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ABSTRACT
In my talk I will attempt to draw some connections between
complex analysis and computational geometry, particularly
between conformal mappings, hyperbolic geometry, the me-
dial axis and optimal meshing. The Riemann mapping the-
orem says that there is a conformal (angle preserving) map
of the unit disk, D, to the interior Ω of any simple n-gon.
How much work is needed to compute this map?

Theorem 1: [1] We can compute the conformal map f :
D → Ω to within error ǫ in time O(n · log 1

ǫ
log log 1

ǫ
).

The proof uses an iteration that converges quadratically
to f , but it needs a good initial guess that is close to the cor-
rect answer. The medial axis allows us to quickly construct
a map Ω → D that is close to Riemann’s map with precise
estimates. This gives our starting point, and the time esti-
mates in the theorem depend on time needed to compute the
medial axis (linear by work of Chin, Snoeyink and Wang).
Conversely, the proof of Theorem 1 uses ideas from analy-

sis that may be of interest in CG. For example, the dome of
a planar domain Ω is the surface in R

3
+ given by the upper

envelope of all hemispheres whose base on R
2 is a medial

axis disk of Ω. Domes arise in the study of 3-manifolds, and
a fundamental result of Dennis Sullivan about convex sets
in hyperbolic 3-space lies at the heart of Theorem 1.
The proof of Theorem 1 also introduces the thick-thin

decomposition of a polygon, inspired by the thick-thin de-
composition of a hyperbolic manifold. The thin parts cor-
respond to “long, narrow” pieces of the polygon (but not in
the obvious way; the precise definition uses a conformal in-
variant called extremal length). This decomposition plays
in important role in proving:

Theorem 2: [2] Any simple n-gon has a O(n) quadrilateral
mesh with all angles ≤ 120◦ and all new angles ≥ 60◦.

The sharp upper bound is due to Bern and Eppstein; the
lower bound is the novel part here. The result is also true for
PSLGs with at most n edges and vertices, although simple
examples show the O(n) must be replaced by O(n2):

Theorem 3: [4] Every PSLG has an O(n2) quadrilateral
mesh with all angles ≤ 120◦ and all new angles ≥ 60◦. Only
O(n/ǫ) angles satisfy |θ − 90◦| > ǫ, for any ǫ > 0.

Adding diagonals to the quadrilaterals gives a triangula-
tion with all angles ≤ 120◦, improving results of S. Mitchell

Copyright is held by the author/owner(s).
SCG12, June 17–20, 2012, Chapel Hill, North Carolina, USA.
ACM 978-1-4503-1299-8/12/06.

(157.5◦) and Tan (132◦). Applying thick-thin decomposi-
tions directly to triangulations gives an even better result:
for any ǫ > 0, a PSLG has a O(n2) triangulation with angles
≤ 90◦ + ǫ (but the constant blows up as ǫ ց 0). For ǫ = 0,
a more intricate construction shows:

Theorem 4: [3] Every PSLG has a O(n2.5) nonobtuse tri-
angulation.

No polynomial bound was previously known, and I strongly
suspect n2.5 can be improved to n2 (known sharp). Some
consequences of Theorem 4 and its proof include
• Every PSLG has a O(n2.5) conforming Delaunay triangu-
lation (improves O(n3) by Edelsbrunner and Tan).
• Any triangulation of an n-gon has a O(n2) nonobtuse re-
finement (improves O(n4) by Bern and Eppstein).
• There is a point set of size O(n2.5) whose Voronoi diagram
conforms to a given PSLG of size n.
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