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String theory is a physical model that represents elementary particles by vibrating strings with the
aim of unifying the four forces of nature (gravitational, electromagnetic, strong nuclear, and weak
nuclear). As a closed string (i.e a loop) moves through space, it may split into two (corresponding to
fission), which may later recombine into one (corresponding to fusion). The path traced by a closed
string in space-time is a (Riemann) surface, which has one hole (i.e. is of genus 1) and two ends in
the just mentioned example:
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While string theory is one of the main paradigms in physics today, strictly speaking it is not a
physical theory at all as it has yet to make any experimentally testable physical predictions. How-
ever, string theory has made (and continues to make) plenty of mathematical predictions. Thus,
mathematics (especially geometry) has so far been the only “testing ground” for string theory and
the source of much corroboration.

Among the most striking mathematical predictions of string theory are the so-called mirror symme-

try formulas for Gromov-Witten invariants (or GW-invariants). Physically, GW-invariants of a space
(symplectic manifold) X represent states of a system; mathematically, they are rational numbers
obtained by counting, with certain rational coefficients, Riemann surfaces (complex curves) that lie
in X. GW-invariants are classified by the maximum genus, i.e. the maximum number of holes, and
the number of ends a Riemann surface may have, and by a measure, called degree, of how twisted
inside X a Riemann surface may be. For example, the genus 0 closed GW-invariants are weighted
counts of spheres, i.e. Riemann surfaces without holes or ends, in X; similarly, the genus 1 closed GW-

invariants are weighted counts of spheres and tori, i.e. donuts or Riemann surfaces with one hole, inX.

Most string theory predictions concern spaces of particular importance in physics, called Calabi-Yau
manifolds. While some of these spaces are relatively simple from the physics point of view, they
are generally highly non-trivial mathematically. The paradigmatic example is a quintic 3-fold Q3,
i.e. the set of all tuples (x1, x2, x3, x4) that satisfy a degree 5 polynomial equation in four variables
(a degree 5 hypersurface in CP 4). The 1991 prediction of [3] for the genus 0 GW-invariants of Q3
was first verified in [11, 15]. This was of great significance not only in physics, but also in math-
ematics, as the first two proofs were later followed by at least three more [2, 6, 14], as well as by
expository accounts of the first two [20, 5, 13]. The next case in terms of complexity, the 1993
prediction of [1] for the genus 1 GW-invariants of Q3 remained essentially unapproachable for about
10 years. Different approaches to at least partial verification of [1] were described in [7] and [17].
Separately, a thorough analysis of fundamental properties of the genus 1 GW-invariants was con-
ducted in [29, 30, 16, 24], leading to a third approach to [1]. In [32], I finally gave a mathematical
proof of the full prediction of [1], using the last approach. This long-awaited confirmation provides
further support for string theory.



The genus 0 GW-invariants of Q3, which is a subspace of a Euclidean (projective) space, are the
same as certain twisted genus 0 GW-invariants of the ambient space. In turn, the latter can be
described combinatorially; the classical Atiyah-Bott localization theorem reduces these invariants to
certain sums over graphs. Thus, the problem of verifying the genus 0 mirror prediction for Q3
consisted of analyzing certain (complicated) sums. On the other hand, in the genus 1 case, two new
issues arose and have now been resolved:

• The algebraically expected relation between the genus 1 GW-invariants of Q3 and those of the
ambient space does not hold. This drawback of the (standard) genus 1 GW-invariants is addressed
in [29, 30, 16] by defining new, reduced, genus 1 GW-invariants and showing that they behave as
expected (but from a geometric, rather than algebraic, perspective). As the standard and reduced
genus 1 GW-invariants differ by genus 0 GW-invariants, computing either of the genus 1 GW-
invariants is in many cases equivalent to computing the other.

• The relevant twisted reduced genus 1 invariants of a Euclidean (projective) space do not readily
reduce to sums over graphs due to the presence of singularities in spaces of genus 1 curves. This
issue is addressed in [24] by resolving the singularities, i.e. replacing them with smooth patches.
The localization theorem is fully applicable in this new setting and turns the twisted reduced
genus 1 GW-invariants of a Euclidean space into sums over graphs, similarly to the genus 0 case.

The final step in the proof of the prediction of [1] was to analyze the resulting sums; this was carried
out in [32].

All four papers [29, 30, 16, 24], rely on the sharp description in [28] of limiting behavior of families
of genus 1 Riemann surfaces. It had been speculated since at least the mid-1990s that there exists
a sharp version of the most fundamental result in GW-theory (Gromov’s Compactness Theorem
for pseudoholomorphic curves [12]) for positive-genera Riemann surfaces (donuts with one or more
holes) and relatedly there exist reduced GW-invariants; this is finally confirmed in [28, 29]. The
reduced genus 1 GW-invariants defined in [29] are in fact more geometric than the standard ones, as
under ideal circumstances they simply count genus 1 Riemann surfaces. Another application of [28]
is [24], which provides natural smooth compactifications (capping off of infinite ends) for spaces of
genus 1 Riemann surfaces (complex curves in projective spaces). While [28] is a work in symplec-
tic topology, the application just mentioned concerns algebraic geometry. My student is currently
working to extend these results to higher genus, especially genus 2.

There has been a long-running interest, inspired by both the classical enumerative geometry of the
nineteenth century and the string theory of the past two decades, in constructing the so-called real

analogues of GW-invariants that should count complex curves in an (almost) Kahler manifold X

preserved by a conjugation. The foundations of the real GW-theory have long lagged well behind
developments in the “classical” GW-theory due to fundamental topological obstacles arising in the
former. These were overcome in some settings in [26, 27] to define counts of genus 0 real curves in
low-dimensional manifolds X, now known as Welschinger’s invariants. Building on three years of prior
work, P. Georgieva and I finally constructed arbitrary-genus analogues of Welschinger’s invariants
for many symplectic manifolds in [8]. Unlike many other general constructions in this field, ours is
accompanied by comparisons and computations in [9, 10, 19] and an appendix obtaining all such
invariants for CP3 for genus g≤5 and degree d≤8; these followup works supply concrete corrobora-
tive evidence for our construction in [8]. In addition to providing the long-awaited lower bounds for
counts of real algebraic positive-genus curves, [8] has made it possible to study the mirror formulas
for real GW-invariants mathematically. In particular, it should now be fairly straightforward to
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complete the verification of the prediction for the real genus 1 GW-invariants of Q3 made in [25] by
adapting the reasoning in [28, 29, 30, 16] to the real setting of [8].

The analytic and topological methods employed in [28, 29, 30, 16, 24] have found a variety of fur-
ther applications, with additional work in progress. In particular, they are used in [34] to relate
GW-invariants of a manifold to a submanifold in some cases and apply the main theorem to confirm
the so-called Fano case of the Gopakumar-Vafa conjecture regarding integer counts of curves. The
analogue of this result for the real positive-genus GW-invariants of [8] is obtained in [19]. In [22],
a similar approach is used to extend the Gopakumar-Vafa conjecture to the genus 1 invariants of
Calabi-Yau 5-folds. Other potentially approachable problems include searching for rigidity prop-
erties that carry over from the rigid setting of algebraic geometry to the more flexible setting of
symplectic topology. Such properties may be of fundamental importance in GW-theory as well as
in birational algebraic geometry.

The methods for handling graphs in localization computations developed in [31, 32] have already
been applied in a variety of other settings. In [35], they are used to describe the growth rate of the
closed genus 0 GW-invariants in a range of important cases and to obtain vanishing results for them.
In [4], these methods are used to obtain the first ever mirror formula for a cousin of GW-invariants,
called stable quotients invariants, introduced in [18], and to show that in fact they give a simpler
mirror formula. The same principles are used in [23] to confirm the predictions of [25] for counts
of annuli and Klein bottles, i.e. genus 1 invariants with two different types of reflection symmetry.
This parallels the results of [21] for counts of spheres with a reflection symmetry.
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