SAMPLE MIDTERM 1, MAT 141 First midterm is Fri. Oct 13, in regular room and time

- 1. Place the letter corresponding to the correct answer in the box next to each question.
 - (i) Suppose 0 < a < b < c. Then which of the following must be true? (a) a + b < c (b) $a^2 + b^2 = c^2$ (c) $a^2 + b^2 < c^2$ (d) a(b+c) < c(a+b) (e) a b < a c (f) none of these.
 - (ii) What is the equation of the line passing through the points (-2, 4) and (1, 1)?

 (a) y 1 = -(x 1) (b) y + 1 = -(x 1) (c) y 4 = -(x 2) (d) y + 4 = (x + 2) (e) y = -x 2 (f) none of these.
 - (iii) Suppose that for all B > 0 there is a C > 0 so that x > C implies f(x) > B. Then (a) $\lim_{x\to 0} f(x) = +\infty$ (b) $\lim_{x\to +\infty} f(x) = 0$ (c) $\lim_{x\to +\infty} f(x) = 1$ (d) $\lim_{x\to +\infty} f(x) = +\infty$ (e) $\lim_{x\to 0} f(x) = 0$. (f) none of these.
 - (iv) Consider a right triangle with an angle θ , opposite side x and adjacent side 1. What is $\cos(\theta)$?

 (a) $1/\sqrt{1+x^2}$ (b) $1/\sqrt{1-x^2}$ (c) $\sqrt{1+x^2}$ (d) $x/\sqrt{1+x^2}$ (e) $x/\sqrt{1-x^2}$ (f) none of these
 - (v) The derivative of $xh(x^2)$ is (a) $1+2xh'(x^2)$ (b) $h'(x^2)2x$ (c) $2x+xh'(x^2)$ (d) $xh(x^2)+x^2h'(x)$ (e) $h(x^2)+2x^2h'(x)$ (f) none of these.
 - (vi) The derivative of $f(x) = x^2 + x^3$ at x = 2 is **(a)** 12 **(b)** 13 **(c)** 14 **(d)** 15 **(e)** 16 **(f)** none of these.
 - (vii) The natural domain of $f(x) = \frac{\sqrt{x+5}}{x}$ is

 (a) all real numbers (b) x > 0 (c) x < -5 (d) $-5 \le x < 0$ or 0 < x (e) $x \le 0$ or x > 5 (f) none of these.
 - (viii) Suppose f(1) = 3.4 and f(1.1) = 3.6. Then the best estimate for f'(1) is (a) 3.5 (b) 3.4 (c) 2.0 (d) 20 (e) .2 (f) .002
 - (ix) A ball dropped from rest takes 3 seconds to hit the ground. From what height was it droped (in feet)?

 (a) 48 (b) 90 (c) 144 (d) 256 (e) 288 (f) none of these
 - (x) What is the limit of $\frac{x^2 + \cos x}{2x^2 + x + \sin x}$ as $x \to \infty$?

 (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) 2 (e) ∞ (f) the limit fails to exist

- 2. Evaluate each of the following limits or explain why it does not exist.
 - (i) $\lim_{x\to 1} \frac{x^2-1}{x+1}$
 - (ii) $\lim_{x\to 0} \frac{(2-x)^2-4}{x}$
 - (iii) $\lim_{s\to\infty} \frac{s}{s+1}$
 - (iv) $\lim_{h\to 0} \frac{|2-h|}{h}$
 - (v) $\lim_{t\to 0} t \sin(\frac{1}{t})$
- 3. For each of the following functions, find the derivative function.
 - (i) $x^{10} + x^{1/2}$
 - (ii) tan(x)
 - (iii) $x^2 \sin(x)$
 - (iv) $\cos(x^2)$
 - $(v) (\cos(x) + \sin(x))^3$
- 4. What are the following limits (you do not need to justify your answer),

$$\lim_{x \to 0} \frac{\sin x}{x} = \boxed{\qquad} \qquad \lim_{x \to 0} \frac{\cos x - 1}{x} = \boxed{\qquad}$$

Using these, the quotient definition of derivative and addition law for cosines,

$$\cos(x+h) = \cos(x)\cos(h) - \sin(x)\sin(h),$$

prove that $\frac{d}{dx}\cos x = -\sin x$.

- 5. State and prove the product rule for derivatives.
- 6. Suppose f satisfies the following two conditions for all real values of x and y.
 - (i) f(x+y) = f(x)f(y)
 - (ii) f(x) = 1 + xg(x) where $\lim_{x\to 0} g(x) = 1$.

Show that f is differentiable at every point and that f'(x) = f(x).