
1.7 | Integrals Resulting in Inverse Trigonometric

Functions

Learning Objectives
1.7.1 Integrate functions resulting in inverse trigonometric functions

In this section we focus on integrals that result in inverse trigonometric functions. We have worked with these functions
before. Recall from Functions and Graphs (http://cnx.org/content/m53472/latest/) that trigonometric functions
are not one-to-one unless the domains are restricted. When working with inverses of trigonometric functions, we always
need to be careful to take these restrictions into account. Also in Derivatives (http://cnx.org/content/m53494/latest/)
, we developed formulas for derivatives of inverse trigonometric functions. The formulas developed there give rise directly
to integration formulas involving inverse trigonometric functions.

Integrals that Result in Inverse Sine Functions
Let us begin this last section of the chapter with the three formulas. Along with these formulas, we use substitution to
evaluate the integrals. We prove the formula for the inverse sine integral.

Rule: Integration Formulas Resulting in Inverse Trigonometric Functions

The following integration formulas yield inverse trigonometric functions:

1.

(1.23)⌠
⌡

du
a2 − u2

= sin−1 u
a + C

2.

(1.24)⌠
⌡

du
a2 + u2 = 1

a tan−1 u
a + C

3.

(1.25)⌠
⌡

du
u u2 − a2

= 1
asec−1 u

a + C

Proof

Let y = sin−1 x
a. Then asiny = x. Now let’s use implicit differentiation. We obtain

d
dx

⎛
⎝asiny⎞

⎠ = d
dx (x)

acosy dy
dx = 1

dy
dx = 1

acosy.

For −π
2 ≤ y ≤ π

2, cosy ≥ 0. Thus, applying the Pythagorean identity sin2 y + cos2 y = 1, we have

cosy = 1 = sin2 y. This gives
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1
acosy = 1

a 1 − sin2 y

= 1
a2 − a2 sin2 y

= 1
a2 − x2

.

Then for −a ≤ x ≤ a, we have

⌠
⌡

1
a2 − u2

du = sin−1⎛
⎝
u
a

⎞
⎠ + C.

□

Example 1.49

Evaluating a Definite Integral Using Inverse Trigonometric Functions

Evaluate the definite integral ⌠
⌡0

1
dx

1 − x2
.

Solution

We can go directly to the formula for the antiderivative in the rule on integration formulas resulting in inverse
trigonometric functions, and then evaluate the definite integral. We have

⌠
⌡0

1
dx

1 − x2
= sin−1 x|0

1

= sin−1 1 − sin−1 0
= π

2 − 0

= π
2.

Find the antiderivative of ⌠
⌡

dx
1 − 16x2

.

Example 1.50

Finding an Antiderivative Involving an Inverse Trigonometric Function

Evaluate the integral ⌠
⌡

dx
4 − 9x2

.

Solution
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Substitute u = 3x. Then du = 3dx and we have

⌠
⌡

dx
4 − 9x2

= 1
3
⌠
⌡

du
4 − u2

.

Applying the formula with a = 2, we obtain

⌠
⌡

dx
4 − 9x2

= 1
3
⌠
⌡

du
4 − u2

= 1
3sin−1 ⎛

⎝
u
2

⎞
⎠ + C

= 1
3sin−1 ⎛

⎝
3x
2

⎞
⎠ + C.

Find the indefinite integral using an inverse trigonometric function and substitution for ⌠
⌡

dx
9 − x2

.

Example 1.51

Evaluating a Definite Integral

Evaluate the definite integral ⌠
⌡0

3/2
du

1 − u2
.

Solution

The format of the problem matches the inverse sine formula. Thus,

⌠
⌡0

3/2
du

1 − u2
= sin−1 u|0

3/2

= ⎡
⎣sin−1 ⎛

⎝
3

2
⎞
⎠
⎤
⎦ − ⎡

⎣sin−1 (0)⎤
⎦

= π
3.

Integrals Resulting in Other Inverse Trigonometric Functions
There are six inverse trigonometric functions. However, only three integration formulas are noted in the rule on integration
formulas resulting in inverse trigonometric functions because the remaining three are negative versions of the ones we use.
The only difference is whether the integrand is positive or negative. Rather than memorizing three more formulas, if the
integrand is negative, simply factor out −1 and evaluate the integral using one of the formulas already provided. To close
this section, we examine one more formula: the integral resulting in the inverse tangent function.
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1.43

Example 1.52

Finding an Antiderivative Involving the Inverse Tangent Function

Find an antiderivative of ⌠
⌡

1
1 + 4x2dx.

Solution

Comparing this problem with the formulas stated in the rule on integration formulas resulting in inverse

trigonometric functions, the integrand looks similar to the formula for tan−1 u + C. So we use substitution,

letting u = 2x, then du = 2dx and 1/2du = dx. Then, we have

1
2

⌠
⌡

1
1 + u2du = 1

2tan−1 u + C = 1
2tan−1 (2x) + C.

Use substitution to find the antiderivative of ⌠
⌡

dx
25 + 4x2.

Example 1.53

Applying the Integration Formulas

Find the antiderivative of ⌠
⌡

1
9 + x2dx.

Solution

Apply the formula with a = 3. Then,

⌠
⌡

dx
9 + x2 = 1

3tan−1 ⎛
⎝
x
3

⎞
⎠ + C.

Find the antiderivative of ⌠
⌡

dx
16 + x2.

Example 1.54

Evaluating a Definite Integral

Evaluate the definite integral ⌠
⌡ 3/3

3
dx

1 + x2.
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Solution

Use the formula for the inverse tangent. We have

⌠
⌡ 3/3

3
dx

1 + x2 = tan−1 x| 3/3

3

= ⎡
⎣tan−1 ⎛

⎝ 3⎞
⎠
⎤
⎦ − ⎡

⎣tan−1 ⎛
⎝

3
3

⎞
⎠
⎤
⎦

= π
6.

Evaluate the definite integral ⌠
⌡0

2
dx

4 + x2.
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1.7 EXERCISES
In the following exercises, evaluate each integral in terms
of an inverse trigonometric function.

391. ⌠
⌡0

3/2
dx

1 − x2

392. ⌠
⌡−1/2

1/2
dx

1 − x2

393. ⌠
⌡ 3

1
dx

1 + x2

394. ⌠
⌡1/ 3

3
dx

1 + x2

395. ⌠
⌡1

2
dx

|x| x2 − 1

396. ⌠
⌡1

2/ 3
dx

|x| x2 − 1

In the following exercises, find each indefinite integral,
using appropriate substitutions.

397. ⌠
⌡

dx
9 − x2

398. ⌠
⌡

dx
1 − 16x2

399. ⌠
⌡

dx
9 + x2

400. ⌠
⌡

dx
25 + 16x2

401. ⌠
⌡

dx
|x| x2 − 9

402. ⌠
⌡

dx
|x| 4x2 − 16

403. Explain the relationship

−cos−1 t + C = ⌠
⌡

dt
1 − t2

= sin−1 t + C. Is it true, in

general, that cos−1 t = −sin−1 t ?

404. Explain the relationship

sec−1 t + C = ⌠
⌡

dt
|t| t2 − 1

= −csc−1 t + C. Is it true, in

general, that sec−1 t = −csc−1 t ?

405. Explain what is wrong with the following integral:

⌠
⌡1

2
dt

1 − t2
.

406. Explain what is wrong with the following integral:

⌠
⌡−1

1
dt

|t| t2 − 1
.

In the following exercises, solve for the antiderivative ∫ f

of f with C = 0, then use a calculator to graph f and

the antiderivative over the given interval ⎡
⎣a, b⎤

⎦. Identify a

value of C such that adding C to the antiderivative recovers

the definite integral F(x) = ∫
a

x
f (t)dt.

407. [T] ⌠
⌡

1
9 − x2

dx over [−3, 3]

408. [T] ⌠
⌡

9
9 + x2dx over ⎡

⎣−6, 6⎤
⎦

409. [T] ⌠
⌡

cosx
4 + sin2 x

dx over ⎡
⎣−6, 6⎤

⎦

410. [T] ⌠
⌡

ex

1 + e2xdx over ⎡
⎣−6, 6⎤

⎦

In the following exercises, compute the antiderivative using
appropriate substitutions.

411. ⌠
⌡

sin−1 tdt
1 − t2

412. ⌠
⌡

dt
sin−1 t 1 − t2
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413. ⌠
⌡

tan−1 (2t)
1 + 4t2 dt

414. ⌠
⌡

ttan−1 ⎛
⎝t2⎞

⎠

1 + t4 dt

415. ⌠
⌡

sec−1 ⎛
⎝

t
2

⎞
⎠

|t| t2 − 4
dt

416. ⌠
⌡

tsec−1 ⎛
⎝t2⎞

⎠

t2 t4 − 1
dt

In the following exercises, use a calculator to graph the

antiderivative ∫ f with C = 0 over the given interval

⎡
⎣a, b⎤

⎦. Approximate a value of C, if possible, such that

adding C to the antiderivative gives the same value as the

definite integral F(x) = ∫
a

x
f (t)dt.

417. [T] ⌠
⌡

1
x x2 − 4

dx over ⎡
⎣2, 6⎤

⎦

418. [T] ⌠
⌡

1
(2x + 2) xdx over ⎡

⎣0, 6⎤
⎦

419. [T] ⌠
⌡

(sinx + xcosx)
1 + x2 sin2 x

dx over ⎡
⎣−6, 6⎤

⎦

420. [T] ⌠
⌡

2e−2x

1 − e−4x
dx over [0, 2]

421. [T] ⌠
⌡

1
x + xln2 x

over [0, 2]

422. [T] ⌠
⌡

sin−1 x
1 − x2

over [−1, 1]

In the following exercises, compute each integral using
appropriate substitutions.

423. ⌠
⌡

ex

1 − e2t
dt

424. ⌠
⌡

et

1 + e2tdt

425. ⌠
⌡

dt
t 1 − ln2 t

426. ⌠
⌡

dt
t⎛
⎝1 + ln2 t⎞

⎠

427. ⌠
⌡

cos−1 (2t)
1 − 4t2

dt

428. ⌠
⌡

et cos−1 ⎛
⎝et⎞

⎠

1 − e2t
dt

In the following exercises, compute each definite integral.

429. ⌠
⌡0

1/2
tan⎛

⎝sin−1 t⎞
⎠

1 − t2
dt

430. ⌠
⌡1/4

1/2
tan⎛

⎝cos−1 t⎞
⎠

1 − t2
dt

431. ⌠
⌡0

1/2
sin⎛

⎝tan−1 t⎞
⎠

1 + t2 dt

432. ⌠
⌡0

1/2
cos⎛

⎝tan−1 t⎞
⎠

1 + t2 dt

433. For A > 0, compute I(A) = ⌠
⌡−A

A
dt

1 + t2 and

evaluate lima → ∞I(A), the area under the graph of 1
1 + t2

on [−∞, ∞].

434. For 1 < B < ∞, compute I(B) = ⌠
⌡1

B
dt

t t2 − 1
and

evaluate lim
B → ∞

I(B), the area under the graph of

1
t t2 − 1

over [1, ∞).

435. Use the substitution u = 2 cot x and the identity

1 + cot2 x = csc2 x to evaluate ⌠
⌡

dx
1 + cos2 x

. (Hint:

Multiply the top and bottom of the integrand by csc2 x.)
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436. [T] Approximate the points at which the graphs of

f (x) = 2x2 − 1 and g(x) = ⎛
⎝1 + 4x2⎞

⎠
−3/2

intersect, and

approximate the area between their graphs accurate to three
decimal places.

437. 47. [T] Approximate the points at which the graphs

of f (x) = x2 − 1 and f (x) = x2 − 1 intersect, and

approximate the area between their graphs accurate to three
decimal places.

438. Use the following graph to prove that

⌠
⌡0

x
1 − t2dt = 1

2x 1 − x2 + 1
2sin−1 x.
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