
3.6 | Numerical Integration

Learning Objectives
3.6.1 Approximate the value of a definite integral by using the midpoint and trapezoidal rules.

3.6.2 Determine the absolute and relative error in using a numerical integration technique.

3.6.3 Estimate the absolute and relative error using an error-bound formula.

3.6.4 Recognize when the midpoint and trapezoidal rules over- or underestimate the true value
of an integral.

3.6.5 Use Simpson’s rule to approximate the value of a definite integral to a given accuracy.

The antiderivatives of many functions either cannot be expressed or cannot be expressed easily in closed form (that is,
in terms of known functions). Consequently, rather than evaluate definite integrals of these functions directly, we resort
to various techniques of numerical integration to approximate their values. In this section we explore several of these
techniques. In addition, we examine the process of estimating the error in using these techniques.

The Midpoint Rule
Earlier in this text we defined the definite integral of a function over an interval as the limit of Riemann sums. In general,

any Riemann sum of a function f (x) over an interval [a, b] may be viewed as an estimate of ∫
a

b
f (x)dx. Recall that a

Riemann sum of a function f (x) over an interval [a, b] is obtained by selecting a partition

P = {x0, x1, x2 ,…, xn}, where a = x0 < x1 < x2 < ⋯ < xn = b

and a set

S = ⎧

⎩
⎨x1* , x2* ,…, xn*

⎫

⎭
⎬, where xi − 1 ≤ xi* ≤ xi for all i.

The Riemann sum corresponding to the partition P and the set S is given by ∑
i = 1

n
f (xi* )Δxi, where Δxi = xi − xi − 1,

the length of the ith subinterval.

The midpoint rule for estimating a definite integral uses a Riemann sum with subintervals of equal width and the midpoints,
mi, of each subinterval in place of xi* . Formally, we state a theorem regarding the convergence of the midpoint rule as

follows.

Theorem 3.3: The Midpoint Rule

Assume that f (x) is continuous on ⎡
⎣a, b⎤

⎦. Let n be a positive integer and Δx = b − a
n . If ⎡

⎣a, b⎤
⎦ is divided into n

subintervals, each of length Δx, and mi is the midpoint of the ith subinterval, set

(3.10)
Mn = ∑

i = 1

n
f (mi)Δx.

Then limn → ∞Mn = ∫
a

b
f (x)dx.

As we can see in Figure 3.13, if f (x) ≥ 0 over [a, b], then ∑
i = 1

n
f (mi)Δx corresponds to the sum of the areas of

rectangles approximating the area between the graph of f (x) and the x-axis over ⎡
⎣a, b⎤

⎦. The graph shows the rectangles

corresponding to M4 for a nonnegative function over a closed interval [a, b].
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Figure 3.13 The midpoint rule approximates the area between
the graph of f (x) and the x-axis by summing the areas of

rectangles with midpoints that are points on f (x).

Example 3.39

Using the Midpoint Rule with M4

Use the midpoint rule to estimate ∫
0

1
x2 dx using four subintervals. Compare the result with the actual value of

this integral.

Solution

Each subinterval has length Δx = 1 − 0
4 = 1

4. Therefore, the subintervals consist of

⎡
⎣0, 1

4
⎤
⎦,

⎡
⎣
1
4, 1

2
⎤
⎦,

⎡
⎣
1
2, 3

4
⎤
⎦, and ⎡

⎣
3
4, 1⎤

⎦.

The midpoints of these subintervals are
⎧

⎩
⎨1
8, 3

8, 5
8, 7

8
⎫

⎭
⎬. Thus,

M4 = 1
4 f ⎛

⎝
1
8

⎞
⎠ + 1

4 f ⎛
⎝
3
8

⎞
⎠ + 1

4 f ⎛
⎝
5
8

⎞
⎠ + 1

4 f ⎛
⎝
7
8

⎞
⎠ = 1

4 · 1
64 + 1

4 · 9
64 + 1

4 · 25
64 + 1

4 · 21
64 = 21

64.

Since

∫
0

1
x2 dx = 1

3 and |13 − 21
64| = 1

192 ≈ 0.0052,

we see that the midpoint rule produces an estimate that is somewhat close to the actual value of the definite
integral.

Example 3.40

Using the Midpoint Rule with M6

Use M6 to estimate the length of the curve y = 1
2x2 on [1, 4].
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Solution

The length of y = 1
2x2 on [1, 4] is

∫
1

4
1 + ⎛

⎝
dy
dx

⎞
⎠

2
dx.

Since
dy
dx = x, this integral becomes ∫

1

4
1 + x2dx.

If [1, 4] is divided into six subintervals, then each subinterval has length Δx = 4 − 1
6 = 1

2 and the midpoints

of the subintervals are
⎧

⎩
⎨5
4, 7

4, 9
4, 11

4 , 13
4 , 15

4
⎫

⎭
⎬. If we set f (x) = 1 + x2,

M6 = 1
2 f ⎛

⎝
5
4

⎞
⎠ + 1

2 f ⎛
⎝
7
4

⎞
⎠ + 1

2 f ⎛
⎝
9
4

⎞
⎠ + 1

2 f ⎛
⎝
11
4

⎞
⎠ + 1

2 f ⎛
⎝
13
4

⎞
⎠ + 1

2 f ⎛
⎝
15
4

⎞
⎠

≈ 1
2(1.6008 + 2.0156 + 2.4622 + 2.9262 + 3.4004 + 3.8810) = 8.1431.

Use the midpoint rule with n = 2 to estimate ∫
1

2
1
xdx.

The Trapezoidal Rule
We can also approximate the value of a definite integral by using trapezoids rather than rectangles. In Figure 3.14, the area
beneath the curve is approximated by trapezoids rather than by rectangles.

Figure 3.14 Trapezoids may be used to approximate the area
under a curve, hence approximating the definite integral.

The trapezoidal rule for estimating definite integrals uses trapezoids rather than rectangles to approximate the area under
a curve. To gain insight into the final form of the rule, consider the trapezoids shown in Figure 3.14. We assume that the
length of each subinterval is given by Δx. First, recall that the area of a trapezoid with a height of h and bases of length

b1 and b2 is given by Area = 1
2h(b1 + b2). We see that the first trapezoid has a height Δx and parallel bases of length

f (x0) and f (x1). Thus, the area of the first trapezoid in Figure 3.14 is

1
2Δx( f (x0) + f (x1)).

The areas of the remaining three trapezoids are

318 Chapter 3 | Techniques of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



1
2Δx( f (x1) + f (x2)), 1

2Δx( f (x2) + f (x3)), and 1
2Δx( f (x3) + f (x4)).

Consequently,

∫
a

b
f (x)dx ≈ 1

2Δx( f (x0) + f (x1)) + 1
2Δx( f (x1) + f (x2)) + 1

2Δx( f (x2) + f (x3)) + 1
2Δx( f (x3) + f (x4)).

After taking out a common factor of 1
2Δx and combining like terms, we have

∫
a

b
f (x)dx ≈ 1

2Δx⎛
⎝ f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + f (x4)⎞

⎠.

Generalizing, we formally state the following rule.

Theorem 3.4: The Trapezoidal Rule

Assume that f (x) is continuous over ⎡
⎣a, b⎤

⎦. Let n be a positive integer and Δx = b − a
n . Let ⎡

⎣a, b⎤
⎦ be divided into

n subintervals, each of length Δx, with endpoints at P = ⎧

⎩
⎨x0, x1, x2 …, xn

⎫

⎭
⎬. Set

(3.11)Tn = 1
2Δx⎛

⎝ f (x0) + 2 f (x1) + 2 f (x2) + ⋯ + 2 f (xn − 1) + f (xn)⎞
⎠.

Then, lim
n → +∞

Tn = ∫
a

b
f (x)dx.

Before continuing, let’s make a few observations about the trapezoidal rule. First of all, it is useful to note that

Tn = 1
2(Ln + Rn) where Ln = ∑

i = 1

n
f (xi − 1)Δx and Rn = ∑

i = 1

n
f (xi)Δx.

That is, Ln and Rn approximate the integral using the left-hand and right-hand endpoints of each subinterval, respectively.

In addition, a careful examination of Figure 3.15 leads us to make the following observations about using the trapezoidal
rules and midpoint rules to estimate the definite integral of a nonnegative function. The trapezoidal rule tends to
overestimate the value of a definite integral systematically over intervals where the function is concave up and to
underestimate the value of a definite integral systematically over intervals where the function is concave down. On the other
hand, the midpoint rule tends to average out these errors somewhat by partially overestimating and partially underestimating
the value of the definite integral over these same types of intervals. This leads us to hypothesize that, in general, the
midpoint rule tends to be more accurate than the trapezoidal rule.

Figure 3.15 The trapezoidal rule tends to be less accurate than the midpoint rule.
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Example 3.41

Using the Trapezoidal Rule

Use the trapezoidal rule to estimate ∫
0

1
x2 dx using four subintervals.

Solution

The endpoints of the subintervals consist of elements of the set P =
⎧

⎩
⎨0, 1

4, 1
2, 3

4, 1
⎫

⎭
⎬ and Δx = 1 − 0

4 = 1
4.

Thus,

∫
0

1
x2 dx ≈ 1

2 · 1
4

⎛
⎝ f (0) + 2 f ⎛

⎝
1
4

⎞
⎠ + 2 f ⎛

⎝
1
2

⎞
⎠ + 2 f ⎛

⎝
3
4

⎞
⎠ + f (1)⎞

⎠

= 1
8

⎛
⎝0 + 2 · 1

16 + 2 · 1
4 + 2 · 9

16 + 1⎞
⎠

= 11
32.

Use the trapezoidal rule with n = 2 to estimate ∫
1

2
1
xdx.

Absolute and Relative Error
An important aspect of using these numerical approximation rules consists of calculating the error in using them for
estimating the value of a definite integral. We first need to define absolute error and relative error.

Definition

If B is our estimate of some quantity having an actual value of A, then the absolute error is given by |A − B|. The

relative error is the error as a percentage of the absolute value and is given by |A − B
A | = |A − B

A | · 100%.

Example 3.42

Calculating Error in the Midpoint Rule

Calculate the absolute and relative error in the estimate of ∫
0

1
x2 dx using the midpoint rule, found in Example

3.39.

Solution

The calculated value is ∫
0

1
x2 dx = 1

3 and our estimate from the example is M4 = 21
64. Thus, the absolute error

is given by |⎛⎝1
3

⎞
⎠ − ⎛

⎝
21
64

⎞
⎠| = 1

192 ≈ 0.0052. The relative error is
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1/192
1/3 = 1

64 ≈ 0.015625 ≈ 1.6%.

Example 3.43

Calculating Error in the Trapezoidal Rule

Calculate the absolute and relative error in the estimate of ∫
0

1
x2 dx using the trapezoidal rule, found in

Example 3.41.

Solution

The calculated value is ∫
0

1
x2 dx = 1

3 and our estimate from the example is T4 = 11
32. Thus, the absolute error

is given by |13 − 11
32| = 1

96 ≈ 0.0104. The relative error is given by

1/96
1/3 = 0.03125 ≈ 3.1%.

In an earlier checkpoint, we estimated ∫
1

2
1
xdx to be 24

35 using T2. The actual value of this integral is

ln2. Using 24
35 ≈ 0.6857 and ln2 ≈ 0.6931, calculate the absolute error and the relative error.

In the two previous examples, we were able to compare our estimate of an integral with the actual value of the integral;
however, we do not typically have this luxury. In general, if we are approximating an integral, we are doing so because we
cannot compute the exact value of the integral itself easily. Therefore, it is often helpful to be able to determine an upper
bound for the error in an approximation of an integral. The following theorem provides error bounds for the midpoint and
trapezoidal rules. The theorem is stated without proof.

Theorem 3.5: Error Bounds for the Midpoint and Trapezoidal Rules

Let f (x) be a continuous function over ⎡
⎣a, b⎤

⎦, having a second derivative f ″(x) over this interval. If M is the

maximum value of | f ″(x)| over [a, b], then the upper bounds for the error in using Mn and Tn to estimate

∫
a

b
f (x)dx are

(3.12)
Error in Mn ≤ M(b − a)3

24n2

and

(3.13)
Error in Tn ≤ M(b − a)3

12n2 .
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We can use these bounds to determine the value of n necessary to guarantee that the error in an estimate is less than a

specified value.

Example 3.44

Determining the Number of Intervals to Use

What value of n should be used to guarantee that an estimate of ∫
0

1
ex2

dx is accurate to within 0.01 if we use

the midpoint rule?

Solution

We begin by determining the value of M, the maximum value of | f ″(x)| over [0, 1] for f (x) = ex2
. Since

f ′ (x) = 2xex2
, we have

f ″ (x) = 2ex2
+ 4x2 ex2

.

Thus,

| f ″(x)| = 2ex2 ⎛
⎝1 + 2x2⎞

⎠ ≤ 2 · e · 3 = 6e.

From the error-bound Equation 3.12, we have

Error in Mn ≤ M(b − a)3

24n2 ≤ 6e(1 − 0)3

24n2 = 6e
24n2.

Now we solve the following inequality for n:

6e
24n2 ≤ 0.01.

Thus, n ≥ 600e
24 ≈ 8.24. Since n must be an integer satisfying this inequality, a choice of n = 9 would

guarantee that |∫0

1
ex2

dx − Mn| < 0.01.

Analysis
We might have been tempted to round 8.24 down and choose n = 8, but this would be incorrect because we

must have an integer greater than or equal to 8.24. We need to keep in mind that the error estimates provide an

upper bound only for the error. The actual estimate may, in fact, be a much better approximation than is indicated
by the error bound.

Use Equation 3.13 to find an upper bound for the error in using M4 to estimate ∫
0

1
x2 dx.

Simpson’s Rule
With the midpoint rule, we estimated areas of regions under curves by using rectangles. In a sense, we approximated the
curve with piecewise constant functions. With the trapezoidal rule, we approximated the curve by using piecewise linear
functions. What if we were, instead, to approximate a curve using piecewise quadratic functions? With Simpson’s rule,
we do just this. We partition the interval into an even number of subintervals, each of equal width. Over the first pair
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of subintervals we approximate ∫
x0

x2
f (x)dx with ∫

x0

x2
p(x)dx, where p(x) = Ax2 + Bx + C is the quadratic function

passing through (x0, f (x0)), (x1, f (x1)), and (x2, f (x2)) (Figure 3.16). Over the next pair of subintervals we

approximate ∫
x2

x4
f (x)dx with the integral of another quadratic function passing through (x2, f (x2)), (x3, f (x3)), and

(x4, f (x4)). This process is continued with each successive pair of subintervals.

Figure 3.16 With Simpson’s rule, we approximate a definite integral by integrating a piecewise quadratic function.

To understand the formula that we obtain for Simpson’s rule, we begin by deriving a formula for this approximation over
the first two subintervals. As we go through the derivation, we need to keep in mind the following relationships:

f (x0) = p(x0) = Ax0
2 + Bx0 + C

f (x1) = p(x1) = Ax1
2 + Bx1 + C

f (x2) = p(x2) = Ax2
2 + Bx2 + C

x2 − x0 = 2Δx, where Δx is the length of a subinterval.

x2 + x0 = 2x1, since x1 = (x2 + x0)
2 .

Thus,
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∫
x0

x2
f (x)dx ≈ ∫

x0

x2
p(x)dx

= ∫
x0

x2
(Ax2 + Bx + C)dx

= A
3 x3 + B

2 x2 + Cx|x2
x0

Find the antiderivative.

= A
3

⎛
⎝x2

3 − x0
3⎞

⎠ + B
2

⎛
⎝x2

2 − x0
2⎞

⎠ + C(x2 − x0) Evaluate the antiderivative.

= A
3 (x2 − x0)⎛

⎝x2
2 + x2 x0 + x0

2⎞
⎠

+ B
2 (x2 − x0)(x2 + x0) + C(x2 − x0)

= x2 − x0
6

⎛
⎝2A⎛

⎝x2
2 + x2 x0 + x0

2⎞
⎠ + 3B(x2 + x0) + 6C⎞

⎠ Factor out x2 − x0
6 .

= Δx
3

⎛
⎝
⎛
⎝Ax2

2 + Bx2 + C⎞
⎠ + (Ax0

2 + Bx0 + C⎞
⎠

+A⎛
⎝x2

2 + 2x2 x0 + x0
2⎞

⎠ + 2B(x2 + x0) + 4C)

= Δx
3

⎛
⎝ f (x2) + f (x0) + A(x2 + x0)2 + 2B(x2 + x0) + 4C⎞

⎠ Rearrange the terms.

Factor and substitute.
f (x2) = Ax0

2 + Bx0 + C and

f (x0) = Ax0
2 + Bx0 + C.

= Δx
3

⎛
⎝ f (x2) + f (x0) + A⎛

⎝2x1
⎞
⎠
2 + 2B⎛

⎝2x1
⎞
⎠ + 4C⎞

⎠ Substitute x2 + x0 = 2x1.

= Δx
3

⎛
⎝ f (x2) + 4 f (x1) + f (x0)⎞

⎠.
Expand and substitute

f (x1) = Ax1
2 + Bx1 +.

If we approximate ∫
x2

x4
f (x)dx using the same method, we see that we have

∫
x0

x4
f (x)dx ≈ Δx

3
⎛
⎝ f (x4) + 4 f (x3) + f (x2)⎞

⎠.

Combining these two approximations, we get

∫
x0

x4
f (x)dx = Δx

3
⎛
⎝ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)⎞

⎠.

The pattern continues as we add pairs of subintervals to our approximation. The general rule may be stated as follows.

Theorem 3.6: Simpson’s Rule

Assume that f (x) is continuous over ⎡
⎣a, b⎤

⎦. Let n be a positive even integer and Δx = b − a
n . Let ⎡

⎣a, b⎤
⎦ be divided

into n subintervals, each of length Δx, with endpoints at P = ⎧

⎩
⎨x0, x1, x2 ,…, xn

⎫

⎭
⎬. Set

(3.14)Sn = Δx
3

⎛
⎝ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + ⋯ + 2 f (xn − 2) + 4 f (xn − 1) + f (xn)⎞

⎠.

Then,

lim
n → +∞

Sn = ∫
a

b
f (x)dx.

Just as the trapezoidal rule is the average of the left-hand and right-hand rules for estimating definite integrals, Simpson’s
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rule may be obtained from the midpoint and trapezoidal rules by using a weighted average. It can be shown that

S2n = ⎛
⎝
2
3

⎞
⎠Mn + ⎛

⎝
1
3

⎞
⎠Tn.

It is also possible to put a bound on the error when using Simpson’s rule to approximate a definite integral. The bound in
the error is given by the following rule:

Rule: Error Bound for Simpson’s Rule

Let f (x) be a continuous function over [a, b] having a fourth derivative, f (4)(x), over this interval. If M is the

maximum value of | f (4)(x)| over [a, b], then the upper bound for the error in using Sn to estimate ∫
a

b
f (x)dx is

given by

(3.15)
Error in Sn ≤ M(b − a)5

180n4 .

Example 3.45

Applying Simpson’s Rule 1

Use S2 to approximate ∫
0

1
x3 dx. Estimate a bound for the error in S2.

Solution

Since [0, 1] is divided into two intervals, each subinterval has length Δx = 1 − 0
2 = 1

2. The endpoints of these

subintervals are
⎧

⎩
⎨0, 1

2, 1
⎫

⎭
⎬. If we set f (x) = x3, then

S4 = 1
3 · 1

2
⎛
⎝ f (0) + 4 f ⎛

⎝
1
2

⎞
⎠ + f (1)⎞

⎠ = 1
6

⎛
⎝0 + 4 · 1

8 + 1⎞
⎠ = 1

4. Since f (4) (x) = 0 and consequently M = 0, we

see that

Error in S2 ≤ 0(1)5

180 ⋅ 24 = 0.

This bound indicates that the value obtained through Simpson’s rule is exact. A quick check will verify that, in

fact, ∫
0

1
x3 dx = 1

4.

Example 3.46

Applying Simpson’s Rule 2

Use S6 to estimate the length of the curve y = 1
2x2 over [1, 4].

Solution
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The length of y = 1
2x2 over [1, 4] is ∫

1

4
1 + x2dx. If we divide [1, 4] into six subintervals, then each

subinterval has length Δx = 4 − 1
6 = 1

2, and the endpoints of the subintervals are
⎧

⎩
⎨1, 3

2, 2, 5
2, 3, 7

2, 4
⎫

⎭
⎬.

Setting f (x) = 1 + x2,

S6 = 1
3 · 1

2
⎛
⎝ f (1) + 4 f ⎛

⎝
3
2

⎞
⎠ + 2 f (2) + 4 f ⎛

⎝
5
2

⎞
⎠ + 2 f (3) + 4 f ⎛

⎝
7
2

⎞
⎠ + f (4)⎞

⎠.

After substituting, we have

S6 = 1
6(1.4142 + 4 · 1.80278 + 2 · 2.23607 + 4 · 2.69258 + 2 · 3.16228 + 4 · 3.64005 + 4.12311)

≈ 8.14594.

Use S2 to estimate ∫
1

2
1
xdx.

326 Chapter 3 | Techniques of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



3.6 EXERCISES
Approximate the following integrals using either the
midpoint rule, trapezoidal rule, or Simpson’s rule as
indicated. (Round answers to three decimal places.)

299. ∫
1

2
dx
x ; trapezoidal rule; n = 5

300. ∫
0

3
4 + x3dx; trapezoidal rule; n = 6

301. ∫
0

3
4 + x3dx; Simpson’s rule; n = 3

302. ∫
0

12
x2 dx; midpoint rule; n = 6

303. ∫
0

1
sin2 (πx)dx; midpoint rule; n = 3

304. Use the midpoint rule with eight subdivisions to

estimate ∫
2

4
x2 dx.

305. Use the trapezoidal rule with four subdivisions to

estimate ∫
2

4
x2 dx.

306. Find the exact value of ∫
2

4
x2 dx. Find the error

of approximation between the exact value and the value
calculated using the trapezoidal rule with four subdivisions.
Draw a graph to illustrate.

Approximate the integral to three decimal places using the
indicated rule.

307. ∫
0

1
sin2 (πx)dx; trapezoidal rule; n = 6

308. ∫
0

3
1

1 + x3dx; trapezoidal rule; n = 6

309. ∫
0

3
1

1 + x3dx; Simpson’s rule; n = 3

310. ∫
0

0.8
e−x2

dx; trapezoidal rule; n = 4

311. ∫
0

0.8
e−x2

dx; Simpson’s rule; n = 4

312. ∫
0

0.4
sin(x2)dx; trapezoidal rule; n = 4

313. ∫
0

0.4
sin(x2)dx; Simpson’s rule; n = 4

314. ∫
0.1

0.5
cosx

x dx; trapezoidal rule; n = 4

315. ∫
0.1

0.5
cosx

x dx; Simpson’s rule; n = 4

316. Evaluate ∫
0

1
dx

1 + x2 exactly and show that the result

is π/4. Then, find the approximate value of the integral

using the trapezoidal rule with n = 4 subdivisions. Use the

result to approximate the value of π.

317. Approximate ∫
2

4
1

lnxdx using the midpoint rule

with four subdivisions to four decimal places.

318. Approximate ∫
2

4
1

ln xdx using the trapezoidal rule

with eight subdivisions to four decimal places.

319. Use the trapezoidal rule with four subdivisions to

estimate ∫
0

0.8
x3 dx to four decimal places.

320. Use the trapezoidal rule with four subdivisions to

estimate ∫
0

0.8
x3 dx. Compare this value with the exact

value and find the error estimate.

321. Using Simpson’s rule with four subdivisions, find

∫
0

π/2
cos(x)dx.

322. Show that the exact value of ∫
0

1
xe−x dx = 1 − 2

e .

Find the absolute error if you approximate the integral
using the midpoint rule with 16 subdivisions.

323. Given ∫
0

1
xe−x dx = 1 − 2

e , use the trapezoidal

rule with 16 subdivisions to approximate the integral and
find the absolute error.
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324. Find an upper bound for the error in estimating

∫
0

3
(5x + 4)dx using the trapezoidal rule with six steps.

325. Find an upper bound for the error in estimating

∫
4

5
1

(x − 1)2dx using the trapezoidal rule with seven

subdivisions.

326. Find an upper bound for the error in estimating

∫
0

3
(6x2 − 1)dx using Simpson’s rule with n = 10 steps.

327. Find an upper bound for the error in estimating

∫
2

5
1

x − 1dx using Simpson’s rule with n = 10 steps.

328. Find an upper bound for the error in estimating

∫
0

π
2xcos(x)dx using Simpson’s rule with four steps.

329. Estimate the minimum number of subintervals

needed to approximate the integral ∫
1

4
⎛
⎝5x2 + 8⎞

⎠dx with

an error magnitude of less than 0.0001 using the trapezoidal
rule.

330. Determine a value of n such that the trapezoidal rule

will approximate ∫
0

1
1 + x2dx with an error of no more

than 0.01.

331. Estimate the minimum number of subintervals

needed to approximate the integral ∫
2

3
⎛
⎝2x3 + 4x⎞

⎠dx with

an error of magnitude less than 0.0001 using the trapezoidal
rule.

332. Estimate the minimum number of subintervals

needed to approximate the integral ∫
3

4
1

(x − 1)2dx with an

error magnitude of less than 0.0001 using the trapezoidal
rule.

333. Use Simpson’s rule with four subdivisions to
approximate the area under the probability density function

y = 1
2π

e−x2/2 from x = 0 to x = 0.4.

334. Use Simpson’s rule with n = 14 to approximate (to

three decimal places) the area of the region bounded by the
graphs of y = 0, x = 0, and x = π/2.

335. The length of one arch of the curve y = 3sin(2x) is

given by L = ∫
0

π/2
1 + 36cos2(2x)dx. Estimate L using

the trapezoidal rule with n = 6.

336. The length of the ellipse
x = acos(t), y = bsin(t), 0 ≤ t ≤ 2π is given by

L = 4a∫
0

π/2
1 − e2 cos2(t)dt, where e is the

eccentricity of the ellipse. Use Simpson’s rule with n = 6
subdivisions to estimate the length of the ellipse when
a = 2 and e = 1/3.

337. Estimate the area of the surface generated by
revolving the curve y = cos(2x), 0 ≤ x ≤ π

4 about the

x-axis. Use the trapezoidal rule with six subdivisions.

338. Estimate the area of the surface generated by

revolving the curve y = 2x2, 0 ≤ x ≤ 3 about the

x-axis. Use Simpson’s rule with n = 6.

339. The growth rate of a certain tree (in feet) is given by

y = 2
t + 1 + e−t2 /2, where t is time in years. Estimate the

growth of the tree through the end of the second year by
using Simpson’s rule, using two subintervals. (Round the
answer to the nearest hundredth.)

340. [T] Use a calculator to approximate ∫
0

1
sin(πx)dx

using the midpoint rule with 25 subdivisions. Compute the
relative error of approximation.

341. [T] Given ∫
1

5
⎛
⎝3x2 − 2x⎞

⎠dx = 100, approximate

the value of this integral using the midpoint rule with 16
subdivisions and determine the absolute error.

342. Given that we know the Fundamental Theorem of
Calculus, why would we want to develop numerical
methods for definite integrals?
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343. The table represents the coordinates (x, y) that give

the boundary of a lot. The units of measurement are meters.
Use the trapezoidal rule to estimate the number of square
meters of land that is in this lot.

x y x y

0 125 600 95

100 125 700 88

200 120 800 75

300 112 900 35

400 90 1000 0

500 90

344. Choose the correct answer. When Simpson’s rule is
used to approximate the definite integral, it is necessary that
the number of partitions be____

a. an even number
b. odd number
c. either an even or an odd number
d. a multiple of 4

345. The “Simpson” sum is based on the area under a
____.

346. The error formula for Simpson’s rule depends
on___.

a. f (x)
b. f ′(x)

c. f (4)(x)
d. the number of steps
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