \mathrm{mph}(\mathbf{f})$ none of these.
(xiii) \square List every point a between 0 and 6 in the graph on the left below where $\lim _{x \rightarrow a} f(x)$ does not exist (standard definition of finite limit)
(a) $1,2,3,5$
(b) $1,3,5$
(c) 3,5
(d) 2,5
(e) 1,5 (f) none of these.
(xiv) \square Consider the graph on the left below. At what points does the function fail to be continuous? (a) $1,2,3,5$ (b) $1,3,5$ (c) 3,5 (d) 2,5 (e) 1,5 (f) none of these.

(xv) \square What is the relationship between f and g in the graph on right above?
(a) $g(x)=f(x-1)+2$ (b) $g(x)=f(x-2)+1$ (c) $g(x)=f(x+2)-1$ (d) $g(x)=f(x+1)-2(\mathbf{e}) g(x)=f(x-2)-1$ (f) none of these.
(xvi) \square Let $f(x)=\left|x^{2}-1\right|$. Then
(a) f is differentiable everywhere (b) f is not differentiable at $x=0$ (c) f is not differentiable at $x=-1$ and $x=1$ (d) f is not differentiable anywhere (e) f is not differentiable between -1 and 1 (f) none of these.
(xvii)

(a) $1+2 x h^{\prime}(x)$
(b) $2 x h^{\prime}(x)\left(1+h^{\prime}(x)\right)$
(c) $2 x h(x)\left(h(x)+x h^{\prime}(x)\right)$
(d) $h(x)+x h^{\prime}(x)(\mathrm{e})$ $2 x h(x)\left(1+x h^{\prime}(x)\right)(\mathbf{f})$ none of these.
(xviii) \qquad A dynamite blast blows a heavy rock straight up with an initial velocity of $160 \mathrm{ft} / \mathrm{sec}$. How high does the rock go (in feet)?
(a) 100
(b) 200 (c) 300
(d) 400 (e) $500(f)$ none of these.
(xix) \square On planet X a ball dropped from rest falls 36 meters in 2 seconds. The acceleration due to gravity is
(a) $36 \mathrm{~m} / \mathrm{sec}^{2}$
(b) $18 \mathrm{~m} / \mathrm{sec}^{2}$
(c) $6 \mathrm{~m} / \mathrm{sec}^{2}$
(d) $\sqrt{18} \mathrm{~m} / \mathrm{sec}^{2}$
(e) $3 \mathrm{~m} / \mathrm{sec}^{2}$
(f) none of these.
(xx) \square Which of the following satisfies $f^{\prime}(0)<0$?
(a)

(b)
\qquad
(c)

(d)

(e)

(f)

2. ($\mathbf{2} \mathrm{pts}$ each, $\mathbf{1 0} \mathrm{pts}$ total) For each of the following functions, find the derivative function.
(i) $f(x)=x^{6}+x^{2 / 3}+x^{-2}$,

$$
\frac{d}{d x} f(x)=
$$

(ii) $f(x)=x^{3} \cos (x)$,

$$
\frac{d}{d x} f(x)=
$$

(iii) $f(x)=\sin \left(x^{2}+\tan (x)\right)$,
$\frac{d}{d x} f(x)=$
(iv) $f(x)=\left(x^{2}-1\right) /(x-1)$,

$$
\frac{d}{d x} f(x)=
$$

(v) $f(x)=A \cos (B x+C)$, $\frac{d}{d x} f(x)=$
3. (5 pts) Compute the derivative of $f(x)=1 / x$ at $x=a \neq 0$ using only the limit definition of derivative.
4. (5 pts) Suppose that the functions f and g are defined on an open interval I containing the point x_{0}, that f is differentiable at x_{0}, that $f\left(x_{0}\right)=0$ and that g is is continuous at x_{0}. Show the product $f g$ is differentiable at x_{0}.

