
3.4 | Partial Fractions

Learning Objectives
3.4.1 Integrate a rational function using the method of partial fractions.

3.4.2 Recognize simple linear factors in a rational function.

3.4.3 Recognize repeated linear factors in a rational function.

3.4.4 Recognize quadratic factors in a rational function.

We have seen some techniques that allow us to integrate specific rational functions. For example, we know that

∫ du
u = ln|u| + C and ∫ du

u2 + a2 = 1
atan−1 ⎛

⎝
u
a

⎞
⎠ + C.

However, we do not yet have a technique that allows us to tackle arbitrary quotients of this type. Thus, it is not immediately

obvious how to go about evaluating ∫ 3x
x2 − x − 2

dx. However, we know from material previously developed that

∫ ⎛
⎝

1
x + 1 + 2

x − 2
⎞
⎠dx = ln|x + 1| + 2ln|x − 2| + C.

In fact, by getting a common denominator, we see that

1
x + 1 + 2

x − 2 = 3x
x2 − x − 2

.

Consequently,

∫ 3x
x2 − x − 2

dx = ∫ ⎛
⎝

1
x + 1 + 2

x − 2
⎞
⎠dx.

In this section, we examine the method of partial fraction decomposition, which allows us to decompose rational functions
into sums of simpler, more easily integrated rational functions. Using this method, we can rewrite an expression such as:

3x
x2 − x − 2

as an expression such as 1
x + 1 + 2

x − 2.

The key to the method of partial fraction decomposition is being able to anticipate the form that the decomposition of a
rational function will take. As we shall see, this form is both predictable and highly dependent on the factorization of the
denominator of the rational function. It is also extremely important to keep in mind that partial fraction decomposition

can be applied to a rational function
P(x)
Q(x) only if deg(P(x)) < deg⎛

⎝Q(x)⎞
⎠. In the case when deg(P(x)) ≥ deg⎛

⎝Q(x)⎞
⎠, we

must first perform long division to rewrite the quotient
P(x)
Q(x) in the form A(x) + R(x)

Q(x), where deg(R(x)) < deg⎛
⎝Q(x)⎞

⎠.

We then do a partial fraction decomposition on
R(x)
Q(x). The following example, although not requiring partial fraction

decomposition, illustrates our approach to integrals of rational functions of the form ∫ P(x)
Q(x)dx, where

deg(P(x)) ≥ deg⎛
⎝Q(x)⎞

⎠.

Example 3.28

Integrating ∫ P(x)
Q(x)dx, where deg(P(x)) ≥ deg⎛

⎝Q(x)⎞⎠

Evaluate ∫ x2 + 3x + 5
x + 1 dx.
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3.17

Solution

Since deg⎛
⎝x2 + 3x + 5⎞

⎠ ≥ deg(x + 1), we perform long division to obtain

x2 + 3x + 5
x + 1 = x + 2 + 3

x + 1.

Thus,

∫ x2 + 3x + 5
x + 1 dx = ∫ ⎛

⎝x + 2 + 3
x + 1

⎞
⎠dx

= 1
2x2 + 2x + 3ln|x + 1| + C.

Visit this website (http://www.openstaxcollege.org/l/20_polylongdiv) for a review of long division of
polynomials.

Evaluate ∫ x − 3
x + 2dx.

To integrate ∫ P(x)
Q(x)dx, where deg(P(x)) < deg⎛

⎝Q(x)⎞
⎠, we must begin by factoring Q(x).

Nonrepeated Linear Factors
If Q(x) can be factored as ⎛

⎝a1 x + b1
⎞
⎠
⎛
⎝a2 x + b2

⎞
⎠…⎛

⎝an x + bn
⎞
⎠, where each linear factor is distinct, then it is possible to

find constants A1, A2 ,… An satisfying

P(x)
Q(x) = A1

a1 x + b1
+ A2

a2 x + b2
+ ⋯ + An

an x + bn
.

The proof that such constants exist is beyond the scope of this course.

In this next example, we see how to use partial fractions to integrate a rational function of this type.

Example 3.29

Partial Fractions with Nonrepeated Linear Factors

Evaluate ∫ 3x + 2
x3 − x2 − 2x

dx.

Solution

Since deg(3x + 2) < deg⎛
⎝x

3 − x2 − 2x⎞
⎠, we begin by factoring the denominator of 3x + 2

x3 − x2 − 2x
. We can see

that x3 − x2 − 2x = x(x − 2)(x + 1). Thus, there are constants A, B, and C satisfying

3x + 2
x(x − 2)(x + 1) = A

x + B
x − 2 + C

x + 1.

Chapter 3 | Techniques of Integration 299



(3.8)

We must now find these constants. To do so, we begin by getting a common denominator on the right. Thus,

3x + 2
x(x − 2)(x + 1) = A(x − 2)(x + 1) + Bx(x + 1) + Cx(x − 2)

x(x − 2)(x + 1) .

Now, we set the numerators equal to each other, obtaining

3x + 2 = A(x − 2)(x + 1) + Bx(x + 1) + Cx(x − 2).

There are two different strategies for finding the coefficients A, B, and C. We refer to these as the method of

equating coefficients and the method of strategic substitution.

Rule: Method of Equating Coefficients

Rewrite Equation 3.8 in the form

3x + 2 = (A + B + C)x2 + (−A + B − 2C)x + (−2A).

Equating coefficients produces the system of equations

A + B + C = 0
−A + B − 2C = 3

−2A = 2.

To solve this system, we first observe that −2A = 2 ⇒ A = −1. Substituting this value into the first two

equations gives us the system

B + C = 1
B − 2C = 2.

Multiplying the second equation by −1 and adding the resulting equation to the first produces

−3C = 1,

which in turn implies that C = − 1
3. Substituting this value into the equation B + C = 1 yields B = 4

3.

Thus, solving these equations yields A = −1, B = 4
3, and C = − 1

3.

It is important to note that the system produced by this method is consistent if and only if we have set up the
decomposition correctly. If the system is inconsistent, there is an error in our decomposition.

Rule: Method of Strategic Substitution

The method of strategic substitution is based on the assumption that we have set up the decomposition
correctly. If the decomposition is set up correctly, then there must be values of A, B, and C that satisfy

Equation 3.8 for all values of x. That is, this equation must be true for any value of x we care to substitute

into it. Therefore, by choosing values of x carefully and substituting them into the equation, we may find

A, B, and C easily. For example, if we substitute x = 0, the equation reduces to 2 = A(−2)(1).
Solving for A yields A = −1. Next, by substituting x = 2, the equation reduces to 8 = B(2)(3),
or equivalently B = 4/3. Last, we substitute x = −1 into the equation and obtain −1 = C(−1)(−3).

Solving, we have C = − 1
3.

It is important to keep in mind that if we attempt to use this method with a decomposition that has not been
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set up correctly, we are still able to find values for the constants, but these constants are meaningless. If we
do opt to use the method of strategic substitution, then it is a good idea to check the result by recombining
the terms algebraically.

Now that we have the values of A, B, and C, we rewrite the original integral:

∫ 3x + 2
x3 − x2 − 2x

dx = ∫ ⎛
⎝− 1

x + 4
3 · 1

(x − 2) − 1
3 · 1

(x + 1)
⎞
⎠dx.

Evaluating the integral gives us

∫ 3x + 2
x3 − x2 − 2x

dx = −ln|x| + 4
3ln|x − 2| − 1

3ln|x + 1| + C.

In the next example, we integrate a rational function in which the degree of the numerator is not less than the degree of the
denominator.

Example 3.30

Dividing before Applying Partial Fractions

Evaluate ∫ x2 + 3x + 1
x2 − 4

dx.

Solution

Since degree(x2 + 3x + 1) ≥ degree(x2 − 4), we must perform long division of polynomials. This results in

x2 + 3x + 1
x2 − 4

= 1 + 3x + 5
x2 − 4

.

Next, we perform partial fraction decomposition on 3x + 5
x2 − 4

= 3x + 5
(x + 2)(x − 2). We have

3x + 5
(x − 2)(x + 2) = A

x − 2 + B
x + 2.

Thus,

3x + 5 = A(x + 2) + B(x − 2).

Solving for A and B using either method, we obtain A = 11/4 and B = 1/4.

Rewriting the original integral, we have

∫ x2 + 3x + 1
x2 − 4

dx = ∫ ⎛
⎝1 + 11

4 · 1
x − 2 + 1

4 · 1
x + 2

⎞
⎠dx.

Evaluating the integral produces

∫ x2 + 3x + 1
x2 − 4

dx = x + 11
4 ln|x − 2| + 1

4ln|x + 2| + C.
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3.18

As we see in the next example, it may be possible to apply the technique of partial fraction decomposition to a nonrational
function. The trick is to convert the nonrational function to a rational function through a substitution.

Example 3.31

Applying Partial Fractions after a Substitution

Evaluate ∫ cosx
sin2 x − sinx

dx.

Solution

Let’s begin by letting u = sinx. Consequently, du = cosxdx. After making these substitutions, we have

∫ cosx
sin2 x − sinx

dx = ∫ du
u2 − u

= ∫ du
u(u − 1).

Applying partial fraction decomposition to 1/u(u − 1) gives 1
u(u − 1) = − 1

u + 1
u − 1.

Thus,

∫ cosx
sin2 x − sinx

dx = −ln|u| + ln|u − 1| + C

= −ln|sinx| + ln|sinx − 1| + C.

Evaluate ∫ x + 1
(x + 3)(x − 2)dx.

Repeated Linear Factors
For some applications, we need to integrate rational expressions that have denominators with repeated linear factors—that
is, rational functions with at least one factor of the form (ax + b)n, where n is a positive integer greater than or equal to

2. If the denominator contains the repeated linear factor (ax + b)n, then the decomposition must contain

A1
ax + b + A2

(ax + b)2 + ⋯ + An
(ax + b)n.

As we see in our next example, the basic technique used for solving for the coefficients is the same, but it requires more
algebra to determine the numerators of the partial fractions.

Example 3.32

Partial Fractions with Repeated Linear Factors

Evaluate ∫ x − 2
(2x − 1)2(x − 1)

dx.

Solution

We have degree(x − 2) < degree⎛
⎝(2x − 1)2 (x − 1)⎞

⎠, so we can proceed with the decomposition. Since
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(3.9)

3.19

(2x − 1)2 is a repeated linear factor, include A
2x − 1 + B

(2x − 1)2 in the decomposition. Thus,

x − 2
(2x − 1)2(x − 1)

= A
2x − 1 + B

(2x − 1)2 + C
x − 1.

After getting a common denominator and equating the numerators, we have

x − 2 = A(2x − 1)(x − 1) + B(x − 1) + C(2x − 1)2.

We then use the method of equating coefficients to find the values of A, B, and C.

x − 2 = (2A + 4C)x2 + (−3A + B − 4C)x + (A − B + C).

Equating coefficients yields 2A + 4C = 0, −3A + B − 4C = 1, and A − B + C = −2. Solving this system

yields A = 2, B = 3, and C = −1.

Alternatively, we can use the method of strategic substitution. In this case, substituting x = 1 and x = 1/2 into

Equation 3.9 easily produces the values B = 3 and C = −1. At this point, it may seem that we have run out

of good choices for x, however, since we already have values for B and C, we can substitute in these values

and choose any value for x not previously used. The value x = 0 is a good option. In this case, we obtain the

equation −2 = A(−1)(−1) + 3(−1) + (−1)(−1)2 or, equivalently, A = 2.

Now that we have the values for A, B, and C, we rewrite the original integral and evaluate it:

∫ x − 2
(2x − 1)2(x − 1)

dx = ∫
⎛

⎝
⎜ 2
2x − 1 + 3

(2x − 1)2 − 1
x − 1

⎞

⎠
⎟dx

= ln|2x − 1| − 3
2(2x − 1) − ln|x − 1| + C.

Set up the partial fraction decomposition for ∫ x + 2
(x + 3)3 (x − 4)2dx. (Do not solve for the coefficients

or complete the integration.)

The General Method
Now that we are beginning to get the idea of how the technique of partial fraction decomposition works, let’s outline the
basic method in the following problem-solving strategy.

Problem-Solving Strategy: Partial Fraction Decomposition

To decompose the rational function P(x)/Q(x), use the following steps:

1. Make sure that degree(P(x)) < degree(Q(x)). If not, perform long division of polynomials.

2. Factor Q(x) into the product of linear and irreducible quadratic factors. An irreducible quadratic is a quadratic

that has no real zeros.

3. Assuming that deg(P(x)) < deg(Q(x)), the factors of Q(x) determine the form of the decomposition of

P(x)/Q(x).

a. If Q(x) can be factored as ⎛
⎝a1 x + b1

⎞
⎠
⎛
⎝a2 x + b2

⎞
⎠…⎛

⎝an x + bn
⎞
⎠, where each linear factor is distinct,
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then it is possible to find constants A1, A2, ...An satisfying

P(x)
Q(x) = A1

a1 x + b1
+ A2

a2 x + b2
+ ⋯ + An

an x + bn
.

b. If Q(x) contains the repeated linear factor (ax + b)n, then the decomposition must contain

A1
ax + b + A2

(ax + b)2 + ⋯ + An
(ax + b)n.

c. For each irreducible quadratic factor ax2 + bx + c that Q(x) contains, the decomposition must

include

Ax + B
ax2 + bx + c

.

d. For each repeated irreducible quadratic factor ⎛
⎝ax2 + bx + c⎞

⎠
n
, the decomposition must include

A1 x + B1
ax2 + bx + c

+ A2 x + B2
(ax2 + bx + c)2 + ⋯ + An x + Bn

(ax2 + bx + c)n.

e. After the appropriate decomposition is determined, solve for the constants.

f. Last, rewrite the integral in its decomposed form and evaluate it using previously developed techniques
or integration formulas.

Simple Quadratic Factors
Now let’s look at integrating a rational expression in which the denominator contains an irreducible quadratic factor. Recall

that the quadratic ax2 + bx + c is irreducible if ax2 + bx + c = 0 has no real zeros—that is, if b2 − 4ac < 0.

Example 3.33

Rational Expressions with an Irreducible Quadratic Factor

Evaluate ∫ 2x − 3
x3 + x

dx.

Solution

Since deg(2x − 3) < deg(x3 + x), factor the denominator and proceed with partial fraction decomposition.

Since x3 + x = x(x2 + 1) contains the irreducible quadratic factor x2 + 1, include Ax + B
x2 + 1

as part of the

decomposition, along with C
x for the linear term x. Thus, the decomposition has the form

2x − 3
x(x2 + 1)

= Ax + B
x2 + 1

+ C
x .

After getting a common denominator and equating the numerators, we obtain the equation

2x − 3 = (Ax + B)x + C⎛
⎝x2 + 1⎞

⎠.

Solving for A, B, and C, we get A = 3, B = 2, and C = −3.

Thus,
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2x − 3
x3 + x

= 3x + 2
x2 + 1

− 3
x .

Substituting back into the integral, we obtain

∫ 2x − 3
x3 + x

dx = ∫ ⎛
⎝

3x + 2
x2 + 1

− 3
x
⎞
⎠dx

= 3∫ x
x2 + 1

dx + 2∫ 1
x2 + 1

dx − 3∫ 1
xdx Split up the integral.

= 3
2ln|x2 + 1| + 2tan−1 x − 3ln|x| + C. Evaluate each integral.

Note: We may rewrite ln|x2 + 1| = ln(x2 + 1), if we wish to do so, since x2 + 1 > 0.

Example 3.34

Partial Fractions with an Irreducible Quadratic Factor

Evaluate ∫ dx
x3 − 8

.

Solution

We can start by factoring x3 − 8 = (x − 2)(x2 + 2x + 4). We see that the quadratic factor x2 + 2x + 4 is

irreducible since 22 − 4(1)(4) = −12 < 0. Using the decomposition described in the problem-solving strategy,

we get

1
(x − 2)(x2 + 2x + 4)

= A
x − 2 + Bx + C

x2 + 2x + 4
.

After obtaining a common denominator and equating the numerators, this becomes

1 = A⎛
⎝x2 + 2x + 4⎞

⎠ + (Bx + C)(x − 2).

Applying either method, we get A = 1
12, B = − 1

12, and C = − 1
3.

Rewriting ∫ dx
x3 − 8

, we have

∫ dx
x3 − 8

= 1
12∫ 1

x − 2dx − 1
12∫ x + 4

x2 + 2x + 4
dx.

We can see that

∫ 1
x − 2dx = ln|x − 2| + C, but ∫ x + 4

x2 + 2x + 4
dx requires a bit more effort. Let’s begin by completing the

square on x2 + 2x + 4 to obtain

x2 + 2x + 4 = (x + 1)2 + 3.
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By letting u = x + 1 and consequently du = dx, we see that

∫ x + 4
x2 + 2x + 4

dx = ∫ x + 4
(x + 1)2 + 3

dx Complete the square on the
denominator.

= ∫ u + 3
u2 + 3

du Substitute u = x + 1, x = u − 1,
and du = dx.

= ∫ u
u2 + 3

du + ∫ 3
u2 + 3

du Split the numerator apart.

= 1
2ln|u2 + 3| + 3

3
tan−1 u

3
+ C Evaluate each integral.

= 1
2ln|x2 + 2x + 4| + 3tan−1 ⎛

⎝
x + 1

3
⎞
⎠ + C. Rewrite in terms of x and

simplify.

Substituting back into the original integral and simplifying gives

∫ dx
x3 − 8

= 1
12ln|x − 2| − 1

24ln|x2 + 2x + 4| − 3
12tan−1 ⎛

⎝
x + 1

3
⎞
⎠ + C.

Here again, we can drop the absolute value if we wish to do so, since x2 + 2x + 4 > 0 for all x.

Example 3.35

Finding a Volume

Find the volume of the solid of revolution obtained by revolving the region enclosed by the graph of

f (x) = x2

⎛
⎝x2 + 1⎞

⎠
2 and the x-axis over the interval [0, 1] about the y-axis.

Solution

Let’s begin by sketching the region to be revolved (see Figure 3.11). From the sketch, we see that the shell
method is a good choice for solving this problem.

Figure 3.11 We can use the shell method to find the volume
of revolution obtained by revolving the region shown about the
y-axis.
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3.20

The volume is given by

V = 2π∫
0

1
x · x2

⎛
⎝x2 + 1⎞

⎠
2dx = 2π∫

0

1
x3

(x2 + 1)2dx.

Since deg⎛
⎝

⎛
⎝x2 + 1⎞

⎠
2⎞
⎠ = 4 > 3 = deg(x3), we can proceed with partial fraction decomposition. Note that

(x2 + 1)2 is a repeated irreducible quadratic. Using the decomposition described in the problem-solving strategy,

we get

x3

(x2 + 1)2 = Ax + B
x2 + 1

+ Cx + D
(x2 + 1)2.

Finding a common denominator and equating the numerators gives

x3 = (Ax + B)⎛
⎝x2 + 1⎞

⎠ + Cx + D.

Solving, we obtain A = 1, B = 0, C = −1, and D = 0. Substituting back into the integral, we have

V = 2π∫
0

1
x3

(x2 + 1)2dx

= 2π∫
0

1 ⎛

⎝
⎜ x
x2 + 1

− x
(x2 + 1)2

⎞

⎠
⎟dx

= 2π⎛
⎝

1
2ln(x2 + 1) + 1

2 · 1
x2 + 1

⎞
⎠|01

= π⎛
⎝ln2 − 1

2
⎞
⎠.

Set up the partial fraction decomposition for ∫ x2 + 3x + 1
(x + 2)(x − 3)2 (x2 + 4)2dx.
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3.4 EXERCISES
Express the rational function as a sum or difference of two
simpler rational expressions.

182. 1
(x − 3)(x − 2)

183. x2 + 1
x(x + 1)(x + 2)

184. 1
x3 − x

185. 3x + 1
x2

186. 3x2

x2 + 1
(Hint: Use long division first.)

187. 2x4

x2 − 2x

188. 1
(x − 1)(x2 + 1)

189. 1
x2(x − 1)

190. x
x2 − 4

191. 1
x(x − 1)(x − 2)(x − 3)

192. 1
x4 − 1

= 1
(x + 1)(x − 1)⎛

⎝x2 + 1⎞
⎠

193. 3x2

x3 − 1
= 3x2

(x − 1)(x2 + x + 1)

194. 2x
(x + 2)2

195. 3x4 + x3 + 20x2 + 3x + 31

(x + 1)⎛
⎝x2 + 4⎞

⎠
2

Use the method of partial fractions to evaluate each of the
following integrals.

196. ∫ dx
(x − 3)(x − 2)

197. ∫ 3x
x2 + 2x − 8

dx

198. ∫ dx
x3 − x

199. ∫ x
x2 − 4

dx

200. ∫ dx
x(x − 1)(x − 2)(x − 3)

201. ∫ 2x2 + 4x + 22
x2 + 2x + 10

dx

202. ∫ dx
x2 − 5x + 6

203. ∫ 2 − x
x2 + x

dx

204. ∫ 2
x2 − x − 6

dx

205. ∫ dx
x3 − 2x2 − 4x + 8

206. ∫ dx
x4 − 10x2 + 9

Evaluate the following integrals, which have irreducible
quadratic factors.

207. ∫ 2
(x − 4)⎛

⎝x2 + 2x + 6⎞
⎠
dx

208. ∫ x2

x3 − x2 + 4x − 4
dx

209. ∫ x3 + 6x2 + 3x + 6
x3 + 2x2 dx

210. ∫ x

(x − 1)⎛
⎝x2 + 2x + 2⎞

⎠
2dx

Use the method of partial fractions to evaluate the
following integrals.

211. ∫ 3x + 4
⎛
⎝x2 + 4⎞

⎠(3 − x)
dx

212. ∫ 2
(x + 2)2(2 − x)

dx
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213. ∫ 3x + 4
x3 − 2x − 4

dx (Hint: Use the rational root

theorem.)

Use substitution to convert the integrals to integrals of
rational functions. Then use partial fractions to evaluate the
integrals.

214. ∫
0

1
ex

36 − e2xdx (Give the exact answer and the

decimal equivalent. Round to five decimal places.)

215. ∫ ex dx
e2x − exdx

216. ∫ sinxdx
1 − cos2 x

217. ∫ sinx
cos2 x + cosx − 6

dx

218. ∫ 1 − x
1 + xdx

219. ∫ dt
⎛
⎝et − e−t⎞

⎠
2

220. ∫ 1 + ex

1 − exdx

221. ∫ dx
1 + x + 1

222. ∫ dx
x + x4

223. ∫ cosx
sinx(1 − sinx)dx

224. ∫ ex

⎛
⎝e2x − 4⎞

⎠
2dx

225. ∫
1

2
1

x2 4 − x2
dx

226. ∫ 1
2 + e−xdx

227. ∫ 1
1 + exdx

Use the given substitution to convert the integral to an
integral of a rational function, then evaluate.

228. ∫ 1
t − t3 dt t = x3

229. ∫ 1
x + x3 dx; x = u6

230. Graph the curve y = x
1 + x over the interval ⎡

⎣0, 5⎤
⎦.

Then, find the area of the region bounded by the curve, the
x-axis, and the line x = 4.

231. Find the volume of the solid generated when the
region bounded by y = 1/ x(3 − x), y = 0, x = 1,
and x = 2 is revolved about the x-axis.

232. The velocity of a particle moving along a line is a

function of time given by v(t) = 88t2

t2 + 1
. Find the distance

that the particle has traveled after t = 5 sec.

Solve the initial-value problem for x as a function of t.

233. ⎛
⎝t2 − 7t + 12⎞

⎠
dx
dt = 1, ⎛

⎝t > 4, x(5) = 0⎞
⎠

234. (t + 5)dx
dt = x2 + 1, t > −5, x(1) = tan1

235. ⎛
⎝2t3 − 2t2 + t − 1⎞

⎠
dx
dt = 3, x(2) = 0

236. Find the x-coordinate of the centroid of the area

bounded by y⎛
⎝x2 − 9⎞

⎠ = 1, y = 0, x = 4, and x = 5.

(Round the answer to two decimal places.)

237. Find the volume generated by revolving the area

bounded by y = 1
x3 + 7x2 + 6x

x = 1, x = 7, and y = 0

about the y-axis.

238. Find the area bounded by y = x − 12
x2 − 8x − 20

,

y = 0, x = 2, and x = 4. (Round the answer to the

nearest hundredth.)
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239. Evaluate the integral ∫ dx
x3 + 1

.

For the following problems, use the substitutions

tan⎛
⎝
x
2

⎞
⎠ = t, dx = 2

1 + t2dt, sinx = 2t
1 + t2, and

cosx = 1 − t2

1 + t2.

240. ∫ dx
3 − 5sinx

241. Find the area under the curve y = 1
1 + sinx between

x = 0 and x = π. (Assume the dimensions are in inches.)

242. Given tan⎛
⎝
x
2

⎞
⎠ = t, derive the formulas

dx = 2
1 + t2dt, sinx = 2t

1 + t2, and cosx = 1 − t2

1 + t2.

243. Evaluate ∫ x − 83

x dx.
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