FINAL MAT 141 12/22/00	Name	Sec.	
ID number			

1	2	3	4	5	6	total

THIS EXAM IS WORTH 80 POINTS. PUT ALL ANSWERS IN THE SPACE PROVIDED. YOU MAY USE THE BACKS OF PAGES FOR SCRATCH WORK.

- 1. (2 pt each, 40 pts total) Place the letter corresponding to the correct answer in the box next to each question. Each correct answer is worth 2 points.
 - (i) The function $f(x) = x^2 x + 1$ is (a) never negative (b) always negative (c) always increasing (d) always decreasing (e) concave down (f) none of these.
 - (ii) What is the maximum value of $f(x) = x 2x^4$? (a) 3/16 (b) 3/8 (c) 1/8 (d) 1/4 (e) 1/2 (f) none of these.
 - (iii) If a ball is dropped from 64 feet up, how fast is it going when it hits the ground (assume constant acceleration of 32ft/sec²)? (a) 16ft/sec (b) 32ft/sec (c) 48ft/sec (d) 56ft/sec (e) 64ft/sec (f) none of these.
 - (iv) Find the slope of $y^2 + x^2 = y^4 2x$ at the point (-2, 1) (a) 2 (b) 1 (c) 0 (d) -1 (e) -2 (f) none of these.
 - (v) The definition of f'(x) is (a) $\lim_{h\to 0} \frac{f(x+h)-f(h)}{h}$ (b) $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ (c) $\lim_{x\to 0} \frac{f(x+h)-f(x)}{h}$ (d) $\lim_{h\to x} \frac{f(x+h)-f(x)}{h}$ (e) $\lim_{h\to 0} \frac{f(x+h)-f(x)}{x}$ (f) none of these.
 - (vi) Suppose $g(t) = (x^2 + \sin(x))^3$. Then $g'(t) = (\mathbf{a}) \ 3(2x + \cos(x))^2$ (b) $3(x^2 \cos(x))^2(2x + \sin(x))$ (c) $(x^2 + \sin(x))^3(2x + \cos(x))$ (d) $3(x^2 + \sin(x))^2(2x + \cos(x))$ (e) $3(x^2 + \sin(x))^2(2x - \cos(x))$ (f) none of these.
 - (vii) The base of a solid is the region in the first quadrant between the line y = x and the curve $y = 2\sqrt{x}$. The cross sections (perpendicular to the *x*-axis) of the solid are squares whose bases stretch from the line to the curve. The volume of the solid is (a) $\int_0^4 \frac{1}{2}(x 2\sqrt{x})^2 dx$ (b) $\int_0^4 (x 2\sqrt{x})^2 dx$ (c) $\int_0^2 (x 2\sqrt{x})^2 dx$ (d) $\int_0^4 \frac{1}{2}(x 2\sqrt{x}) dx$ (e) $\int_0^2 (x 2\sqrt{x})^2 dx$ (f) none of these.

(viii) Suppose
$$\int_0^{f(x)} t^2 dt = x^2$$
. Then $f(x) =$ (a) x (b) $3^{1/3} x^{2/3}$ (c) x^2 (d) $2x^2$ (e) $x^{-2/3}$ (f) none of these.

(ix) Suppose
$$G(x) = \int_0^x \cos(t^2) dt$$
. Then $G''(x) =$ (a) $\sin^2(x)$ (b) $\cos(x^2) 2x$ (c) $-2x \sin(x^2)$ (d) $\cos(x) 2x$ (e) $-\sin(x) 2x$ (f) none of these.

(x) Find the equation of the curve in the xy-plane that passes through the point (1,3) if its slope at x is always $3x^2 + 2$. (a) $y = x^3 + 2x$ (b) y = 5 (c) $y = 3x^2 - 2$ (d) $y = x^3 + 2x - 4$ (e) x = -1 (f) none of these.

- (xi) If $f(x) = x^3 3x$ then the iterative formula for Newton's method becomes $x_{n+1} =$ (a) $x_n - x_n^3 - 3x_n$ (b) $x_n/(3x_n - 3)$ (c) $x_n - (x_n^3 - 3x_n)/(3x_n^2 - 3)$ (d) $x_n - (3x_n^2 - 3)/(x_n^3 - 3x_n)$ (e) $x_n - 3x_n^2 + 3$ (f) none of these.
- (xii) Suppose $\int_{1}^{2} f(t)dt = 1$. Then $\int_{2}^{4} f(t/2)dt =$ (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) none of these.
- (xiii) The error formula for the left hand sum with n subintervals (for monotonic functions) is $E \leq (b-a)|f(b) f(a)|/n$. Using this formula, what is the minimum n needed to compute $\int_0^4 \sqrt{x^2 + 2x} + 1dx$ with error $\leq .001$? (a) 2000 (b) 20,000 (c) 1,600 (d) 16,000 (e) 400 (f) 4,000

(xiv) Solve the initial value problem $y' = \sec^2(t)$ and $y(\frac{\pi}{4}) = 2$ (a) $y = \tan(t) - 1$ (b) $y = \cos^2(t) - 1/\sqrt{2}$ (c) $y = \tan(t) + 1$ (d) $y = \sin(1/t)$ (e) $y = \tan(t) + 1$ (f) none of these.

(xv) Simpson's approximation for $\int_0^{\pi} \sin(x) dx$ with n = 6 is (recall $y_k = f(x_k)$ where $x_k = a + k(b-a)/n$) (a) $\frac{\pi}{6}[0 + 4\sin(\frac{\pi}{6}) + 2\sin(\frac{\pi}{3}) + 4\sin(\frac{\pi}{2}) + 2\sin(\frac{2\pi}{3}) + 4\sin(\frac{5\pi}{6}) + 0]$ (b) $\frac{\pi}{18}[0 + 4\sin(\frac{\pi}{6}) + 2\sin(\frac{\pi}{3}) + 4\sin(\frac{\pi}{2}) + 2\sin(\frac{2\pi}{3}) + 4\sin(\frac{5\pi}{6}) + 0]$ (c) $\frac{\pi}{18}[0 + 2\sin(\frac{\pi}{6}) + 4\sin(\frac{\pi}{3}) + 2\sin(\frac{\pi}{2}) + 4\sin(\frac{2\pi}{3}) + 2\sin(\frac{5\pi}{6}) + 0]$ (d) $\frac{\pi}{6}[0 + 2\sin(\frac{\pi}{6}) + 2\sin(\frac{\pi}{3}) + 2\sin(\frac{\pi}{2}) + 2\sin(\frac{2\pi}{3}) + 2\sin(\frac{5\pi}{6}) + 0]$ (e) $\frac{\pi}{6}[0 + \sin(\frac{\pi}{6}) + \sin(\frac{\pi}{3}) + \sin(\frac{\pi}{2}) + \sin(\frac{2\pi}{3}) + \sin(\frac{5\pi}{6}) + 0]$ (f) none of these.

(xvi) Let
$$F(t) = \int_0^t (1 + \sin^4(x))(1 - x)dx$$
 Then F takes its maximum value at
(a) 1 (b) 0 (c) $\pi/2$ (d) π (e) 2π (f) none of these.
(xvii) Find the left hand sum approximation for $\int_{-1}^1 x^3$ with $n = 4$.
(a) 1 (b) 1/2 (c) 0 (d) $-1/4$ (e) $-1/2$ (f) none of these.
(xviii) $E = \frac{1}{12}(b-a)^3 \frac{1}{n^2}M$ is the error term for (a) left hand sums (b) right hand sums
(c) Simpson's rule (d) trapezoid rule (e) Calvaleri's rule (f) none of these.

2. (1 pt each, 5 pts total) Compute the derivative of the following functions.

(i)
$$f(x) = x^{1/2} + x^{-1/2}$$
,

Г

$$\frac{d}{dx}f(x) =$$

(ii)
$$f(x) = (1+x^3)\sin(x),$$
 $\frac{d}{dx}f(x) =$

(iii)
$$f(x) = \cos(x)/x$$
, $\frac{d}{dx}f(x) =$

(iv)
$$f(x) = \tan(x^2),$$
 $\frac{d}{dx}f(x) =$

(v)
$$f(x) = \sin^2(x) + \cos^2(x), \qquad \frac{d}{dx}f(x) =$$

- 3. (2 pts each, 10 pts total) Find each of the following definite integrals (you need not simplify answers)
 - (i) $\int_{-1}^{1} (2x^4 x^2 2) dx$,

(ii) $\int_0^{\pi/4} \sin(2x) dx$,

(iii) $\int_0^1 (x^2 + 3)^5 x dx$,

(iv) $\int_0^\pi \sin^2(t) \cos(t) dt$,

(v) $\int_0^\pi \frac{\cos^2(x) - \sin^2(x)}{\cos(x) + \sin(x)} dx,$

- 4. (3 pts each; 9 pts total) In each of the following, give the answer as a definite integral. You SHOULD NOT evaluate the integral.
 - (i) The region bounded by $y = x^3$, y = 0 and x = 1 is rotated around the x-axis to give a region in 3-space. Find the volume of the region.

(ii) The region $0 \le y \le x^2 + \sin(x)$ with $1 \le x \le 2$ is rotated around the *y*-axis to give a region in 3-space. Find the volume of the region.

(iii) Find the arclength of the graph of $y = \sin(x)$ between x = 0 and $x = \pi$.

- 5. (3 pts each, 6 pts total) Evalute the following limits.
 - (i) $\lim_{a\to\infty} \int_1^a \frac{1}{x^3} dx$.

(ii) $\lim_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} (\frac{k}{n})^2$ (Hint: use an integral)

6. (10 pts) A rocket in space starts at rest and is accelerated at 8 m/sec^2 for 100 seconds, coasts without acceleration for 50 seconds and then is accelerated at 16 m/sec^2 for 50 seconds after which it coasts without acceleration.

Remember that acceleration is the derivative of velocity and that velocity is the derivative of position.

- (i) (3 pts) On the first graph, draw the rocket's velocity as a function of time as exactly as possible.
- (ii) (3 pts) On the second graph, sketch the distance traveled as a function of time. (Note, the vertical units are kilometers = 1000 meters).
- (iii) (2 pts) When is the speed of the rocket 1200 m/sec?
- (iv) (2 pts) When will the rocket be 500 kilometers from it starting point?

