MAT 126.01, Prof. Bishop, Tuesday, Oct 20, 2020 Last minute review for midterm Section 2.7: Integrals, Exponentials and Logarithms Any last minute questions about Midterm 2?

2

The power law for integrals:

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1.$$

ಬ

Definition of natural logarithm:

$$\ln x = \int_1^x \frac{1}{t} dt.$$

Differentiation law:

$$(\ln x)' = \frac{1}{x}.$$

Properties:

$$ln 1 = 0$$

$$\ln(ab) = \ln a + \ln b$$

$$\ln(a/b) = \ln a - \ln b$$

$$\ln a^p = p \ln a.$$

Definition of e: e is the unique number so $\ln e = 1$.

 e^x is defined as the unique number y so $\ln y = x$.

Properties of exponential function:

$$e^{x+y} = e^x \cdot e^y$$

$$e^{x-y} = e^x/e^y$$

$$(e^x)^p = e^{xp}.$$

General exponential functions:

If
$$a > 0$$
 define $a^x = e^{x \ln a}$

Deduce
$$(a^x)' = a^x \ln a$$

Deduce
$$\int a^x = (a^x / \ln a) + Ci$$

General logarithmic functions:

Define $\log_a x = \ln x / \ln a$.

Deduce $(\log_a x) = 1/(x \ln a)$.

Differentiate $\ln \ln \ln x$.

10

Differentate $\ln(x + \sqrt{1 + x^2})$

Differentiate $x^{\sin x}$.

2

Differentiate $(\sin x)^x$ for $0 < x < \pi$.

<u>..</u>