MAT 126.01, Prof. Bishop, Thursday, Sept. 22, 2020 Review for Midterm 1 Sections 1.1 to 1.5 of textbook Quizzes 2 and 3

Write the correct answer in the box.

1. Evaluate $\sum_{k=1}^{3} 3^k$

2. Write in Sigma notation: $\frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2n}$.

3. Give the Riemann sum approximation to $\int_0^{\pi} \cos(x) dx$ using 4 subintervals and right hand endpoints.

4. Compute the integral $\int_0^5 f(x)dx$ for f plotted above.

5. Compute the integral $\int_2^4 f(x) - g(x) dx$ using the functions plotted above.

6. Estimate the integral $\int_1^4 g(x)dx$ using the function plotted above and right-hand rule with 3 intervals.

7. Estimate the integral $\int_0^4 g^2(x) dx$ using the function plotted above and left-hand rule with 4 interval (use left endpoint of each subinterval).

8. Estimate the integral $\int_1^5 g(f(x))dx$ using the functions plotted above and left-hand rule with 2 intervals.

9. Write down the integral that is represented by

$$\lim_{n \to \infty} \frac{2}{n} \sum_{k=1}^{n} (4 - \frac{4k^2}{n^2})^{1/2}.$$

10. Use geometry to evaluate the integral.

TRUE/FALSE: put a T or F in each box.

11. The left-hand rule gives a lower bound for $\int_0^4 e^x dx$.

12. If
$$a < b < c$$
 then $\int_a^c f(x)dx + \int_c^b f(x)dx = \int_a^b f(x)dx$.

 $F(x) = \int_0^x f(t)dt$ where f is given by the following figure:

1. What is F'(3)?

2. What is F(6) - F(0)?

3. At what point x in [0, 6] does F take its maximum value?

4. What is the maximum value of F on [0, 6]?

5. If $G(x) = \int_0^{2x} f(t)dt$, what is G'(1)?

6. A baseball thrown upwards at 96 ft/sec has a velocity given by v(t) = 96 - 32t. If it starts at height zero, what is it's height as a function of t?

7. If f is given by the figure on the right, which of the following is the largest?

8. A warehouse charges its customers \$2 per day for every cubic foot of space used for storage. The figure on the right shows the storage used by one company over a month. How much will the company have to pay?

9. Which integral gives the area of the region bounded above by y = 2x and below by $y = x^2$?

10. Taking $u = x^2 + 1$ allows you to easily evaluate which of the following integrals?

- (a) $\int x^2 \cos(x^2 + 1) dx$
- **(b)** $\int \sin(x^2 + 1) dx$
- (c) $\int \frac{x^2-1}{x^2+1} dx$
- (d) $\int xe^{x^2+1}dx$
- (e) $\int (x-1)\sqrt{x^2-1}dx$
- (f) $\int \sqrt{x^2+1}dx$
- **(g)** $\int \ln(x^2 1) dx$

11. Evaluate $\sum_{k=0}^{3} 3^k$

12. Evaluate $\sum_{k=3}^{10} k$

13. Give the Sigma notation for Match the sum to the correct formula: $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots + \frac{1}{n^2}$,

14. Given the formula for left hand approximation of $\int_2^4 x^3 dx$ with four subintervals.

15. For each function f graphed on [0, 1], sketch a graph of $F(x) = \int_0^x f(t)dt$.

16. Find $\int \sin(x) \sqrt{2 + \cos(x)} dx$

17. Find $\int \frac{e^x}{1+e^x} dx$

18. Find $\int \cos^5(x) dx$

19. Find $\int_0^1 x^3 (x^4 + 1)^4 dx$

20. Find $\int_0^1 x^n (1 + x^n) dx$

21. Find $\int_{-1}^{1} \sin(x^3) dx$ (this is a trick problem).