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Abstract

We describe generating functions for arbitrary-genus Gromov-Witten invariants of the projective
space with any number of marked points explicitly. The structural portion of this description
gives rise to uniform energy bounds and vanishing results for these invariants. They suggest
deep conjectures relating Gromov-Witten invariants of symplectic manifolds to the energy of
pseudo-holomorphic maps and the expected dimension of their moduli space.
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1 Introduction

Gromov-Witten (or GW-) invariants of a smooth projective variety (or more generally of a sym-
plectic manifold) X are certain counts of (pseudo-holomorphic) curves in X. These invariants are
known or conjectured to possess many striking properties which are often completely unexpected
from the classical point of view. For example, physical considerations suggest that these invariants
are uniformly bounded by the symplectic area of the curves being counted; see Conjecture 1. We
confirm this conjecture for the complex projective space P*~! in all genera by applying the explicit
formula of Theorem A in Section 2.3. We also use this theorem to confirm the vanishing predictions
of Conjecture 2 for P~ 1.

Generating functions for the 1-pointed genus 0 GW-invariants of semi-positive projective complete
intersections X C P"~! are explicitly computed in [8, 13]. The resulting formulas in particular
confirm the mirror symmetry prediction of [4] for the genus 0 GW-invariants of a quintic threefold,
i.e. a degree 5 hypersurface in P4. By [3, 21], generating functions for 2-pointed genus 0 GW-
invariants of hypersurfaces are explicit transforms of the 1-pointed genus 0 functions; these results
are extended to projective complete intersections in [5, 18] and to complete intersections in toric va-
rieties in [17]. It is shown in [22] that generating functions for N-pointed genus 0 GW-invariants of
projective complete intersections, with IV >3, are also explicit transforms of the 1-pointed genus 0
functions. Combined with [20, 16], this implies the same for generating functions for N-pointed
genus 1 GW-invariants of projective complete intersections. We show in this paper that a natural
generating function for the N-pointed genus g GW-invariants of P"~! is an explicit transform of
the 1-pointed genus 0 generating function as well; see Theorem A in Section 2.3 and Theorem B
in Section 3.

Throughout the paper n,g, N € ZT are fixed integers, with ¢ and N denoting the genus of the
curves being counted and the number of marked points, respectively. Let

7% ={0yuz" and [N]={1,2,...,N}

For d € Z=9, we denote by ﬁ% ~(P"1.d) the moduli space of stable N-marked genus ¢ degree d
maps to P*~!. For each s=1,..., N, let

evs: My n(P" 1, d) — P71, Yy =ci(LE) € H* (M, v (P71, d)),

be the evaluation map and the first Chern of the universal cotangent line bundle at the s-th marked
point, respectively. Denote by H € H?(P"~!) the hyperplane class.

The main theorem of this paper, Theorem A stated at the beginning of Section 2, provides a
closed formula for the N-pointed genus g version of the standard (1-pointed genus 0) Givental’s
J-function. This is a generating function for the genus ¢ GW-invariants

s=N
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of P"~1. The most basic positive-genus case of Theorem A is equivalent to Theorem 0 below.



Theorem 0. For all n,d,c€Z=° with c<n and n>2,

<Tnd+1—cHC>17d 48 4
[T(r+w)"

r=1

pr-1 |’n(1+2dn+2w) (d+w)”_2m
wi;n—1—c

with [[f]] wor denoting the coefficient of w" in the power series expansion of a function f=f(w)
around w=0.

This theorem is obtained in Section 2.4. While the precise statement of Theorem A is quite involved
in general, its qualitative corollaries, Theorems 1 and 2 below, are quite simple to state; they are
established in Section 2.5.

Theorem 1. For all n€Z" and g€Z=", there exists Cy, g €RT such that

]P)nfl

| C1 | CN
(b HE . b o H >g’d < N
N! - g

for all NeZ* and d,b1,...,bn,c1,...,cn €Z20.

In the basic d=0 case, the invariants of Theorem 1 become

N
Pn—l « 1 z '
<TblHCI,...,TbNHCN>g7O :/M i e(Ey@TP"™ ||1 Y H) (1.2)
g 1=

where o

Ey — My N
is the Hodge vector bundle of holomorphic differentials over the Deligne-Mumford moduli space of
genus g curves with N marked points. By (1.2), (2.18), and induction via (5.13),

Pnfl

<b1!Tb1H61,...,bN!TbNHcN>g7O <0 oN
S COnyg

N!

for some C), 4 € RT determined by the numbers Cj.,,.; in (2.18) and by the top-dimensional inter-
sections of A and t-classes on the moduli spaces ﬂg, N with N <6g—6. The base 2 above can
be replaced by any number arbitrarily close to 1 at the cost of increasing C), 4. The d=0 case of
Theorem 1 is thus straightforward. The case of Theorem 1 with n=3, b;=0 for all ¢, and ¢; =2 for
all 7 is consistent with the asymptotic prediction of [7, Footnote 2] for the number n, 4 of genus g
degree d curves in P? passing through 3d—1+g¢ general points.

Theorem 2. Suppose n, g, N €Z" with 2g-+N >3 and (bs)se[n), (Cs)se[n] € (ZZOYN . If there exists
S C[N] such that
bs+cs <n VseS and st>3(g—1)+N
ses

then (n, HY ... . HN) " =0,



Theorems 1 and 2 are potential indications of fundamental properties of GW-invariants that are
out of reach of the current methods. Their statements have natural intrinsic extensions to more
general symplectic manifolds, formulated in the two conjectures below. The exponent (w, ) in
Conjecture 1 is the energy of the J-holomorphic maps of class 3, while (w, B)+N is essentially the
energy of the induced “graph map”. A symplectic manifold (X, w) is called monotone with minimal
Chern number v €R™ in Conjecture 2 if

c1(X) = Mw] € H*(X;R)

for some A € RT and v is the minimal value of ¢1(X) on the homology classes representable by
non-constant J-holomorphic maps P! — X for every w-compatible almost complex structure on X.

Conjecture 1 ([22, Conjecture 1]). Suppose (X,w) is a compact symplectic manifold and g € Z.
For all Hy,...,Hye H*(X), there exists Cx 4€RT such that

X
<b1!Tb1Hcl, ..., by! TbNHCN>975
N!

< PPN WBEH(X), N,by>0, e € [K].

Conjecture 2. Suppose (X,w) is a compact monotone symplectic manifold with minimal Chern
number v,

9, N € Z7° with 29+ N >3, (bs)se(ny, (cs)seiv) € (Z70O)N,  and Hye H**(X) Vse[N].
If there exists S C[N] such that

bs+cs <v VseSs and st>3(g—1)+N,
ses

then <7’(,1H1, NN ’TbNHN>;i8 =0.

Theorems 1 and 2 establish Conjectures 1 and 2 for X =P"~!. Theorems 1 and 2 in [22] establish
the g=0 cases of these conjectures for complete intersections X CP" with each H; being a power
of H. Conjecture 1 for a Calabi-Yau threefold X corresponds to the string theory presumption
that the partition functions determined by GW-invariants have positive radii of convergence. If X
is a Calabi-Yau intersection 3-fold in P™, this is equivalent to the existence of C'x g € R™ such that

[(Ooal <C%y  VdeZ*, (1.3)

For a Calabi-Yau X of (complex) dimension at least 4, the GW-invariants of genus 2 and higher
vanish. Conjecture 1 then reduces to its cases for the genus 0 GW-invariants with primary in-
sertions (b; = 0 for all ¢) and for the genus 1 GW-invariants with no insertions. For complete
intersections X C P", such genus 0 bounds with each H; being a power of H are implied by the
mirror formulas established in [8, 13]; these mirror formulas and bounds extend to many other
GIT quotients. The required genus 1 bounds for complete intersections X CP" are implied by the
genus 1 mirror formulas established in [20, 16].

The virtual localization theorem of [10] reduces the computation of positive-genus GW-invariants
of P"~! to a sum over weighted graphs. We use the approach of [20] for breaking such graphs at
special nodes to show that a generating function for the N-pointed genus g GW-invariants of P™



is a linear combination of N-fold products of derivatives of a generating function for the 1-pointed
genus 0 GW-invariants with coefficients that are polynomials of total degree at most 3(g—1)+N. In
contrast to the application of this approach in [22] to compute N-pointed genus 0 GW-invariants
of complete intersections X CP"™ with N >3, the present application requires dealing with graphs
containing loops and understanding the structure of Hodge integrals over ﬂg, ~ as N increases.
While we describe two explicit ways of computing the relevant coefficients, the final formulas be-
come rather complicated as g and IV increase. Nevertheless, our qualitative description of these
coefficients suffices to deduce Theorem 1 and to immediately obtain Theorem 2.

The approach in this paper can be used to compute twisted N-pointed genus g GW-invariants
of P™, but these do not correspond to the usual GW-invariants of the associated complete inter-
section for g >1. There are two necessary inputs for doing so. The first is Proposition 2.1, which
concerns the structure of Hodge integrals only and is thus directly applicable in all cases. The sec-
ond input is Proposition 2.2, which provides an asymptotic expansion of the mirror hypergeometric
function corresponding to the standard Givental’s J-function. The approach of [19] can be used
directly to determine the power series £ and @}, appearing in such expansions in the cases of twisted
invariants; in the cases relevant to the projective complete intersections, they are determined in [16].

In principle, all genus ¢ GW-invariants of P"~! can be determined via [9, Theorem 1]. However,
it is unclear how feasible it is to obtain such qualitative conclusions as our Theorems 1 and 2
from [9]. The g =0 case of Theorem 1, i.e. [22, Theorem 1], in fact confirmed a conjecture of
R. Pandharipande. This statement was part of the idea of [15] to establish the bounds (1.3) in
all genera by reducing them to the n =4 bounds of Theorem 1 via a degeneration scheme of [14]
and reducing the latter bounds to the g=0 case via [9]. As far as we are aware, the approach of
establishing the bounds of Theorem 1 from the g=0 case via [9] has not been completed yet.

The main theorem of this paper, Theorem A, is stated at the beginning of Section 2. Two de-
scriptions of the structure coefficients appearing in this theorem are given in Section 2.3 after the
two necessary inputs are introduced in Sections 2.1 and 2.2. We compute these coefficients in the
(9, N)=(1,1) case explicitly in Section 2.4 and establish Theorem 0. Theorems 1 and 2 are proved
in Section 2.5. The former is deduced directly from the structural description of Theorem A; its
proof makes no use of Sections 2.1-2.3. Theorem A is an immediate consequence of its equivariant
version, Theorem B, stated in Section 3.1. Section 3.2 applies the virtual localization theorem
of [10] to the equivariant N-point genus g Givental’s J-function appearing of Theorem B, reducing
it to a sum of rational functions in the equivariant weights over infinitely graphs. Section 3.3
describes two approaches for breaking these graphs at special vertices and reducing the associated
infinite sum to a sum of finitely many power series. The necessary equivariant inputs for the result-
ing finite sums are collected in Section 3.4. After a quick preparation in Section 4.1, Sections 4.2
and 4.3 implement the two approaches outlined in Section 3.3 and establish Theorem B with the
two descriptions of the structure coefficients of Section 2.3. Sections 5.1 and 5.2 establish the
key combinatorial identities involving Hodge integrals that are used in the proof of Theorem B,
Propositions 2.1 and 5.8, respectively.

2 Main theorem and some applications

For n, N € Z=°, let
In] = {p€Z=’: p<n}, e A



For each s=1,..., N, we set

Hy=mtH € H*(Py 1),
where 75 : ]P’R,_l — Pl is the projection onto the s-th coordinate. If in addition g,d€Z=", the
virtual fundamental class of My x (P!, d) determines a cohomology push-forward

evjf = {evl X.. .xevN}*: H*(ﬁgw(ﬂ"”_l,d)) — H*(Pﬁfl).
With h=(fi,...,hy), B = (k% ..., hiyt), and H=(Hy,..., Hy), let

[e%¢] s=N
20it0) = 3 tot{ Tl e oot 1 ) 2
d=0 s=1"° 7%

This power encodes all descendant N-pointed genus g GWs of P*~! defined in (1.1).

For b= (bs)scn) € (ZZ9)N | a tuple h as above, and peZ=0, let

s=N s=N o] w wnd—
b= b 5= [0, Bwg =3 ¢ ¢ g [fg)].
s=1 s=1 d=0 H (w_‘_?,.)n

For p=(ps)se[n) € |||V and a tuple H = (Hs)se[N] of formal variables, define

Ws = %7 qs = = AP(Evﬂv q) = }7[;5 Ps(wSaQS) € Q[ ]H _1]] [[QH : (2'2)
s=1

Theorem A. Suppose n,N € Zt and g € ZZ° with n > 2 and 29+ N > 3. The generating
function (2.1) for the N-pointed genus g GW-invariants of P! is given by

Z9(hH,q)= > > chpquh PAL(h, H, q), (2.3)
peln]N  be Z>0)N d=0
[b|<3(g—1)+N

(

with the coefficients Cyip.b €Q as specified in Section 2.3.

2.1 Structure of Hodge integrals
(d)

One of the two inputs determining the structure coefficients Cy:p.b in Theorem A are properties

of the Hodge integrals on the Deligne-Mumford moduli spaces /\/l g,N arising from the string and
dilaton equations. This input is provided by Proposition 2.1 below; it is proved in Section 5.1.

Let g€Z2°. For a tuple I = (iy,i2,...) in Z* or in ZI CZ>, define

o0 oo
1= ixeZ, |H|= kireZ, pI)=3(g-1)—|I|| €2
k=1 =
If in addition m € Z=° with 2g+m >3 and I €(Z=)9, let
g . SE—
>‘g;I = Hck(Eg)Zk S H2”IH (./\/lg7m) .
k=1



If m' € Z2° and b’ € (ZZ2°)™' | denote by bb’ the (m+m’)-tuple obtained by adjoining b’ to b at
the end.

If b= (bk)ke[m] € (ZZO)m’ let

m
o I Agr H¢Zk> if [b|> py(I)+m
(Ag:13 b)) = § My bl—ug(n F=1 (2.4)
0, if [b| <pg(1)+m;

{(Ag:15 7)) <ku> Agil3 Th)) - (2.5)

For c=(c,),ezt €(Z729)%°, let
S(e) = {(rj) €L XZ": (r,j) €{r} x[c;] VreZ"},
: Agsl; Tob')) r
D S e I (,))
’ bl —_— _— —_ ' /
b/e(220)S(©) (Il B[ =pg(1) —m—lel)! (r.4)€S(e) i

In particular, |S(c)|=|c| and the numerator above vanishes whenever the argument of the factorial
in the denominator is negative.

Proposition 2.1. Let g, m€Z>° with 2g+m >3 and I €(Z=°)9. There exists a collection
AP eQ  with ee(ZZ)", ce(Z20)™

which is invariant under the permutations of the components of € such that

e = 0 A2 (1)t el r)ﬁ(bk) 20

€€(Z>O m €k
le[<pg(I)+m

for all b € (Z=°)™ and c € (Z=°)>°. These collections can be chosen so that there exists Cy € R
such that
|A19] < ¢y 2ll(3(g—1) +m+]e])! (2.7)

for all 1€(Z=%)9, ce(Z=%)°, ec(22°)™, and m€Z=" with 2g+m>3.

For example,

{Agir; b)) (9) (96)< |b|— el ) <bk>
: = A7 = AV 2.8
CEPUED L AL 28)
\§T§u9(1)+m

If r€Z" and e, € (Z=°)* is the r-th standard coordinate vector, then

b'=r ~
/ (Agsr; Top ) ™\ _ 49
Z<(_1)b (!b!+b’—gug(1)—m—1)! (b’>> = Albie,

b=0
¢ b|—|e] 1 ( Ok
| e)e(zz;())mj’e’" pig (1) +m~+1—r—e| /};[1 K
|l <pg(D)+m

€)

Proposition 2.1 is established in Section 5.1; all numbers A(O < and some numbers A( are deter-

mined in Examples 5.6 and 5.7. The bound (2.7) is used in the proof of Theorem 1.



2.2 Asymptotic expansions

(d)

Jp.b in Theorem A is the asymptotic

The second input determining the structure coefficients c
expansion of the hypergeometric series

e wnd
Pl g => g & Q(w)|[[d]] 29)

=0T ((wtr)r—um)
r=1

as w —» oo provided by Proposition 2.2 below. By [8, 13], this hypergeometric series encodes the
1-marked genus 0 GW-invariants of P?~1.

For neZ™, let

L(g) = (1+¢)"/" € 1+ qQ[[q]]. (2.10)
For m,j €7, we define H,, ; € Q(u) recursively by

Hm,j =0 unless 0 <5 <m, Hoo = 1;

)

m—j

Hmj(u) = Hm—1,5(u) + (u—l) <d +

du v >Hm1,j1(u) ifm>1,0<j<m.

For example,

Hono(w) =1, Hom1 (1) = (“;)H Hoo (1) = <7§><1+ 3"2‘%-1))% (2.11)

for m>0. Finally, we define differential operators £1, ..., £, on Q[[¢]] by
P 3 (:‘) Ho—igoi(L") D" (2.12)
By (2.10) and (2.11), the first two operators are
£ =nL"D + nT_l(L"—1) — nL"{Llfz"DL"Ql},

Lo

(Z) L"D? + <n;1> (L"—1)D + W((3n—5)L”+n+5)(L”—l) :

Proposition 2.2 ([22, Proposition 2.1]). The power series F' of (2.9) admits an asymptotic ex-
pansion

F(w,q) ~ ef@v Z Dy (q)w™° as w — 00, (2.13)
b=0
with £, ®1,...€qQ[[q]] and o€ 14+qQ[[q]] determined by the first-order ODEs

1 1
1 + Df - L, £1¢b + ZSQ(bb_l + ... + an(bb_i_l_n == 0, (214)

where &, =0 for b<0.



For example,

Dy(q) = L(q)—(n—l)/2 _ (1+q)—(n—1)/2n’

n—1 _ 3 (2.15)
@1(q) = 5 (n+(n+1)L0) ™ = (2n+1)L(g) ") @o(q).
By Proposition 2.2, for each p€Z=° there is an asymptotic expansion
oo
{1+w 'D}’F(w,p) ~ € U’Z(I)p,b as w — 00, (2.16)
b=0
with @,.0€14¢Q][¢]] and ®p.1, Pp;2 . .. €¢qQ|[g]] described by
oy =Py, Pp_1=0, Ppp=LP, 14+DPy 141 VpeZt, beZ".
We set ®,,,=0 if b<0. For example,
®p0 = LPDy, ®,1 = LPDy — ("2 p)p Prr- L1—L7™)®y; (2.17)

the second identity above follows by induction from the first one along with (2.10) and (2.15).
For g€ 729, let (Cg;n;[)le(zzo)g be a tuple of integers such that

e(E;@TP™ 1) = Y Conidgr H D91 € H* (M x P 1) (2.18)
I1€(Z29)9

for all m € Z2° with 2g+m > 3. Let g,m € Z=2° with 2g+m >3, I € (Z=°)9, c € (ZZ%)*°, and
€€ (Z=%™. With Ag?f) €Q as in Proposition 2.1, define

1(9:€) (9:€) 7.1
I;(c1,c2,.. AI ;(0,c1,c2,...) H:k" (219)
k=1
-1 Ng(1)+m+|C|C . Z(g,g) < q d Cr
(I)ggce)(q) _ ( ) . _.gy i1 I;c H ( r(Q) > . (220)
’ Po(q)% 5 e\ (r+1)! @0 (q)
Example 2.3. Using that the rank of E; is g and Euler’s sequence for P"~1 we obtain
n—1)n
Como =1 Cimoy=m  Cimy=—" 5 i (2.21)
For 0€ (Z=°)™, these statements and Example 5.6 give
(0,0) _ (_1\ym—3+|c| 9 | 2 - i (I)T(Q) .
) = (-1 1d —_
O (9= (1) (m—3-le])!o(g) 71;[ !\ (r+1)! ®o(q))
Dn(m—1—|e))! 7 1 o(g) Y
O () _ (_qymtlel (M= 1 .
(1)e(@) = (1) 18 U eI\ (r 1) 2o(g)



All other power series <I>§‘(_’f) with g=0 and (g,1)=(1, (1)) vanish. The first expression above equals

D,,—3c(q) in [22, (2.30)].’ For e€{0,1}™, Example 5.7 gives

et | e
o9 (g) = (—1ym AR )y if |e| =1;

(0);0 24 ’
—(le|-2)!, if |¢|>2.

If in addition r € Z* and e, € (Z=°)> is the r-th standard coordinate vector, then

(r+1), if |e|=0;
(m—1—r), if e|=1;
—(le[=2)!((le|=1)r+m), if [e[>2.

(L) (o _ (_1ymi1(m—le])! .(q)
20y (@) = O™ S Bo(g)

The power series <I>(;(’f) with e {0,1}™ for any me€Z" vanish.

2.3 The structure coefficients
We now describe the coefficients Cf;;j;),,b in (2.3) explicitly in two ways. The first description provides
a closed formula for these coefficients as sums over connected trivalent N-marked genus g graphs;
see (2.29). The second description provides a recursive definition of these coefficients which reduces
the value of 3¢+ (or equivalently of the dimension of M, y) with the base case provided by (2.32),
when this value is 2; see (2.33). We also show that these coefficients satisfy

WL #A0 = b <3(g—1)+N, |p|~|b|+nd=(n—4)(g—1)+(n-2)N. (2.22)

It is fairly straightforward to see that the two descriptions are equivalent. This also follows from
the two variations of the main localization computation in Sections 4.2 and 4.3. For a ring R,
® e R[[¢]], and d€Z, let

[[q)]] q;d €R

denote the coefficient of ¢¢ (with [®],.4=0 if d<0).
Let S be a finite set. An S-marked graph is a tuple
I'= (g:Ver—Z=",n: SUFl— Ver, Edg), (2.23)

where Ver and Fl are finite sets (of vertices and flags, respectively) and Edg is a partition of FI into
subsets e with |e|=2. For N € Z=° an N-marked graph is an [N]-marked graph. Figure 1 depicts
some 2-marked graphs I', representing each vertex of I' by a dot and each edge by a curve between
its vertices. The number next to a vertex v, if any, is g(v); we omit it if g(v)=0. The elements of
the set [N]=[2] are shown in bold face and are linked by line segments to their images under 7.

An equivalence between an S-marked graph as in (2.23) and another S-marked graph
I = (¢': Ver' —Z7°,7': SUFI' — Ver', Edg’)
is a pair of bijections hye,: Ver — Ver’ and hg: F1— F1’ such that

g=00hver, hveronls =1'|s,  hvecon|m = n'ohp,  hpi(e) € Edg’ VeeEdg.

10



1 1 1 1 1
2 2 2 2 2
Figure 1: The trivalent 2-marked genus 1 graphs

We denote by Aut(I') the group of automorphisms, i.e. self-equivalences, of I'. For example,
Aut(I") =2 for the second and third graphs in Figure 1.

For I as in (2.23) and f €Fl, we denote by ey € Edg the unique element of Edg containing f. For
each veVer, let

g =g(v), S,=5nn"Yv), Fl(I')=Flnyp~t(v), FL(T)=n"'(v) C SUF],
valp(v) = 2(gy—1) + [FL,(D)|,  mu(T) =3(gu—1) + |FL,(I')].

A vertex v € Ver of I is trivalent if valp(v) >0. The graph I' is trivalent if all its vertices are trivalent.

A graph I' as in (2.23) is connected if for all v, v’ € Ver distinct there exist

meZt, fl_,ff,...,fn;,fntEFl s.t.
n(fr)=v. n(fm) =", n(fi")=n(fi1) Yielm—1], e;- = epr Vie[m].

For a connected graph I' as in (2.23), we define

gr = 1—|Ver|+|Edg| € Z=° and al) =gr + Zg(v) (2.24)

vEVer

to be the arithmetic genus of the underlying graph without the map g and the arithmetic genus of
the graph I itself, respectively. For such a graph,

SOIFL(D) = 2[Edg| + 1S, Y m(D) + [Edg| = 3(a(D)—1) + S, (225)

veVer vEVer

the first equality above does not depend on T' being connected. For g, N € Z=2°, we denote by Ag N
the set of (equivalence classes of) connected trivalent N-marked genus g graphs. The two elements
of Aj,1 and the five elements of A; 5 are shown in Figures 2 and 1, respectively.

Let T be an N-marked graph as in (2.23) with S =[N]. For b € (Z2)F»@) and feFI,(T), we
denote by by € Z= the component of b corresponding to f. For

be (22", ce [[(z2. and 1e [[(z2)",

veVer veVer

we similarly denote their respective components by

by €Z>° for feFI(T) and bUE(ZZO)ﬁ”(F), c, €(22°)>®, I,€(2=")9 for ve Ver.
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Define

A(D) = {(b, e, e, 1) € (22°)FOx(zZ) PO T(220) *x [ [(22%)% -
v€EVer vEVer (2.26)
[by| + ey | +Icoll = g, (1) +[F1,(T)| Yo € Ver}.

Choose a labeling of the flags so that each edge e of I' contains flags with opposite signs. For each
vertex v € Ver of I', denote by
FIE(I") € F1,(T)

the subset of positive/negative flags at v. For pe||n], let
p=n—1-pe|n].
For deZ2°, pe|n]|V, and be (Z=°)N, we define
Sr(d, p,b) C (ZZ0)Ver x ||n||Be x (z20)Ede (2.27)

to be the subset of triples (d, p’, b’) such that

> d, =d,

vEVer

D (Batbe) + Y (0l b))+ D (B, —1-b,)

SES, fEFL; () FEFIH(I) (2.28)
= (n—4)(1—g,) + |FL,(I')| + nd, V v €& Ver.

By (2.24) and the first statement in (2.25), this set is empty unless the second property on the
right-hand side of (2.22) with g=a(I") holds.

For (p,b) e |[n||N x(Z=°)N and deZ2°, let

1 /
o T e, 2 O]

FeAy N (d,p’,b")ESr(d,p,b) vEVer
(b c.eH)e A (T) (2.29)
(9060 RO (1) (I)Péf 3b}/+ff*béf(Q) (I)ﬁef ;b}/“fHeréf(q)
re@]1 T dolg) 11 VDo) 11 b1 o (q)
s€8, S feFL(r) 4 FEFLH(T) f

q;dy

Since
Db <> (Hi4es) <3(go—1) + [FL,(T)| = my(T)
SGS'U SES’U

if the corresponding factor on the second line of (2.29) is nonzero, the second identity in (2.25)
implies the first property in (2.22).

(d0) _ .(d)
g;p,b ™ “g;p,b
N €729 a tuple p= (Ps)seqn of integers, and S C [N], let p|s be the S-tuple consisting of the

elements of p indexed by S and
pls = |pls| =) _ps-

ses

We next give a recursive description of the coefficients ¢ appearing in Theorem A. For

12



For meZ>9, let P;Z@ denote the collection of tuples (g, (gi, S, Ni)icm]) such that

=m i=m

g€z ez, NieZ' Viclm], [N]=|]|Si 24+ Ni>3,
=1 =1
(0, {N},l) S {(gi,S,-,Ni): iE[m]}, g,+|S,H—]NZ| > 2 Vie[m], g’+Z(9i+Ni) =g+tm.
=1

We write elements of 73;?7\2 as tuples (¢’,g,S,N) and denote the components of the m-tuples g, S,
and N by g;, S;, and N;, respectively. We note that

39i+|Si|+N; < 3g+ N Vie[m]

if (¢, (gi, SivN’i)iE[m]) is an element of PQ(T\?.

Remark 2.4. Let I be an N-marked genus g graph as in (2.23) with S =[N] and v=n(N) be
the vertex to which the last marked point is attached. Breaking I' at v and replacing the flags
at v with marked points, we obtain m connected strands similarly to Figure 4 on page 30 for some
me€ZT. Each of the strands is of some genus g;, carries the subset S; C [N] of the original marked
points, and N; € Z™ additional marked points arising from the flags at v. Then,

(0(0), (91 Sis Nicto) € PLY-

Furthermore, every element of I' describes a type of collections of strands obtained by breaking an
N-marked genus g graph I' at the vertex v=n(N) to which the last marked point is attached.

For m, ¢, and N as above, define

Ay = (s e, D e [T X [ ](229)¥x(229) " x(22) (2.30)
=1 i=1 .

|b|+e|+lel|= g (1) +NI}.

If in addition d,t€Z, let
Sy n(d,t) = {(p,b) € [[In)¥ x [[Z": Ip|-[b| = (n—4)(1—g")+2[N|+n(d+1)};  (2.31)
=1 =1

the number |b| above denotes the sum of the three components of b (not of their absolute values).
For tuples p and b as above and i € [m], we denote by p; € |[n]|Vi and b; € Z"¢ the i-th components
of p and b. If in addition f € [Ny], let p;.r €[[n]| and b;;; € Z denote the f-th components of p; and
b;, respectively.

For any p,p’ €||n]| and b,V ,d,t€Z, let

€0:(p), (b) ~ (2.32)

(d,t) (=1, ifb>0, b+ =—1,d,t=0, p+p' =n—1;
0, otherwise.

13



For all g € ZZ°, N € Z* with 2g+N >3, N-tuples p € [|[n]]V and b € (ZZ°)", and d,t € ZZ°, we
inductively define

i=m C(di,tz‘)
o) Z 1 Z Z H gi;P|s; P}:bls; b]
g;pb m) N;!
,d'e€z20 / (m) d,te(z=0)m i=1
" ez (Z,’,g’s’lj)izgw \d|:d—¢(i’,|t\):t—t’
( 7§7c7 )e g/,N (2.33)

(' B)ES n(d' 1))

X <I>(9’,§)((J)i:m 11 P by e+t (@)
Iic . ' b;:f'q)o(q) Ja )

=0 if b;;f < 0 for some f € [N;] and 2¢;+[S;|+N; > 3 (if the last sum is 2,

(diti)
gi;Pls; Pj;bls; b]

(ds ti) -
Coiipls, plubls, by, 15 Ve by (2.32)).

with ¢

If the summand in (2.33) above does not vanish, then
—bp <Ulptep+l VIE[N] ie[m] = —[b'| <3¢'-3+2|N|;

the last implication makes use of the condition (b”,¢,c, I) € .,Z;,’N. By induction, the non-vanishing

coefficients cg,il’)t )b thus satisfy the bound in (2.22). Furthermore,

A0 = [p|-Ibl+n(d+t) = (n—4)(g—1)+(n—2)N. (2.34)

(dt) _ (d0)

Thus, the coefficients Copb=Cop.b

defined by (2.32) and (2.33) satisfy (2.22).

Since @Y T e qQ[[¢]] unless ¢ =0 and P,y € ¢Q[[¢]] unless ¥’ =0, all nonzero contributions in the

d=0 case of (2.33) arise from the elements (¢’,g, S, N) of Pérj'ﬁ]) so that g; =0 and |S;|,|N;|=1 for
every i € [m]. These conditions imply that ¢’ =g and m = N. By the first statement after (2.16)
and (2.20),

[@r0] 0 =17 eln], [0¥% (@], o= (D" DN Cpny A Ve (2200, ce (22N

Combining these observations with (2.33) and (2.32), we obtain

s=N
0,¢ A bg,b”—i-es
Cé;p?b _ Z Z(*l)‘ug(IH_NC nIA H HT
(b EOI)GA N p'elln||N s=1
D/ |=(n—1)(1—g)+nt+| |
(9:€) 1 bs
= D Oplltlnt-n(V-1+9) Y ComT AT 5 e (2.35)
1€(22°)0 c€(z20)N s=1 7% N7
ng(D=Ib|-N

= Olp|[b|-+nt,(n—4)(g—1)+(n—2)N Z Coins1 {Ag;1: ™)
1e(22%)9
[b|+[[1][=3(9—1)+N

where 0, is the Kronecker delta function (equals 1 if a =b and 0 otherwise); the last equality
above follows from (2.8). The t=0 case of the above statement can also be obtained from (2.29).
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(d)

The coefficients ¢, }, must be invariant under the permutations of [N [N] (same permutations in the
components of p and b). This is not apparent from either of the above two descriptions of these
coefficients, even in the extremal cases; thus, this is a consequence of the proofs of Theorem A in
Section 4.

2.4 Proof of Theorem 0

The statement of Theorem 0 is equivalent to

n—1 n—1—p nt n- — i
Z<H : >P g 7AD" (nD)n (Ho4dh)=? (2.36)

h— 24 _d 48 d
V1 n2 [1(H+rh)» hT1(H+rh)

r=1 r=1

p=0

with the identity holding modulo H™ and as a power series in A~'. We deduce this identity from
Theorem A below.

By the defining property of the cohomology pushforward, the generating function (2.1) with
(9, N)=(1,1) is given by

200t =3 (S (5T ) e 0 )

d—=0 1,d

By (2.3),
ZW(hH,q) = > > chpquh "A,(h, H, q) (2.37)

pelln] be{0,1} d=0

with the coefficients Cgc,l})) » € Q determined by either the closed formula (2.29) or the recursion (2.33).
In order to compute these coefficients, we will make use of

0,02) _ g2 gLO) _ _(r=1)n a0 L) no o) _ n®
oo =P Pajo = 48 7 oo =0 Pojo” = 24’ P (0)sex T 24®’ (2:38)
n—1
Dp.o Py P n?-1 -~
pz::() Dy P9 " N 12 ( )’ (2.39)

where 03 € (Z=°)3 and 0 € (Z=")>° are the zero vectors and e; = (1,0,...) € Z®; see Example 2.3
and (2.17).

The set Aj 1 of connected trivalent 1-marked genus 1 graphs consists of two elements, I'g and I'y;
they are depicted in Figure 2 along with the corresponding collections (2.26). The associated
collections (2.27) are

{(d,~)}, if d=0, p=n—2+b;
S da 7b -
tolc ) {Q), otherwise;
dYx||n||xZ2°, if d=0, p=n—2+b;
Sr, (d,p,b) = {d}x[n] P
0, otherwise.
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\Aut(l“o)\:l |Aut(I‘1)\:2
1 Ver={v} 1 Ver={v}
& s o s-n)
FlL,(Ig)={1} Fly(I')={1,+ -}
“I*(FO) :{(O’ Oa €1, (0))a (07 07 0’ (1))’ (07 1’ 07 (O))v (1) 07 07 (0))}a AV*(FI) = {(037 037 Oa )}

Figure 2: The connected trivalent 1-marked genus 1 graphs

In particular, c§f27b:0 unless d=0 and p=n—2+b. Below we assume that the pair (p,b) satisfies

the last condition.

By (2.29), the contribution of an element (d,p’,?’) of Sr, (d,p,b) to cg(,)[)) p 1S

(_1)b+b’ (0,05)
9 ();03 (q)

D5 5(q) Py, v (q) %;Hb'(@ﬂ
Po(q)  Polq) Po(q) 140

- 2.40
:{%[[(I)g);gs)(q)¢1o()q)/o(‘I)q’ 1‘1)]](10’ if b, b =0: ( )

@o(q) Po(g) Polq)
0, otherwise.

In particular, I'; does not contribute to cg?r)hl’l. By (2.38), (2.39), and (2.15), it contributes

1 D (q) n?— B
2|’nL(Q)q);(q)— - YL )ﬂqo_o

)

(0)

10 Cin_2-

The contribution of an element (b, ¢, c, (i) of A*(I') to Cg('); p 18

(1,(), )\ Prpr e (@) £ b—0:
[26e (@ =85 ] gor 10=05

(€ <I>’\;b” e—b(Q) .
(-1)" [[@ébfc”wwg;q) =[5V @], ifb=1, e=1; (2.41)
q

)

0, otherwise.

Along with the conclusion of the previous paragraph, (2.38), and (2.15), this implies that

__(n=ln (2.42)

(0) _n 0
1n 2,0 — 48

Clin—1,1 = BYk

Along with (2.37), this establishes (2.36). These two coefficients can also be obtained directly
from (2.35) and (2.21).

We now obtain (2.42) and the vanishing of the remaining coefficients c( ) »p i1 (2.37) from the

recursion (2.33). The collections 73( ) and 73( ) contain one element each,

Iy = (1,(0,{1},1)) and Ty =(0,((0,{1},1),(0,0,2)),
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respectively (771(21) also contains a copy of I'; with the two triplets swapped); the collections Pfﬁl)

with m > 3 are empty. The elements of the collections P{?) precisely correspond to the two
1-marked genus 1 graphs depicted in Figure 2 (this is because N = 1; see Remark 2.4). The
collections (2.30) corresponding to I'g and I'y are also as in the first computation, i.e.

Ai(l) = A*(FO) and A67(1’2) = A*(Fl) .
The associated collections (2.31) are given by
Suwy(dt) = {0, V) elnl X Z: p—b = 24n(d+1)}, (2.43)
So,(1,2)(d, 1) = {(p’, b) e (unﬂ X UnMQ) X (ZXZQ) P’ p'| = n+2+n(d+t)} , (2.44)

with |b’| above denoting the sum of the three components of b’ (not of their absolute values).

We first determine the contribution of ’Pfll) in (2.33) with (g, N)=(1,1). The first product in (2.33)
vanishes unless

d =d, t'=t, b >0, b = —1-—b, P =n—1-—p; (2.45)

if these conditions hold, then this product equals (—1)°. Along with the condition on (p,d')

in (2.43), this implies that Pfll) does not contribute to cgc.ll), b= g‘i;og

If these two conditions hold, then the contribution of each element of JZ(J{ 1y = A*(Tg) is given

unless d=0 and p=n—2—>b.

by (2.41). The sums of these contributions over the four elements of j{ ) in the two possibly
non-trivial cases are given by (2.42).

We next determine the contribution of 731(21) in (2.33) with (g, N)=(1,1). We write triples p’ and b’
appearing in (2.44) as (p, p+,p—) and (b',b4,b_), respectively. The first product in (2.33) vanishes
unless (2.45) is satisfied and

by >0, bo=-1-b,, p.=n—l-py

if these conditions hold, then this product equals (—1)b+b+. Along with the condition on (p’,b’)

in (2.44), this implies that Pf? does not contribute to cg(,iz)) bzcgc,l]’)og unless d=0 and p=n—2—b. If

these two conditions hold, then the contribution of .Zl’{ ( A*(T'1) is half of (2.40) and thus still

1,2)

vanishes. This re-establishes (2.42) and the vanishing of the remaining coefficients c% p in (2.37).

2.5 Proofs of Theorems 1 and 2

These two theorems for g = 0 are established in [22]. Theorem 2 is meaningless if n =1, while
Theorem 2 in this case is justified immediately after its statement. Thus, we can assume that n>2
and 2g+N >3. We also assume that the numbers in (1.1) satisfy

N
cs€|n|l Vse[N] and Z(bs+cs) =nd+ (n—4)(1—g) + N.

s=1

By (2.1), the GW-invariant (1.1) is the coefficient of

N
¢ HHCSFL;bsfl , where ¢y =n—1—c;g,
s=1
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on the right-hand side of (2.3).
For tuples d = (ds)se(n) and b'= (b)) e in (Z=2)", define
p(d,b)eZ" by  pid,b)=nd,+¢ —bs+V,.

By (2.3) and (2.2),

<7'bl];]c1 TbNHCN>;P:171
b= 2.46
_ Z > chpdb/ b/H[[[[Fs(d,b/)(?MQ)]]q;dsﬂ by (2.46)
Ode Z>O N b/ Z>O s=1 w;bs—0g

\d| d— d’ \b'|<3(g 1)+N

with [...],.a denoting the coefficient of ¢¢ and ! /)(d prypr =0 1 ps(d,b') & [|n] for some s€[N].

For any non-vanishing summand on the right-hand side of (2.46),
ps(d,b) <n—1, bs+cs > nds vV se[N].

Thus, ds =0 if by+c, <n. Since the coefficient of ¢° in ﬁp(w,q) is 1, it follows that b, = b, and
ps(d, b’)=¢; in such a case. Since |b’| <3(g—1)+N, this implies Theorem 2. By [22, Corollary 5.3],

Ccde

= (nds)!

(2.47)

‘ [[[[F J(ab) (W, q)] q;ds]]

w;bs—bl,

for some C,, €R" dependent only on n. Along with the next statement below, which is proved in
the reminder of this section, (2.46) and (2.47) imply Theorem 1.

For be (Z=%)N as above, let

s=N
bl bl
bl = [Tb., — .
11 <b bi,.... by

s=1

Proposition 2.5. Let g,n€Z>° with n>2. There exists Ch,g €R such that
(@) —CNJ“d vdez°, pe|n|N, be(z29N

‘ Copbl = b!

Lemma 2.6. Let g€Z=". There exists C,€R such that

< Sl bl gl ] (T (L)

for all 1€(Z2%)9, c€(22°)°, e (Z=°)™, and m € Z=° with 2g+m > 3.

[o20]

q;d

Proof. By (2.19) and (2.7), there exists Cy €R such that

C, et

o (Blg—1)+m+]e))!
A9 <

el
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for all I, c, €, and m as above. By (2.15), there exists Cy, € R such that

(n=1)(g—1)

[20(@)* 7] 4| = [[14+0) "] ] < Citg = [1-Cag) ] -

By [22, Lemma 5.6], there exists C), € R such that

&e]

Combining (2.20) with the above three estimates, we obtain the claim. O

<cr [(1—qu)—r]]q,dr! Vr,dez>0.

For g, N € Z20 with 29+ N >2, let
1 —
= —_ 3 —1)+|FL,(M)!,
N = D Ty 1 G0 -D+FLI))

FeAg ni1 vEVer
with each I' as in the S=[N+1] case of (2.23).

Lemma 2.7. There exist C €RT and C,€R for each g€ Z=° such that
agn < C,CNN! Vg, NeZ2" with 2g+N > 2. (2.48)

Proof. We define ap0=0, ap,1 =1, and

o
ag,N
fo@) =) <ya €l vgez=’.
N=0 "'
The claim of the lemma is equivalent to the existence of some C'€ R™ such that all power series fy(q)
converge whenever |¢| <1/C. The g=0 case of this claim is [22, Lemma 5.10]. It implies that the
power series

fola) € qQllgll,  (1+m(1-fo(q) ', (1—fo(a)) ™ € Qllg]] with meZ (2.49)

converge for |g|<1/C for some C €R™.

We thus assume that g€ Z". Suppose N €Z=" T is a connected trivalent (N +1)-marked genus g
graph as in (2.23) with
S =|N+1]={0,1,...,N},

and v=7(0) is the vertex to which the marked point labeled by 0 is attached. Let S, C || N+1]|
be the subset of marked points attached to v, as in Section 2.3. Breaking I' at v and replacing the
flags at v with marked points, we obtain connected strands similarly to Figure 4 on page 30. The
set of these strands consists of

e a genus 0 two-vertex graph, with the marked point 0 at one of the vertices and another marked
point at the other vertex;

e m additional strands I';, each of which is of genus g; and carries N; € Z= of the original marked
points of the set [N] and (s;+1) € Z" additional marked points so that g;+N;+s; >0 and T; is
a trivalent graph if 2g;+ N;+s; > 2.
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Since I' is a trivalent N-marked genus g graph,

=m =m 1=m =m
2g(v)+m+y si>2, o()+Y gty si=g, » Ni=N.
i=1 i=1 i=1 i=1

Summing over all possibilities for I', we thus obtain

g'=g oo i=m
(3¢’ —|—m—|—|s| 2)l (N Qgi,Ni+s;
=YY Y% NI 2o
g'=0m=1 gse(Z>°)m Ne Z>0) i=1
2g'+m+|s|>2 |N|=N

g'+gl+Isl=g
This is equivalent to
g'=g oo i=m S
=y SR
LA\ (si+1)! dgsi ’

g'=0m=1 g sc(720)m i=1

29’ +m+|s|>2

g'+lgl+Is|=g

We note that
3+ |{i€[ml: (gi,5:)#(0,0)}|+]s| > 2

above unless (g, si)=(g,0) for some i€ [m] and (g;,s;)=(0,0) for all j#1i. Thus,

= ho@)™ Y S (3g/tmtls| -2 77 (1 dv,
=f@d ==+ D] oy 11 (si+1)! dqs? (9)
m/=1 g'=0m=0 g sc(7>0)m i=1 v
2g'+m+|s|>2
g'+gl+[s|=g
(gi,51)#0Vi

s <3g +m+$ +|s|—2> fo(q)m/> |

m'=0

Combining the above with the last identity in Lemma 5.1, we obtain

(1+1n(1—fo(Q))fg(Q)

S S =y (=)

g=0m=0 g sc(220)m ml(1— fo(g))39"FmHisl=1 L2\ (s;+1)! dg® (2.50)
29’ +m+|s|>2
g’ +lgl+s|=g
(gi,8:)#0Vi

The right-hand side above is a finite sum (the terms with m > g—g¢’ vanish) and g; < g for all i € [m)]
and for all summands in (2.50). Since the power series (2.49) converge for |¢| <1/C, it follows by
induction that so does the power series fy(¢). This establishes the claim. O

Proof of Proposition 2.5. Let a!=0 if a<0. We first note that

(" +e=b)! _ (b'+¢)! b +€\ € b e €! >0
g S o S Jn s Ty Vb,b", ecZ7. (2.51)
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Furthermore,

(b +e_ =) (b +eqp+1+0)! - (bﬁ+bg’r+e+e++1)6 e |
b | b'L! =\ Ve el )T

< 5bﬁ+bi+e*+€++le,!e+!
for all o', 4",V e_,e. €Z20.

Let '€ Ay v be as in (2.23). Since I is a trivalent graph,

2gv—|—’ﬁv(I’)| >3 Vwée Ver, ‘Ver| < 2< Z(Qv—l) + ‘Edg‘)+N: 2(9—1)+N;

vEVer

(2.52)

the second statement above follows from the first one, the first statement in (2.25), and (2.24).

Combining (2.24), the above bound, and the first statement in (2.25), we obtain

[Bdg| < g—1+|Ver| <3(g—1)+N, Y ((go—1) + [Fl,(I)]) < 4(g—1) + 2N

vEVer

If in addition b’ € (Z=°)F¢ and v € Ver, let
Ay(b) =3(gu—1)+3|FL(D)[+1— D 0. + > b,
FEFI; () feFIF(D)

By the above bounds,
D AL(b) <14(g—1) + TN

vEVer

Let (b” ¢ ¢, I)e A*(I) and b’ € (22°)Eds. By (2.26),
leoll 41+ (B +es—bs+1) + > (Vf+es—b,+1)
SESy fEFL; (D)
+ Y (Ve 14D, +1) < A (D)
FEFIF(T)
for every v € Ver. Along with (2.51) and (2.52), this implies that

1 1r (0 +es—by)! H(b?ﬂf—b'ef)! H(b'f“f“*béf)! <520 ]

! Al Al A
=V eS8, s fEFL; (T) f FEFLH(T) f s€Su

By the first statement in [22, Corollary 5.8], there exists Cy, € R such that

%3],

<cr a7 w0 vb.dez=, pelnl,

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

By Lemma 2.6, (2.57), (2.55), and (2.56), there exists C,, ; €R such that the absolute value of each

nonzero factor [-] in (2.29) is bounded above by

(3(go—1)+IFL(@D)|+lco))! (leoN\yr/ 1 \™" Ay (b) —Ay(b)
|cyl! Cy Tl_Il r+1 g H(l Cn,g4) ﬂ

q7d’U
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Along with (2.54), this implies that the absolute value of each summand in (2.29) is bounded
above by

n,

Cl4g(g71)+7N [[(1 o Cn,gQ)_(14(g_l)+7N)]] aid

b!
go—1)+[FL,(D)|+]c)! (leo\pp/ 1 ™"
xvl:/[e]( ey ! Cy H r+1 .

By (2.26), the number of possibly nonzero factors in (2.29) with ¢, fixed (and b”, ¢, and I varying)
is bounded above by

(3(9v—1)+|F1u(F)\—HCvH + go+2[FL,(T)| -1 ) 4(gu—1)+3[FL (D) ~les |
go+2[F1,(T)|—1

Along with the conclusion of the previous paragraph and (2.53), this implies that the absolute
value of the sum in (2.29) with T, (d, p’,b’), and ¢=(cy)yever fixed is bounded above by

30(g—1)+15N [(1=Cpgq)~(Me=D+TV]

- " ;d I
b! : H(3(9v—1)+|Flv(F)|)!
. vEVer
‘o an( (90— 1)+ [FL(T >|+|cv|>!<rcv|>ﬁ<1)%)'
A\ Blgo )P el e /A1

By Lemma 5.2, the sum of the terms on the second line above over all possibilities for ¢ is bounded
by 239+N

By (2.26) and the second equality in (2.25),
[b'] < [b"[+]e| < 3(9—1)+N — [Edg|

for every nonzero summand [-] in (2.29). Thus, the number of tuples b’ in (2.29) which contribute
to (2.29) with T and (d, p’) fixed is bounded above by

(3(9—1)+N—|Edg| + |Edg\—1> < 93(g-1)+N
|[Edg| - N
Along with (2.28) and the first statement in (2.53), this implies that the number of elements of
Sr(d, p,b) with nonzero summands in (2.29) is bounded above by
23(g—1)+N . n|Edg| < (Qn)?:(g—l)—l-N )

By the conclusions of the last two paragraphs, there exists (), ; € R such that the absolute value
of the contribution of each I'€ A, ,, in (2.29) times |Aut(I")| is bounded above by

CN | /—(14(g— _
Cng < (14(g d1)+7N)>‘Cig.v£/Ie(rS(gv1)+‘FIU(F)’)!
e _
= Tns (14(9 1)—|—d7N +d— 1) Cig . Ul;{gg(g“_l)+|Flv(F)’)!

ch =
< gttt T (3(90— 1)+ [FL(D)])!

vEVer
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on the first line above

(Z) _ a(a—l)..cé!(a—d—i-l)

(d)

gp.b 1OW follows from Lemma 2.7. O

is as in the Binomial Theorem. The claimed bound for ¢

3 Torus equivariant setting

In Section 3.1, we first review the relevant aspects of equivariant cohomology; a more detailed
discussion can be found in [20, Section 1.1]. We then state an equivariant version of Theorem A;
see Theorem B. Theorem A is obtained from Theorem B by setting o = 0 and using the [ =0
case of the second statement of [18, Theorem 5]. In Section 3.2, we apply the Virtual Equivariant
Localization Theorem of [10] to reduce the generating series (3.8) for equivariant GW-invariant
to a sum over the fixed loci of the actions of the n-torus T on the moduli spaces M, y (P!, d).
The two proofs of Theorem B carried out in Sections 4.2 and 4.3 are outlined in Section 3.3; they
involve breaking the fixed loci into pieces of finitely many types for each fixed pair (g, N). The
technical observations and background data needed for these proofs are gathered in Section 3.4.

3.1 Equivariant GW-invariants

Denote by v — P> the tautological line bundle and by T the complex n-torus (C*)". Its group
cohomology is the polynomial algebra on n generators:

Hi = H*(BT;Q) = Qla) = Qlay, . .., ), (3.1)

where a; =7}c1(v*) and
m: BT= (P®)Y — BC*=P>

is the projection onto the i-th component. For r € Z=Z°, let o, € Hf be the r-th elementary
symmetric polynomial in oy, as, ..., a, and

o, = (—1)"to, € Hf.

Denote by
T C Qov, ..., o) C Hi

the ideal generated by o1, 09,...,0,_1 inside of the ring of symmetric polynomials.
If T is acting on a topological space M, let
Hi(M)= H*(BM;Q), where BM = ETxtM,

be the equivariant cohomology of M. If the T-action on M lifts to an action on a (complex) vector
bundle V— M, let
e(V)=e(BV),c(V)=¢(BV) € H(M)

denote the equivariant Euler and Chern classes of V.

The projection map BM — BT induces an action of H} on Hy(M). If in addition M is a compact
oriented manifold, this projection induces a well-defined integration-along-the-fiber homomorphism

/ L Hi(M) — H (3.2)
M
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for the fiber bundle BM — BT. It commutes with the actions of Hf. If M’ is another compact
oriented manifold with a T-action, a T-equivariant continuous map f: M — M’ determines an
equivariant cohomology push-forward homomorphism

For HE(M) — HA(M'). (3.3)

It is characterized by the property that
| o) = [ rwp ens voeman, o eH;n. (34)
The homomorphism (3.3) commutes with the actions of H.

Throughout the paper we work with the standard action of T on P*~!:
(ewl, e ew”) ey, 2] = [ewlzl, e ,ew"zn]
It naturally lifts to the tautological line bundle v and to the tangent bundle TP"~!. Let
x =e(v*) € HA(P" )

be the equivariant hyperplane class. For N € Z=%, the T-equivariant cohomology of IP’R,_I with respect
to the induced diagonal T-action on P”N_l is given by

Hi(Ph) = Q[g,xl,...,xn}/{(xs—al)...(xs—an): s=1,...,N}, (3.5)

where x, = m;x and 7, : IP’?\fl — P! is the projection onto the s-th component. For each

pe|n]V, let
s=N

xP = [[ =t € HE(PR):

s=1
these elements form a basis for H(P% ') as a module over Hi=Qla].
For g, N € Z=9, the action of T on P"~! induces an action on ﬁg,N(P”_l, d) so that the evalua-

tion map
evli=evix...xevy: My, y(P" 1 d) — Pt

is T-equivariant. By [2, 12], the moduli space M, y(P"!,d) carries an equivariant virtual funda-
mental class. It defines a homomorphism (3.3) with M =9, x(P""!, d) which satisfies (3.4) with
[, replaced by the integration against this class. In particular, there is a well-defined equivariant
cohomology push-forward homomorphism

evd = {evix...xevy}, : Hi (Mg v (P, d)) — Hi (P ). (3.6)

It is characterized by the property that

/ P (evHy) = / (evau))y' € H (3.7)
[P0y, (B2~ )] M’

for all T-equivariant cohomology classes 1 on ﬁ%N(P”*l,d) and 1)’ on IP%_I. The homomor-
phism (3.6) commutes with the actions of Hy.
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With ev? as in (3.6), A and &' as in (2.1), and x=(x1,...,Xp,), let

AC (B, x,q) Zq ev { Hh st} Hi (PR~ 1)[[71 Ldl]. (3.8)

For g=0 and N =1,2, we define the coefficient of ¢° in (3.8) to be

1
1 and — E o, xPtxb?
ha+ho Lo

p1,p2,r€ZZ°

p1t+p2+r=n—1

respectively. For each pe|n], let

JE— ) - d d eVg*Xp * n—1 —1
Zp(h,X, Q) =X +Zq V1« h_¢1 € H’H‘(P )Hh 7q]]7 (39)
d=1

where ev{, evd: Moo (P~ 1, d) — P~ L. For p=(p1,pa,...,pn)E|[n]|V, define

p(h,%x,q) H htz, (h%s,q). (3.10)

Theorem B. Suppose n,N € Z* and g € Z=° with n > 2 and 29+ N > 3. The generating
function (3.8) for the equivariant N -pointed genus g GW-invariants of P*~! is given by

Z9(nx,q)= > Y. Zcé(,fl[),quh_bzp(ﬁ7§7Q) (3.11)

pe|n]N be(z20)N d=0

for some C(fl) €Qlal such that
g;p;b

o0
c;dgb — cgjllf’)bafl €1, (3.12)
t=0

(d;t

where ¢, be@ are the numbers defined in Section 2.3.

The closed formula (4.15) and separately the recursion (4.26) compute the coefficients C(l))b

in (3.11) and thus provide a straightforward (though laborious) algorithm for computing the gen-
erating function (3.8) for the equivariant N-pointed genus g GW-invariants of P"~1. Let

0 d

R N = € (@ QeI ) 1]
5 ((Tox-aneerm) Tl au)
k=1 k=1

By [11, Section 29.1] and [22, Lemma A.1], the power series ((x,q) and ¥(x,q) in (3.31) are
described by

oo

Y(h,x,q) = SN "W, (x, q) "
b=0

By the proofs of Lemma A.1 and Proposition 2.1 in [22], this relation determines ((x,q) and
Uy(x,q) through an explicit recursion involving differential operators. By (3.39) and the proof
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of [22, Proposition 4.2], the power series Wj(x, q) determine the power series \Ilg*‘_]f) in (3.37) and
U,0(x,q) in (3.33).

For concreteness, we now describe the power series ((x, ¢) and Wg(x, q) explicitly. For any r € Z=°
and any power series f, denote by o,(f) the power series obtained from f by taking the r-th
elementary symmetric polynomial in {f _ai}ie[n]' Define

L(x,q) € x+q - Qa, x, 0p_1(x) "] [[X‘lq]] by on (L(x, q)) —q=op(x).

The power series ((x,q) and ¥y(x, q) are described by

¢ € xq - Qla, x, Jn_l(X)_l] [[q“, x + D((x,q) = L(x,q),

1/2 1/2
B X0p—1(X) L(x,q) .
%(X’Q)‘(L(x,qm_l(ux,q))) ()

setting =0 and x=1 above gives the first formulas in (2.14) and in (2.15).

As demonstrated in [6, 18, 20], equivariant localization computations in GW-theory can sometimes
be carried out by working with the residues of the equivariant mirror B-side functions and by
extracting the non-equivariant terms at the end. In such situations, precise knowledge of the
d)

equivariant coefficients C; b

p, in (3.11) is not avoidable.

3.2 Equivariant localization setup

Denote by
H:ﬁ‘ =Qa = Q(a17-'-7an)

the field of fractions of Hp. If M is a topological space with a T-action, let
Hp(M) = Hp(M) @py Hr.

In the case M is a compact oriented manifold, the classical equivariant localization theorem of [1]
relates the homomorphism (3.2) to the fixed locus of the T-action. The latter is a union of compact
orientable manifolds F' and T acts on the normal bundle N'F' of each F. Once an orientation of F’
is chosen, there is a well-defined integration-along-the-fiber homomorphism

/:H{f(F) — Hi.
F

The localization theorem of [1] states that

_ Y|F . . .
/M¢_;/1176(NF) € HrCHy Ve Hy(M), (3.13)

where the sum is taken over all components F' of the fixed locus of T. Part of the statement
of (3.13) is that e(N'F) is invertible in Hi(F).

The standard action of T on P*~! has n fixed points:

P =[1,0,...,0), P,=[0,1,0,...,0], ... P,=][0,...,0,1].
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By the choice of the lift of T-action to the tautological line bundle v over P*~!,
X|p, = a; € Hr=Hp(F)) YVi€ln]. (3.14)
Along with the T-equivariance of Euler’s sequence for P*~!, this implies that

e(TP" )|, =e(TpP* ') = [[(i—ax) € Hi(P) = Hf = Qo] ~ Vi€n]. (3.15)
ke€n]—i

For each i€ [n], define

¢ = [[(x—cw) € H3(P" ). (3.16)
ki

This is the equivariant Poincare dual of P; in P"~! in the sense of the N =1 case of (3.17) below.

The standard diagonal T-action on P 1 has n!V fixed points:
Pil...iNEPnX--'XPiNa il,...,iNE[n].
By (3.13) and (3.15), this implies that
e, ., = / n= / 1 Hw ¢i, € Hf YV neHz(PY), d1,...,inE[n]. (3.17)
Piy iy Pr

Under the identifications (3.1) and (3.5), the restriction maps on the equivariant cohomology
induced by the inclusions of P, _;, into IP”}V_I are the homomorphisms

HyPu Y — Hf, x5 — ay,, s€[N]. (3.18)

By (3.5) and (3.18), an element of H%(P% ') is determined by its restrictions

77|Pi1A.AiN = / ne H’E
Pilx---XPiN

to the n'V fixed points of the T-action on P’y *. Along with (3.17) and (3.7), this implies that the
power series Z(9)(h, x,q) in (3.8) is determined by the n’V power series

= Nev*qS
29 (1, i ) Z Lo T (3.19)
gN s

s=1

where a;, iy = (G, ..., Qiy).

The virtual localization theorem of [10] extends (3.13) to the integration against equivariant virtual
fundamental classes. It in particular determines an induced T-action on the virtual normal bundle
N ZF of each topological components Zr of the fixed locus of the T-action and reduces (3.19) to
integrals over Zr. By [10, Section 4],

evzsbi eV;@
| | s = | [ s 3.20
/ My v (Pr=td) h _7/15 NZVlr h _7/)3 ( )

FGAQ N( ZF
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where Ay v(n,d) is the set of equivalence classes of connected [n]-valued N-marked genus g de-
gree d graphs; these are defined below. Part of the statement of (3.20) is that e(N Z{T) is invertible
in H5(2r). In Section 4.2, we use (3.20) to first reduce (3.19) to a sum over the set A, n(n) of
equivalence classes of connected [n]-valued N-marked genus g graphs defined below. We then sum
up over all possibilities for the [n]-values of the vertices to reduce the resulting sum to a sum over

the collection A, n of connected trivalent N-marked genus g graphs to obtain Theorem B with the

(d)

sp.b in Section 2.3.

first definition of the structure coeflicients ¢

An [n]-valued S-marked weighted graph is a tuple

I'= ((g,p) :Ver — 2= % [n], n: SUF1— Ver, d: Edg—Z7) (3.21)
such that the tuple
Iy= (g:Ver—)ZZO,n: SLIFI—)Ver,Edg) (3.22)
is an S-marked graph and
plfe) #ulfs)  Ve={f, [} € Edg. (3.23)

The first diagram in Figure 3 represents an [n]-valued 2-marked weighted graph I with g(v) =0
for all v€ Ver. The values of p on the vertices and of 0 on the edges are indicated by the numbers
next to the vertices and the edges. By (3.23), no two consecutive vertex labels are the same.

An equivalence between an S-marked weighted graph as in (3.21) and another S-marked weighted
graph
I'= ((¢/, 1) : Ver' — Z=x[n], 7' : SUF! — Ver’,0': Edg' — Z7)

is an equivalence (hver, hr1) between the associated S-marked graphs I'g and I'j) such that
n= Nlthera 0(6) = 0/(hF1(6)) VeeEdg.

We denote by Aut(T") the group of automorphisms of I'.

For I' as in (3.21), we denote by

ITl= ) o)

ecEdg

its degree. We call a vertex v of I trivalent if v is a trivalent vertex of the associated N-marked
graph I'g. We call T connected if I'g is connected. If I' is connected, we define its arithmetic
genus a(I') to be a(T'g). Let Ay n(n,d) be the set of (equivalence classes of) connected [n]-valued
N-marked genus g degree d graphs and Ay v (n,*) be the union of the sets Ay n(n,d) over d€Z.

An [n]-valued N-marked graph is a tuple
I' = ((g,p): Ver— Z=%x[n],n: [N]UF1— Ver, Edg)

such that the tuple (3.22) is an N-marked graph and p satisfies (3.23). We define the notions of
equivalence, trivalence, connectedness, and genus for such graphs via the associated graph (3.22)
as above. We denote by Aut(I") the group of automorphisms of a graph I'' as above and by Ay y(n)
the set of equivalence classes of connected trivalent [n]-valued N-marked genus g graphs.
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=l

Figure 3: An [n]—valuedg—marked genus 1 degree 21 graph I', with special vertices indicated by
larger dots, and its core T'.

3.3 Outline of proofs of Theorem B

Let T' be a connected N-marked genus g graph as in (2.23) with 2a(I')+ N >3. A vertex v € Ver
such that val,(I") <0 can then be contracted to obtain another connected N-marked genus g graph

I' = (¢/:Ver' — Z2°, 9/': [N]JUF!' — Ver’, Edg) s.t.
Ver' = Ver—{v}, ¢ =glyer, FI CFlNyp'(Ver'), n'=n on ([N]nyn *(Ver')UF,
as follows. If |[FINn~1(v)|=2, we take
FI' = Flnp~!(Ver'), Edg = {e€Edg: enn ' (v)=0} U {{feF: e ' (v)#£0}}.
If [FINnn~t(v)|=1, we take
FI' = {feFl:e;nn ' (v)=0}, Edg = {ecEdg:enn '(v)=0}.

In this case, there is a unique f¢€FINy~!(Ver’) with epenn~!(v)#0. We complete the definition
of ' by requiring that
77’(5@) = {fc}§

the set S, consists of at most one element in this case (it is empty in the previous case).

Let I' be a connected [n]-valued N-marked genus g weighted graph with 2a(I")+N >3. We call the
connected trivalent [n]-valued N-marked genus g graph

T = ((8,7): Ver — Z7° x[n], 7: [N]UFI— Ver, Edg) (3.24)

obtained by forgetting the map 0 and repeatedly contracting the non-trivalent vertices of I'g until
all vertices become trivalent the core of I'. It is independent of the choice of the order in which the
non-trivalent vertices are contracted and satisfies

{veVer: g(v)>1} U {ve Ver: {v}=n(e) for some ecEdg} C Ver C Ver,
EdgNEdg = {e€Edg: n(ey)C Ver}, {f€eFl:e;eEdgnEdg} C FIC Fl,

(@, ﬁ) = (97 N)‘W; ﬁ‘([N]ﬂn—l(W))uﬁ = n}([N]mn—l(W))uﬁ-

We call the vertices Ver of the core I' the special vertices of I'. The graph I on the right-hand side
of Figure 3 is the core of the graph I' on its left-hand side.
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Figure 4: The strands of the graph in the first diagram in Figure 3.

We compute (3.19) by breaking each graph I'€ A, y(n, *) at its special vertices into strands
Ty = ((gp, 1) : Very — ZZ0x [n], 1+ SpUFL, — Verp, 0y : Edg, —Z7"); (3.25)

see Figure 4. The sets Edg, of the edges of these strands partition the set Edg of the edges of I'.
Each edge e={f, f'} of I" so that v=n(f) is a special vertex of I keeps a copy vy of v with

ge(vp) =0, ppvy) = p(v). (3.26)
We also add a marked point labeled by fA‘ to this vertex. Thus, the collection S, of the marked
points of the strands I', consists of the original [N]-marked points of I' and of a copy f of each flag

fE€F1of T so that u(f)€ Ver.

There are three types of strands I'y:

S1

genus 0 strands with one new marked point;

S3

(S1)

(S2) genus 0 strands with two new marked points;

(S3) genus 0 strands with one new marked point and one of the original N marked points.
(

By (3.13), each one-pointed strand at a special vertex v € Ver C Ver contributes to

evig;
*(h,aj,q / Lt 3.27
! Z Mo,1 (P~ 1,d) h— 1/}1 ( )

where j=p(v) €[n] is the label of the vertex v of I'. By the dilaton relation [11, p527],

evig; _
*(h, o, § ”):hlz*h, q).
@4 Aﬁog Pr—1.4) <h_¢1 ( i Q)

Each of the two-pointed strands contributes to

Z*(h, ho, 0y, 04y, q) = d/ %%’ o
(1 25 Qg1 Xja q) ;q Moo (Pr—1,d) h1—¢1 h2_¢2 ( )

where j1,jo € [n] are the labels of the vertices to which the marked points are attached. This

implies that the power series Z(9) (h,x,q) in (3.8) is determined by the previously computed power
series for one- and two-pointed GW-invariants and by Hodge integrals over the Deligne-Mumford
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moduli spaces of stable curves.

While the number of one-marked strands at each node can be arbitrarily large, as indicated in [20,
Sections 2.1,2.2] it is possible to sum over all possibilities for these strands at each special vertex;
see Proposition 3.4 below. On the other hand, the numbers of special vertices, of two-pointed
strands of type (S2), and of two-pointed strands of type (S3), are bounded (by 3g+N). Using the
Residue Theorem for P!, one can then sum up over all possibilities of the markings for each of the
special nodes. Thus, the approach of breaking trees at special vertices reduces (3.19) to a finite
sum, with one summand for each connected trivalent N-marked genus g graph.

The first description of the structure constants c( ) pb after Theorem A is obtained by breaking
every graph I' € A n(n,d) at all special vertices of F On the other hand, the second description
is obtained by breaking each such graph at the special vertex 7(N) only. In addition to the
strands (S1), we then obtain strands I'y of various genera g, with N, € Z" new marked points f
corresponding to the flags f € Fl,(I') with ey € Edg, and subsets S; C [N] partitioning the original
marked points s of I not lying on v (i.e. n(s)#v). If N €S} for some strand Iy, then g, =0, N, =1,
and Sy ={N}. Setting gs=0, Ns=1, and S;={s} for s€.S,, we thus obtain an element

(90+ (90> Sy No)pepmy) € P(m)

where m € Z* is the number the non-(S1) strands and of the marked points in S,. With ei-
ther approach, the main step is summing over all possibilities for the strands (S1), as is done in
Proposition 3.4.

3.4 Key equivariant inputs
With the notation as at the beginning of Section 3.1, let
D, = H(aj—ak) € Q[al,...,an]s" C Hy.
J#k

If f=f(h) is a rational function in i and Ay €P!, let

1
R0} = o f an

where the integral is taken over a positively oriented loop around A= kg containing no other singular
points of f, denote the residue of f(h)dh at h="hy. With this definition,

S}t =- R {wf(w™}.

If f involves variables other than A, hﬁ% { f (h)} will be a function of such variables. If f is a power
=hgo

series in ¢ with coefficients that are rational functions in A and possibly other variables, denote
by h9‘§i { f (h)} the power series in ¢ obtained by replacing each of the coefficients by its residue at
—no

h=hg. If h,..., Ry is a collection of distinct points in P!, let

i=k

{rm} =22 {f(m}

R
hi=ha,....h =1
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be the sum of the residues at the specified values of h.

We denote by
Q, = Qo 03%, D;']" € Qa

the subring of symmetric rational functions in ajq,..., @, with denominators that are products
of o, and D,,. Let

Qla;h,x = Qix [hv Xi1]< C Qa(ﬁ, X)

k=n k=n
() —x", [ (x—ap+rh)— [] (x—o) \rez+>
k=1 k=1

be the subring of rational functions in aj,..., a,, A, and x, symmetric in aq, ..., a,, with numer-
ators that are polynomials in aq, ..., ay, ki, and x, and with denominators that are products of

k=n k=n

on, Do, x, (x+rh)"—x", H(x—ak—i—rh) — H(x—ak), with r € Z™.
k=1 k=1

If R is one of the rings Q/,, Q[xT!], or @, and f; and fo are elements of R or R[[q]], we will

a;h,x
write f1~ fo if fi—fo liesin Z- R or Z - R][q]], respectively. By the next lemma, certain operations

on these rings respect these equivalence relations.

Lemma 3.1. (1) If feQ! there exists g€ Q! [x™1] such that

a;h,x?

R{f(hx=ay)} =glx=a;) Vi€l

(2) If g€ Q[x*],

g(x) /
x_i)&oo p— € Q,.
k 1<X - ak)
(8) For every peZ,
. xP ot, if p=n—1+nt witht € Z;
x=0,00 | k=n 0’ pr—I—l ¢ nZ.

[T (x — o)

k=1

Proof. This is a modification of [22, Lemma 4.1], with the elements of Z, Q,, and Q. , required
to be symmetric in aq, ..., a,. The proof of [22, Lemma 4.1] applies verbatim in this setting. []

We will also use the Residue Theorem on P':

> R} =0

xo€P!

for every rational function f= f(x) on P!> C.
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The most fundamental generating function for GW-invariants in the mirror symmetry computations
following [8] is

ZN(h,x,q) =1 +§*(h X, q)
=103t 525 e ),

where ev¥d: Moo (P, d) —P"~L. By [8], Z(h, o, q) €Qq(h) for all i € [n]. Thus, we can define
C(aiq) = R {In(1+ Z*(hai,0))} € ¢~ Qa[g]]

(3.29)

for each i€ [n].

The proof of [22, Proposition 4.2] provides power series Wg, ¥y, ...€Q/ [x*1][[¢]] such that

To(0) =1,  Uu(0) =0 VbeZ",  Wy(x,q) ~ Py(q/x")x" Vbez=?, (3.30)
Z(hyai,q) = DS (a0 Vie[n). (3.31)
b=0

Furthermore, for every p€||n| there exist Wy.q, Up,1,...€ QL [x*1][[¢]] such that

Uy (%, q) ~ Dpp(g/x")x" " VbeZ2", (3.32)
Zp(h, i, q) = VNN W (0, )" Vig[n]. (3.33)
b=0

Lemma 3.2. There exists a collection {Cp_p, }p. en) CQla)™ [[q]] such that

[T
TR

e
hio hl_TZ(h*7h+aai_7ai+aQ)

b=b_

—1)b
= Z % Z Cp—p+ (Q)\ij,;b,—b(ai_ ) Q)Zp+ (h+’ Qi Q)

b=0 + p_.pie|nl

for allb_€Z=° and i_,iy €[n] and

1, ifp_+pr=n—1; (3.34)
0, otherwise. '

Cp_ps () ~ {

Proof. The proof of [22, Lemma 4.4] establishes the present lemma (the equivalence ~ in the
statement of [22, Lemma 4.4] is taken with respect to the ideal Z inside of the entire ring Q[«]). O

Corollary 3.3. For allb_,b, €Z>% and i_,i, €[n],

B Cla;_ya) _ C(aiJr ,9)
e h_ iy

h_?io h_gi() hli_t,_bi h}:_bjL Z(h—7 h+7 i, Oy, q)

Z Z Cp_ps )\I/pf;b,—b’(ai_aQ)\I’p+;b++1+b’(ai+vq)-
b'=0 p_ 7p+€|LNJJ
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Proof. This follows immediately from Lemma 3.2 and (3.33). O

Let g € (Z)=°. By the T-equivariance of Euler’s sequence for P"~! and (2.18), there exist A 5.1 € Z[X]
with € (Z=°)9 such that

e(E;@TpP" ') = < Z(Cg,n;lx(nl)g”I”‘th,n;l(x)))‘g;I)

Ie(720)9
€ Hp (Mg;m X B) =H" (Mg;m) [Q]

x=a; (3.35)

for all m € Z=° with 2g+m >0 and i € [n]. For m€Z=° and k € [m], we denote the k-th component
of be (Z2%)™ by b, € Z20. If m e Z=° with 2g+m >0, I€(Z2°)9, be (Z=°)™, and i € [n], let

290 @i,0) = (Comral™ D Mt hyynr ()

Tob ST
XZ Z < 9717 bb >>H hmo{( Z:' Z*(ﬁ,%,q)}). (3.36)

= bIG(Z>O)m ke [ ’}
|b\+|b’\ g (I)+m+m’

Each residue above is an element of Q,[[¢]]. Since the power series g*(h, X, q) has no g-constant
(g’

term, the above sum is finite in each g-degree. By Section 4.3, the power series Z; I)(ai, q) describe

the contributions to (3.19) of the strands (S1) of the graphs I' with a fixed core T at a vertex v
of T with |F1,(T)|=m and fi(v) =i.

Proposition 3.4. Let g,m € Z=° with 2g+m >3 and I € (Z=°)9. There exist \Ilgff) € Q. [x[[q]]
with c € (Z=°)*° and e € (Z=°)™ such that

DS z( D1y 89 a0

Z>0 oo e Z>O
le|<pg (I )+
ekgbl,:nge[Z] (3.37)

- - MR S
% (g, q)Pl=Gra(D+m ||c||><
() o0+l 1) L Lz

for all be (Z=%)™ and i€ [n] and

(9:€)
Lre (@/X") vy fell

(9:€)
U (x,q) ~ 3.38
I;c ( Q) (I)O( /X")m ( )
Proof. By the first two statements in (3.30), (3.31), and Proposition 5.8, (3.37) holds with
059 x ) — (_1)ug(1)+m+\cl(Cg’n;lx(n—l)g—\\lll+hgm;1(x)),4§5;if)
fe (60 W,
- v (3.39)
> H - ’I‘(X7 Q) )
el cy! (T—i_l)!\PO(Xa Q)
By the last statement in (3.30) and (2.20), \I/(ﬁ(’f) satisfies (3.38). O
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4 Proof of Theorem B

We prove Theorem B, with each of the two definitions of the structure constants c(d) p.b’ by summing

up the contributions of the T-fixed loci Zr of M, y(P"~1,d) as in (3.20) over all possibilities for
the graph I" as in (3.21). As outlined in Section 3.3, this will be done by breaking each I'" (and
correspondingly each fixed locus Zr) either at every special vertex of I" or only at the special vertex

v=n(N).

4.1 Some preparation and notation

Sections 4.2 and 4.3 describe coefficients Céf?)b € Qn by a closed formula and via a recursion,
respectively, so that (3.11) is satisfied and (3.12) holds with ¢ € Z instead of Z=°. These coefficients
are symmetric in aq,...,a, (this is also implied by the proof of the first claim below). The full
statement of Theorem B then follows from the next observation.

Lemma 4.1. Let g,n, N €Z>° be as in Theorems A and B. If C(d b €Qa are such that (5.11) is
satisfied, then C; b €Qlal. If in addition (5.12) holds with t € Z instead of 729 for some Cg.pt)b €Q,
then it holds as stated with same coefficients Cédpt)b

Proof. Let be (Z2°)N and de Z=°. By (3.9)-(3.11), the coefficient of

s=N

qd H ((hs—l)bs—H)

s=1

in the power series 29 (h,x, q) is

[[Z(g) (Ea X, Q)ﬂﬁ_ b, d Z Cg -, b—

pelln|IV
w (4.1)
SIS VD O 10 | (CRIRSI
d'elld]| de(z=0)N pe|ln|N be(z=0)N 5=l
|d|=d—d’ b, <bs Vs

where [Z,(h, %, q)];-1 4 0 18 the coefficient of ¢ (") in

Z,(h,x,q) € Hy (P ) [[r 1. q]].

Since H:(P" 1) and Hi(P ') are free modules over Q[a] with bases {xP}pein) and {XP}oc|n)n,
respectively, and

* mn—1 * mn—1
[25(h % @lor g0 € HEE"), [{z<g><ﬁ,z7q>}]ﬁ,lﬁq;b+lvdeHT@N>

by (3.9) and (3.8), respectively, (4.1) and induction on d imply that C b €Qla].
By [20, Lemma 3.3], the ideal Z C Q[a]°" does not contain any power of o, D,. Along with the

algebraic independence of elementary symmetric polynomials o1,...,0y,, this implies the second
claim of the lemma. O
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For g€ 72" and a finite set S with 2g+|S| >3, we denote by M, s the Deligne-Mumford moduli
space of stable S-marked genus g curves and by

E, — Mg

the Hodge vector bundle of holomorphic differentials. For each f€.5, let
Ly — Mgys

be the universal tangent line bundle for the marked point labeled by f.

For g € Z2°, a finite set S, and d € ZT, we denote by ﬁg,s(ﬂbn_l,d) the moduli space of stable
S-marked genus g degree d maps to P"~!. For each f€ S, let

¢f = Cl(Lj:) S H? (ﬁg,S(Pnilvd))

be the first Chern class of the universal cotangent line bundle L over 9, s(P"~!, d) for the marked
point labeled by f.

For an [n]-valued N-marked graph T as in (3.24), let
AT) = (Zzo)ﬁ(f)x H(ZEO)ﬁ(v) )
vEVer

Let I' be a connected [n]-valued N-marked genus g weighted graph as in (3.21) and T be its core
as in (3.24). Define

FIT) = | |FL(@D),  FIT) = | FL(D) = (V) (Ver) LFL(T),
vEVer vEVer

FI'(D) = ([N]—n~'(Ver) UEdg,  FT'(T) = [N]UEdg = ([N]ny " (Ver)) LFT*(T),
A(D) = {(b, (1), evr) € (22O T[T ¢ [blgy, 0y = 11g, (L) +[FL (D)] Ve Ver}.

veVer

For v € Ver and I € (Z=%)%, let
= 1(T) = {be (ZZ0)F ) |b| = puy, (I)+[FL,(D)]}.

We denote the components of an element (b, I) of A*(I') by by €Z=° for feFI(I') and I, € (Z=2)9
for ve Ver. For feFl, let

u(f) =pu(n(f)) €] and  pc(f) =pu(n(f)) €lnl ifep ={f, f'}

be the p-values at the two flags contained in the edge e;.

4.2 The closed formula approach

We first break I" and Zr at all vertices v of Ver C Ver as ﬁescribed in Section 3.3. The set of strands
of type (S2) is naturally indexed by the edges Edg of I". By the constructions of the core and of
the strands I'y in Section 3.3,

fo e Fl, () Ve={fS fo} €Edg
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and the set S, of the marked points on the strand I'. corresponding to an edge e as above is
{ﬁﬂfl‘}. The set of strands of type (S3) is naturally indexed by the subset [N]—n~!(Ver) of
the original marked points. By the construction of the core in Section 3.3, for each such s € [N]
there exists a unique flag fs € Fly(,)(I') so that the edge ey, € Edg splits the graph I' into two,
one containing the vertex 7(s) and the other containing the vertex n(s). The set S5 of the marked
points on the corresponding strand Ty is {s,fs}. All of the flags fs with s € [N]—n~!(Ver) and
. f- with e € Edg are distinct. The set of strands of type (S1) is naturally indexed by the

complement
FI'(T) = F(T) — {fs: s€[N]—n ' (Ver)} — {fF: ecEdg} C Fl (4.2)

of such flags inside of all flags of I" at the vertices Ver C Ver. The set Sy of the marked points on
the strand 'y corresponding to f€FI'(T) is {f}.
The set

F1'(I') = FI*(I') U FI'(T)

of all strands I'y of I is thus a quotient of FI(I') so that two flags fi, fo € FI(I') determine the same
element f{r = f;r of FIT(F) if and only if the marked points labeled by ]/0\1 and _]?2 lie on the same
strand. The set

FI'(T") = ([N]ny " (Ver)) UFIT(T") = [N]UEdgUFY (T) (4.3)

is similarly a quotient of the set FI(I"). For p cFl (I'), we write fep if f€FI(T) and ff=p. Denote
by Sy C[N] the empty set if p¢[N] and {p} if p€[N]. For each v € Ver, let

FI/ (T') = F1,(I)NFI'(T)
be the subset of strands of type (S1) arising from v.

The fixed locus Zr corresponding to I' and the Euler class of the virtual normal bundle of Zr are

given by
Zr= [[ My, w00 ¢ I2r0. (4.4)
veVer peFIH ()
[Te(Tr,.,P" ) -
vEVer he) _ HG(E* QT ]P)n—l) H 1 H e(TP,u(f)]Pm 1) (4 5)
e(NZ) 1590 S Pu) e(NZr) Wy—z ‘
veVer peFIt(T) P2 feFIT) f

where

Wp=ci(Ly) € H' (M, 7,1r) YV fEFL(T), ve Ver.
By [11, Section 27.2],
f
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Thus,

1 1
fo 2ol L s )
Mg, Flu(r) FEFL,(T) =g sesuhs — Vs

— (—1)F)] Z / ) Mot {( Hw—bf 1 /bf>< Hﬁ—bs—1¢bs>} (46)
gv,Fly(T)

be(ZZO)ﬁU(U feFL (T SESy

BB )

beAs (I feFL,(T)
for all I€(Z=")% and v &€ Ver.
Combining (4.4)-(4.6) with (3.15), (3.35), and (3.16), we obtain

1 S:Nev*¢-
(H H(“’*(”)““’f)>/z-re</vz;ir>ghs—¢l

veVer k#u(v)

n—1)gy—||Iv ~
= > T Comnale " hg e () (g1, 7o) (4.7)
(b, )€ A*(I")  veVer

Hev}qﬁu(f)

b1
u(f) ")) fep evydi,
- H (H ( o(ey) ) /zrp e(NZr,) Sg;hs_¢s> ’

peFI (1) \€P

where

1B ( c(f))bfl/ fep ( Hevs% El<h—bp_1l—[(a —O%))
b 6f Zr, e(./\/pr) se phs_ws bp! 4 w(n(p))

fep ki
if p e [N]nn~L(Ver) C ﬁT(F)ﬁﬁ(F). The equality in (4.7) holds after taking into account the
automorphism groups; this is done below after summing over all possibilities for the strands I'y.
Lemma 4.2. If peFI'(T), then
[Tevidus

bp—1 b
ZQIFpI H( ) /FfEIENZFp) H ev o

fep €Sy hs

(4.8)
_ —bp Fx / }
= — Z
h?:{(){( hp) (hpvavaq) )
where the sum is taken over all possibilities for the strand T'y, leaving the vertex v = n(p), with
Uy =y fized.

Proof. In this case, Sy = () and each T, is a connected 1-marked genus 0 graph. Thus, the claim of
this lemma is [20, (2. 14)] with e(Vj) =1 and slightly different notation (the left-hand side of [20,
(2.14)] is also missing ¢/Tel). O
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Lemma 4.3. If p€[N], then

qur,,H < u(f) )) bfl/
-

H f¢u v
H ¢zs
e(NVZr,) es*h (4.9)

= hfzo{(-—»hf) byl (hf,hp,(yU,O%p,q)}

fep

where the sum is taken over

fized and |Ty|€ZT,

e all possibilities for the strand Ty, leaving the vertex v=1(p), with o), =c
and carrying the marked point indexed by p,

w(v)

e and the special case I'y corresponding to the case n(p)=wv.

Proof. In this case, Sy = {p}, n(f)=v for the unique element f € p, and each I'y is a connected
2-marked genus 0 graph. There is a unique edge e=ey, from the vertex v=7(p) which is contained
in I';. By (3.24) and Lemma 1.2 in [21] with m =2 and e(V() =1, the left-hand side of (4.9)
summed over I'y with d(e)=d for d€Z" and p(fy)=j for j€[n]—p(v) is the residue of

(=hg) ™" 2" (g by, iy, @) dhy € Qa (g ) [[g]] dig

at Ay = (aj —al)/d. Furthermore, this meromorphic 1-form on P! has no poles outside of
hy=(oj—c)/d with d€Z" and j € [n]—p(v) and h=0, co.

By [18, (3.10)] with /=0 and (a)=1,

1
heth Z 0-7" P— hf’ U’q) p+(hp,067jp,Q)- (410)
f pp p4,r€ZZ0

p—+pi+r=n—1

Z(hf7 hpa CY;), aip7Q) - =

By [18, (3.11)], hJTQpr (hy, oy, q)dhy has no pole at hy=o00. Combining these statements with the
Residue Theorem on P!, we find that

[Tevidu

—by—1 q
T | () fep evidi,
Zq H( ) /z o(NZr,) | s

Ty fep €sy s

—b
== R ()2 (gl

if the sum is taken over all possibilities for the strand I'y, leaving the vertex v=7(p), with a;, = p(v)
fixed and |I'y| €Z*, and carrying the marked point indexed by p.

By the definition of the degree 0 term in the (g, m)=(0,2) case of (3.8),

—bp—1 b —bp—1
iy (e — ) = (—1) vhaio{hf 2Ry By oy iy, 0)] g } : (4.11)
keiy '
This is the summand for the special case I'y corresponding to the case n(p)=wv. O
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Lemma 4.4. If pcEdg, then
Hev}gf)“(f)

bp—1 .l
ITpl ( () ) / fep €V ¢’Ls
q
Z gp zr, €N 2n,) sg; his =15 (4.12)
b —1 _b+_ _
- h?io{ﬁ?io{(_h’) P(he) 1Z(h*’h+’% ’O‘;»Q)}}’

where b;t =bs+ if p={f", f~} and the sum is taken over all possibilities for the strand T, between
the vertices v_=7(f, ) and vy =0(f,"), with oy =p(v_) and o =p(vy) fized.

Proof. By the reasoning as in the proof of Lemma 4.3 applied twice,

qu H( )) ”f‘l/ JLevidun 7 e
Iy fep Zr, e(NVZr,) oy hs —1s
- hgio{h_gio{(_h_)_b;_l(_m)_b;_lz* (h_,h+,a;,a;,q)}}-
Since B .
AR T T 2 bop o)) =0 by e,
we can replace Z* in the previous expression by Z. O

We now combine (4.7) with (4.3) and Lemmas 4.2-4.4 and sum over all possibilities for FI'(T).
Taking into account the automorphism groups, we obtain

| Aut(|T))| < T I ak)Z‘]'F/ 1 Sﬁvevz@s
N ZET) -5 hs— s

veVer k#p(v)
b
- by, Ly Oy q fadi bslh ) sy Q) isyr 4 (413)
(b,1)e A(T) \ veVer s€[N]
(—ho)~b (=hy) ¥ .
Xl;[dn?{o{nmo{ be ' b h_hy Z(h-hy0p 0l q)per
eckdg

with géi”}v as in (3.36). The sum on the left-hand side above is taken over all equivalence classes

of connected [n]-valued N-marked genus g weighted graphs I' as in (3.21) with a fixed core T as
n (3.24).

By the first statement of Lemma 5.1,

—C — My —C b E'U b
(1o Ty ema=e (o Ibol=Gtgs (1) 4, )< [by| e, | v|) 11 (f)

(L) +my—c—le 41 \¢
ugu( ) v ‘ feFLU(F) f

_ 3 11 ((—Ubfbf! (—C(aiﬂq))bf_b}_”)
N 1A o |
bl e(220)Flo(@™  feFL,(T) 6f'bf' (b bf er)!

b4 ley [+-c=ttg, (T)+to
b}-{-Ebef VfEFlU(F)
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for all c € Z and b, e € (Zzo)ﬁ(f)’ where m,, = |FL,(T')|. Combining (4.13) with (3.37), we thus
obtain

1 fyevidn,
‘Aut(|F| <H HOé _O‘k>zq|F Fe(_/\/’ZFr)S:l_[lhe:_ws

veVer k#p(v)

_ C(Of,,](b) 1)

(g0:6y) 1 e
- > [Twiie (o) = H(buh 0{ RbsTestl (h’hs’a;z(s)’ais’q)}) (4.14)

(b ,e,¢,1)eA* (T) | vEVer

_Glae ) ((03 q)

1 e - By _
8 H (bl'b,ﬂh.?{(){hgio{ hb +eo +1hb Tier+1 (h—7 h-‘ra Qe , O 7Q)}}> s
g

eckd
where b’ei:b’fi and e’ei:e}i if e={f*,f"} and A*(T) is as in (2.26).

The first statement of Lemma 3.2 and Corollary 3.3 reduce the last two products above to

Z s=N ¢ b tenp. (A1 q)
-b b b’ psps pg7b3+€s bs ( )7 q
{h Zp(ﬁ, ail...aN>Q) E ‘ [+] |H 7 n(s
peln]V p'€[|nFID s
bE(ZZO)N b’e (Z>O)Edg

- +
H Cp”p'+ \Ij o sbe tee —bY (ae ’Q)‘I’pgﬁbgue:ﬂ%g(ae :q)
/— 1./ °

bl bt

ecEdg

By the Residue Theorem on P!,

n I‘Zi}éz )(Oéj, q) \Pps!b/ Tes—bs (0@7 q) \I’p};b}-&-q—b’e’f (aj7 Q) ‘llplf;b}+6f+1+bgf (aja Q)
Z [(e;—av) H b.! H b,! H !
=1 g sen ! (v) ? feFl; (T) f FEFT(T) /
(gv,G )
= — R Flvycvxpv»b/ b/ (X q)
o x=0,00 k=n ’
[I(x—ax)
k=1
where
\Ij aRN; 1 (X q)
(gv,€y) (9v-€,) \I’ps,b’ +es—bs (Xv Q) Pyibter bef ’
.F]mcup b b//(X q) \Illv,cv ( 7q) H b/‘ H b/f'

sen1(v) 5 fEFL; (T)
H\I]p};b’f—i—ejc—&—l—&—bgf (X7 Q)
/
bf‘

feFIF(T)

We now divide both sides of (4.14) by the first two factors on the left-hand side and sum over all
possibilities for y(v) € [n] and I € Ay n; we replace I with T below. Using the equations after (4.14),
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(d)

we obtain an explicit formula for the coefficients C p.b in Theorem B:

CUND S 2D D DD

Ted, v d'=0 de(z20)Ver p’€|[n)/FIT) (b’ ,¢e,c,I)eA*(T)
|d|=d—d’ b'e (Z>O)Edg

s=N Flove) (x
e on' h b/ 7q)
ﬂHcpsp;m) Hcpgpg(qﬂ H<—1,z_9§wﬁ N -
s=1 ecEdg q;d’ vEVer ’ H(X_ak) q;dy
k=1

(4.15)

This establishes (3.11).

It remains to show that (3.12) with the summation over ¢ € Z instead of Z=° holds for some RS Q

g;p,b
such that c(dpoi) —c(dr))b with Cét-i[),b given by (2.29). Let (b/,¢,c,I) € A*(T') and p,p’,b,b” be as

above. For v & Ver, define
pLl= D 0 b= D b, PITI= D> uL, pitI= > b
f€eFL(T) s€n™(v) fEFL; (T) feFIH ()
By (3.34),
Sﬁvc ) TIC (@) ~ L if petpl, i +pt =n—1Vs€[N], ecEdg;
pont Pe Pe 0 otherwise.
ecEdg

y (3.38), (3.32), and (2.26),

(gv,€0) (x,q) o x (1) =1y +(n=4)(gu 1)~ [FL, (T) |~ [FL (T) |+, [+[bo |+[bY |- [bY T |
IU;CU;PU7b1,7b” q qd

(gv 7§v)
X |lFIU;cv;p;,b;7b4;(Q) ’
Q'du

where
(q) Db te s+ 1407 ()

v, v, D@yttt te—b,(Q) (Dpf Ve —be % ¢
Fy b (@ = 2 @) ] " 1Do(q) [[— Bola) 1= Boq)
senl(v) feri; @ I ferr@

Along with the last two statements in Lemma 3.1, this implies that

(gU7 )
Iicy;pl,,bl, 7bg(Xa Q) - .
_x%{oo|l = ]] ~ FE by (@50 (4.16)
’ [[(x—ax) @5dko
k=1
with t, € Z defined by
Py| + [by| + [by 7| = by — [FLH(T)| = (n—4)(1—g,) + [F1,(T)| + n(dy+t) ;

if an integer t, satisfying the above condition does not exist, we define G to be 0.
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By (4.15), the above paragraph, and the middle statement in Lemma 3.1,
@ Ib\+\b/| Itl
Copn ™ 2 Tamy] 2 21 >

reAg, N de(Z>0)Ver p’€l|n//Fds (b” e,c,T)eA*(T)
I _ b 1
Pl f-+er b (9) mf,blf+elf+1+bgf(qw
dy

|d‘ b'e (Z>O)Edg
o
(9U7§ ) (bﬁs§b{s/+es—bs(q) ’ f
(P v
H |l S (Q)H b//]q)o(q) H b”!‘I’o(q) H b”!@o(q)

vEVer seSy, % feriy @ I ferirary 7 g

with t = (t,)vever €ZV" defined by

S Pstbs) + Y (0l Y, + > (BL,—1-b.,)

sE€Sy fEFL, () FEFIE(T)
=(n—4)(1—g,) + ’ﬁU(F)| + n(dy+ty) V v € Ver;

the corresponding summand above is taken to be 0 if an integer t, satisfying the above condition

(d) (%0 as defined in (2.29) (and

does not exist for some v € Ver. This confirms (3.12) with Co:pb =Cyp b

describes c(d t)b with t€ZT as well).

4.3 The recursion approach

We next show that (3.12) holds with the coefficients c( t)b as defined recursively at the end of

Section 2.3. Let I’ be a connected [n]-valued N-marked genus g weighted graph and T be its core
as before. This time we break I' only at the vertex

v=7n(N) € Ver C Ver

into strands I'y as in (3.25). Each edge e={f, f'} of the original graph I" with n(f)=v keeps a
copy vy of the vertex v satisfying (3.26) and carrying an additional marked point labeled by f
The set of strands (i.e. of the connected components of the graph) obtained from I' in this way is
indexed by a quotient F1I(I') of the set FL,(I') of flags of I at v so that fi, fo € Fl,(I') determine
the same element f| = f;r of FIL(F) if and only if the marked points labeled by ]?1 and fg lie on the
same strand. Since the strands I'y are obtained from the genus g graph I' by breaking all edges
at v,

got D> a(ly) + |Fl,(I)| = g+|FIH(T)|.
pEFI}(T)
The set of strands of type (S1) is now the subset
FI(T) = FI'(T)NFL,(T)

of the set of strands of type (S1) in Section 4.2 that leave from the vertex v. With the notation as
n (4.2), the set FL;(T") of the remaining strands p is a quotient of the set

FI(T)—FU(T) = {fu: s€[N], 7(s) =v£n(s)} U Fl, (D).
With S, =[N]Nn~!(v) as before, let
FL(T) = S,LFI%(D).
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The set
FI (T') = S, UFLi(I") = S, UFL (D)UFY(T) = FL(I)UFY(T) (4.17)

is similarly a quotient of the set FI,(I"). For p eﬁZ(I‘), we write f€p if f€FL,(T) and ff=p.

For s€ S, define
als)=0,  Sy={s}, [s|=1[S=1

For p € FII(I), let
Sy=SNINl,  Sp=S—[N1={f: fT=p}, and [p|=]5}]

be the set of the original marked points carried by p, the set of the additional marked points, and
the cardinality of the latter, respectively. Thus,

\p]eZ* VpeFl (), FL(T) = {peFl (T): a(Ty)=0, 5: =0, [p|=1},
I_IS*, FI,(1) —F1, (T I_IS’, go+ > (a(Ty)+pl) = g+[FT(T).
peF1* (T peFI* (T pEFlv( )

By the choice of v, either N €S, or S,={N} for some peFI;(I") with a(I'y)=0 and |p|=1. Thus,

71*
(g'w (a(Fp ) p7 ‘preFl (I‘)) € P{S!F];TU(F)I) (418)

The analogues of the decompositions (4.4) and (4.5) in this case are

Zr = g,,,Fl () HZva
peF1 ()

e(Tp,,,P" ") . . 1
e(NZ%/ir) = e(Egv ®TPM(v>Pn >H e(NZ%/;lar) H

peF1} () fEFL,(T)

e(TPM(v)Pnil)
/ —~
=5

For each I€(Z=")9, (4.6) still applies. The analogue of (4.7) is now

1 [ evidi,
H(Oéu(v) —ay) /Zr e(/\/Z}’ir) s:l_Il <h5_¢s>

k#u(v)

_ Z 5 { Coumira " Mt by et (@) (Mgt 7)) @19)

€(Z220)9v be Ay ;

Hev} ¢,u(v)

L 0ue) (s bfl/ fep evidi,
<11 (Hbf!< o) ez o)

sESY S

where

—he— HerQbH(U -
i Oéu('u)_auc(f) by 1/ fep H ¢15 i . bp—IH(a _ak)
b\ o(ey) e(NZHr) Loho—ts by #e)

seS; kip
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if pe s, Cﬁl(l“ )NFL,(T). The equality in (4.19) holds after taking into account the automorphism
groups; this is done below after summing over all possibilities for the strands I'y.

The relevant sum over all possibilities for the strands I'y, with p€F1)(T") is described by (4.8) with
u(f) = p(v). For p e FL (T) such that a(Ty) =0, [p| =1, and Sy = {sp} for some s, €71 (v), the
corresponding sum is described by (4.9) with p(f)=p(v ) hy=hs,, and iy =is,. Lemma 4.5 below
extends (4.9) to the remaining cases. For each p eﬁ: (I"), we order the elements of S{J CFl,(T) as

fla-~~,f|p| and define
% {}: % { % {}}
(hy=0)sep Ry =0 hy, =0

Lemma 4.5. If peFL (') with 2(a(Ty)+[p))+|S5[ >3, then

. TTeviouy
S () S T
Ty fep er e(NZFp ) SES; hs_l/)s (4'20)
—by—1
B (_1)|p(‘h ?3) {H(_hf) ! Z(a(rp))((ﬁf)fespa (a;)fepa (aif)feS;»Q)}
Lf=Y)fep pr

where the sum is taken over all possibilities for the strand I'y with v ="7(f) for all f € S{J and
=y fized.

Proof. 1f a(T'y) =0, |[p| =2, and Sy =0, (4.20) is the case of (4.12) with u(f)=pu(v) and af =al,.
Suppose 2a(I'y)+|p|+[S;|>3. By the proofs of (3.24) and Lemma 1.2 in [21] applied with arbitrary
genus and e(V) =1, the left-hand side of (4.20) summed over I'y with d(ey)=d; for df € Z* and
pe(f)=js for jre€[n]—pu(v) fixed for each fep is the |p|-fold residue of

H(_hf)_bf_lz(a(rp))((hf)fesp7 (a;)pra (Oéif )fGS; ) q)
fep

at hy = (o, —ay,)/dy for each fep (i.e. first take the residue of the above power series in rational
functions at fiy, = (a;j, —ag,)/dy, , then the residue of the resulting power series at iy, = (o, —4,) /dy,
and so on). Furthermore, for each f €p the associated meromorphic 1-form on P! in Iy has no
poles outside of hy = (a;—c)/d with de€ ZT and j € [n]—p(v) and hy=0. The claim now follows
from the Residue Theorem on P!, as in the proof of Lemma 4.3, but applied |p| times. O

We now combine (4.19) with Lemmas 4.2, 4.3, and 4.5 and sum over all possibilities for F1 (T').
Taking into account the automorphism groups, we obtain an analogue (4.13):

TT(e, _akzqf/ [ G Z )
| 22 €OV Z) A R o2

k#u(v Ie(Z20)9v be A ;

(4.21)

_ 1)l —hy) 0T
y H( DA {H(h};))f!fZ(a(rp))((hf)fespv(O‘;)fep’(aif)fesg’q)}'

! (hy=0
beFT* (T) IpI! (ry=0)rep Fep

The sum on the left-hand side above is taken over all equivalence classes of connected [n]-valued
N-marked genus g weighted graphs I' as in (3.21) determining a fixed element (4.18) of P;”X,) with
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m=|FL (I')|. The analogue of (4.14) is now

1 s=N ; . /
L= qu/ Fe(Nz;ir)H2Vi¢w1 N > {‘I’%Z’)(%ﬂ)

o - > ECI)GA* v (IPDy s () 4.22
_stata) (4.22)
€ 'f r
" H Hng= O)fe { H mz(a( p))((hf)fespv (o )rep, (aif)f65;7Q)}7
pEFT,( ) P rep b 'h
with A* as in (2.30).

gvv(|P|)p6F1 )

Suppose p € FI,(T') and 2a(Ty)+|Sy| > 3. Since 3a(Ty) +|Sy| < 3¢+ N, by induction Theorem B
implies that

20N ((hp)fes, (%) pes, )

S0 YD S SR | (e NI

peunﬂsp be(220)% d=0 f€Sy

with C(d be@[ a] satisfying (3.12). We set Cc(l(% ):p

fes,. Along with (3.33), the last equation implies that

p =0 if 2a(Ty)+[Sy| >3 and b, <0 for some

_ ¢(ap,a)

e Ff
R 73(11(1%)) A / : .
(hf—o)fep{ H h byptep+1 (( f)fesw (av)fépv (Oé f)fESp ) Q)

= Z {Hh 'z Zp; hf70‘1f’q)

belngS \ES; (4.23)
be(220)%

X Z Z );pp/, AN H\Ilpf f+6f+1+b”( 217‘])}7

p GUTLMSP d=0 fep

bIIEZSp

if 2a(T"y)+[Sy| > 3. By Lemma 3.2 and Corollary 3.3, (4.23) with

(4.24)

(d) _ (1™ [Co_p(@]gias i b+ >0, b_+bp=—
0;(p+.p—)5(b4,0-) —

0, otherwise;
holds if a(I'y) =0 and |S,|=2.

We note that

H Hh 'z 2, (hy,ai;,q) = B P25 (h, iy iy q) VPE|n]N, be(z2%)N
peFL, () fESE

We now divide both sides of (4.22) by the first factor on the left-hand side, plug in (4.23), and sum
up over all possibilities for u(v) € [n] using the Residue Theorem on P!, as after (4.14). Summing
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(d)

up the result over all possibilities for (4.18), we obtain a recursion for the coefficients C Jpb in
Theorem B:
d _ (-1) gsz'S pwbls b!/
Copn = 2 i 2 > ¥ (I
mer ] (¢, &S N)ep™) pellln™ de@=0)m \ =1
ez (b’ ecI)eA e[m]>0 N; [dj=d—d
N (4.25)
‘1’(9 9 (x,q) a1 (X5 Q)
D f’ i f €4; f 7
e |
H(X Ozk) i=1 fe[N] l’f q;d’
k=1

It remains to show that (3.12) with the summation over ¢ € Z instead of ZZ° holds for some
( be@ such that c( )b with ¢ >0 satisfy (2.33).

By (4.25) and (4.16),

= (dy)
i=m C
o : ~t 9i;p|s; ps,bls, by
CIED SIE D VRN SR ol (91 &
m,d' €720 (g/7g’s N)e P(m) peHUﬂﬂNl dE(Z>0 paiey
W el yre oo, 19I=4
©oDEA N e[z (4.26)
i€[m]
g E) 'Lf’ f+67, f+1+b f(Q)
|l H H ‘(I)O ) ’
i=1 fe[Ny] o

with t€Z defined by
p'| — [b"| = (n—4)(1—¢') + 2IN| + n(d'+t) <= (p',b")eSy n(d1);

if an integer ¢ satisfying the above condition does not exist, we define 7%, to be 0.

We now confirm (3.12) by induction on 3g+N. For (g, N)=(0,2), (3.12) holds by (4.24), (3.34),
and (2.32). Suppose 3g+N >0 and (3.12) holds for smaller values of this sum. If (¢’,g,S,N) is an

element of Pg(rjnv) for some m€Z™, then
3gi+|Si|+N; < 3g+N Vi€ [m].
Thus, (4.26) with the roles of b’ and b” interchanged and (3.12) with (g, N) replaced by (g;, |SiHN;)
imply that
(diyti)

i=m
ZAt Z Z Z H Cgi;p|siP§7b|Sib§
g p b ml N;!

e md,lez>O (988, N)eP;m) d,te(/ZZO)m /i:l
t'eZ (b// e.c I)GA* ‘d|:d_d ,|t‘:t—t

(' b)GS/N(d’t)

95) I—Tf H Zf,zf+61f+1+b f(Q) |
7 1®o(q)
q;d’

=1 fe[N,]

By (2.33), this expression reduces to (3.12).
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5 Key combinatorial identities

We now establish the key combinatorial statements, Propositions 2.1 and 5.8, which characterize the
Hodge integrals (2.5) and sums of residues of well-behaved generating series of rational functions as
in Proposition 3.4, respectively. Their proofs make use of the basic identities of Lemma 5.1 below.
Lemma 5.2 is used in the proof of Theorem 1.

Lemma 5.1 ([22, Lemma B.1]). The following identities hold:

b byt .+ b
> H(’“)—(1+b,+ ) VmeZt, by, ... by, b €720,

b'e Z>0)m k=1

[b|=b'
S () -] e
— b s s—p
- m+p 1 >0
—1)P /7 J R 720
2= ( p ) (1wt me

Lemma 5.2. Let g, N € Z=° with 29+ N >3 and I € Ag.n be a connected trivalent N-marked
genus g graph as in (2.23). Then,

1l T (Blgo=D+[FL D) [+[eul)! (leo\ T/ 1\
5 H<( (9o=1)+[FL(T)])![e. ! <cv>£[1(r+1> >

ce((Z=20)oe)Ver  veVer

(2(1—In2))~ CorN=2m0m)

Proof. For each v € Ver, let m, =3(g, —1)+|FL,(T)| as before. Since I is trivalent, m,, >0. Since
|2In2—1| <1, the Binomial Theorem gives

3 g-te(mactleul)! (my~+|cu)! [|cy] H 1 CU;T:i(mﬁc)! iQ—r ¢
myl|cy|! Y r4-1 — mylc! 7n:17“+1

cy€(Z20)%°

i Mot oo 1) = (2(1-In2)) ")
> — n2— —( —In .

Combining this with the second equality in (2.25) and with the first equality in (2.24), we obtain
the claim. 0

5.1 Proof of Proposition 2.1

Let meZ=°. For a tuple b= (b )epm) in (Z=°)™, we define

B _( bl \_ bl
b bi,...,b;m/) byl bpy!T
We extend this definition to arbitrary tuples b in Z™ by setting

b
<|b|> =0 if by <0 for some k€ [m].
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For g, m € Z=° with 2g+m >3 and I € (Z=°)9, we extend the definition in (2.5) to arbitrary tuples b
in (ZZ%)™ by setting

{(Ag:ir; b)), (Ngi13 To)) = 0 if b <0 for some ke [m].
Lemma 5.3. Let g€Z=° and I€(Z=°)9. There exists a collection
C}?E) €Q with € € (Z=°)™, meZ=°, 2g+m>3, (5.1)
which is invariant under the permutations of the components of € such that
L (@) bl —lel
(Mg b)) = ZCI;"G( b (5.2)
gE(ZZO)m
lel <pg(I)+m

for all meZ=° and bEZ™ with 2g+m >3 and |b| Zpg(I)+m,
Cito=CFs O = (Id+II=9)CL if (9:1)#(1,(0) orle>1, (5.3)

and C( =0 if |e]s > pg(L)+|S]| for some subset S C [m] with 2g+|S|>3. If (g,1)=(1,(0)), then
the numbers in (5.1) can be chosen so that in addition

o O A
Cox0 =% Conany = Copa) -

Proof. We set the numbers in (5.1) to be 0 whenever |e|g> 14(1)+|S] for some subset S C [m] with
2g+|S|>3. Thus,

(5.4)

C’}TQ) =0 if ||| >max(g,39—3),

CHL O, =0 ifeeZm—{0™}, C) =0 if ec Zm—{0,1}"™.

With 0,, € Z™ denoting the zero vector, we also define
)
:03 L 0, if e=0,,: 55)
€ 1 . m .
Vm>1, () _(|§|_2)!C((0));(1)5 1f§€{0,1} , |€|22

The coefficients defined in this way are invariant under the permutations of the components of ¢
and satisfy (5.3), the vanishing condition after (5.3), and (5.4) if (g,I)=(1, (0)).

Let g>2. We set
CW =0 it |¢f<pg(D)+m and e,>2Vkem). (5.6)

€

Suppose m € Z" and the numbers C 6 Q with € € (ZZ%)™! are invariant under the permutations
of the components of €. If m>2, assume in addition that

Cith = (ld+I11-9)Citly ¥ e (2202, (5.7
The conditions (5.3) and the symmetry requirement then determine the numbers

C}?g) €cQ with e=(e1,...,em) € (ZZ0)™ s.t. €, <2 for some k€ [m]. (5.8)
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If m>2, the condition (5.7) holds if the numbers C 6 Q with € € (Z=%)™~! satisfy (5.3). Thus,
the numbers (5.1) invariant under the permutations of the components of € and satisfying (5.3), the
vanishing condition after (5.3), and the additional condition (5.6) are determined by the numbers

O eQ with e=(e1,...,em) € (ZZ)™, meZZ°, ¢ >2Vke[m], [e|=py()+m  (5.9)

invariant under the permutations of the components of e.

Let g €Z=° be arbitrary. For m€Z=? and i € [m], denote by e; € Z™ the i-th standard coordinate

vector. For all beZ™ —{0},
b\ _ ~(Ibl-1
= . 1

For meZ=% and be (Z=°)™ with 2g+m >3 and |b|=py(I)+m, let

<<b>>g;1 = Z Cﬂ(ﬁl_?) .

§€(Z>O)m
lel<pg (1) +m

By the first relation in (5.3), the vanishing condition after (5.3), and (5.10),

i=m

= {(b—e),, (5.11)

=1

for all meZ=Y and b€ (Z=2%)™ with 2g+m >3 and |b|=p,(I)+m+1. By (5.3) and the vanishing
condition after (5.3),

{(bL)gir = (Ibl+1—g+ I 1]]) (b)) g1 (5.12)

for all meZ=% and b€ (Z2°)™ with 2g+m >3 and |b|=p,(I)+m; if (g,1)=(1,(0)), we also need
to use (5.4) and (5.10) to obtain (5.12).

Let m € Z=2° with 2g+m>3. By the string and dilaton equations [11, Section 26.3],

i=m

<<)‘9J; 7'b0>> = <<)‘g;I; Th—e; >> and

=

(A3 1)) = (|]0|+1 g+ [11]]) {Ags15 ™6 )

respectively. By the first case in (2.4) and the first identity in (5.13),

(5.13)

%

<<)‘9;I?Tb>> = <<)\g;I§Tb0>> <<)\gI,Tb e>> if |b|>pg(l)+m.

Il
3

.
I

Along with (5.11), this implies that (5.2) for all be (Z=%)™ and |b|> u,(I)+m is equivalent to
(i) = (B ¥ BE(ZZ)" st [b|=py(D)+m. (5.14)

By the symmetry of the numbers on the two sides of (5.14) and (5.11)-(5.13), (5.14) for all m € Z=°
with 2g-+m >3 is in turn equivalent to (5.14) for all m€Z=? and b (Z2°)™ with either 2g+m =3
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or 2g+m >3 and by >2 for all k€ [m].

For ¢=0,1, (5.2) thus reduces to

) _ o0
/Ml = G0y /MAI = o, ¥1=Cloyq- (5.15)

0,3 1,1 Mai 1

For g >2, (5.2) reduces to

o0 (1Pl —lel
P ) G wYe (e (5.16)
gm =1 Ee Z>O)m -
lel<pg(I)+m
for all meZ=" and b= (bg)kefm) € (Z=2°)"™ with [b| = py(I)+m and by >2 for all ke [m]. We take
C’}jq()) to be the m=0 number on the left-hand side of (5.16); it vanishes unless p4(1)=0.

Suppose g>2, ug(I) >0, m*€Z*, and we have constructed the numbers (5.1) with the required
properties for all m <m*. The only numbers (5.1) for m=m"* that remain to be determined are the

numbers C’}i) in (5.9) with m=m*. The only one of these numbers appearing in the equation (5.16)
corresponding to b € (Z=%)™" with |b|= pu,(I)+m* with a nonzero coefficient is the number indexed

by e=b. Thus, the equations (5.16) Wlth |b|=p1g(I)+m* determine the numbers C(g) (5.9) with
m=m*. By the invariance of the sides two of (5.16) under the permutations of the components

of b, the numbers C}. (g )in (5.9) determined by these equations are invariant under the permutations

of the components of €. This establishes the existence of the numbers C(g) in (5.1) satisfying all
requirement of the lemma. O

Lemma 5.4. Let g€ Z2° and 1 (Z=°)9. With C}ge) as in Lemma 5.3,

Mo (0 S (ol -Gt Tl )
7]

(e.€')€(Z20)™ x (220)5(©) ( JES(e)

el +1e'|[<pg (1) +m+]e|
bl )m <bk>
X €L .
<ug<1)+m+\CI—ICH—H 11

Jor all m e Z=° with 2g-+m >3, b= (b)kepm) € (Z=°)™, and ce (Z=")>

Proof. By (5.2) and the second case in (2.4),

3 (—)PICE, ([bl+ b/ (le|+]¢']))!
s\ (PIFB = (g (1) Fm +el))!

b’e (Z>0

(e € )E(Z>O)m (Z>O)S(c)
lel+Hle' [<pg (I)+m+|e|<|b|+[b’|

(), ()

o1

(5.17)



If c=0 and |b|>p4(I)+m, this expression becomes

A(IE,IIZ);OZ Z (|b |(’b| 11;[ < )

(Z>O m
le |<NQ(I)+m

If c=0 and |b| < py(I)+m, the first sum vanishes. This establishes the claim in both ¢=0 cases.

Suppose ¢#0. By (5.17) and the first statement in Lemma 5.1,

e ’
Q=X <<1>'O§?2€/<ug<f>+m+c|<|e|+le’l>>’ He?v”(e' >
)S(c) ’

(6,€)€(Z20)™ x (220 (rj)ese) "

lel+]e' | <pg (I)+m+c|
ﬁ < )i 1)b’< b +b" e ><HCH—|6’|>
o & uo(D+m+lel—le -\ o))

The claim now follows from the second statement in Lemma 5.1. O

Proof of Proposition 2.1. By Lemma 5.4 and the vanishing statement after (5.3), (2.6) holds with

€ e r
ARS =TIt 3 O (gD +m+lel— (el +1€))! H%-!(ﬁ, ) (5.18)
J

k=1 eg(z20)S() (rj)eSe) T
le|-+Hle' | < g (I)+m+]c|

(9)

Since the coefficients C}7., provided by Lemma 5.3 are invariant under the permutations of the

components of €, so are the numbers (5.18).

By the vanishing statement in Lemma 5.3,

Ye <6943 itee(ZZ0)™, 1€(22°), 20+m=>3, CFY 0.
1<i<m -
61'22

Along with (5.3), this implies that there exists Cy € R such that
Hel CE2] (31 m = lel)t < Cy1e+ M) 3D 4m—h ke
< Cy (3(g—1)+m)!

for all 1€ (Z=%)9, e€ (Z=)™, and m € Z=° with 2g+m >3. By (5.18), (5.19), and the first statement
in Lemma 5.1,

\Agﬁj)\gcg(3(g—1)+m+\c\)! 3 H( )
r,J

Ce(z20)5© (rj)es(c)
lelHe [<pg (D+mte]

e'=||c|]
< Cy (Blg—1)+m+lel)! D <”§”) = Cy2lel (3(g—1) +m+[e|)!.
/=0
This establishes (2.7). O
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Corollary 5.5. Let g€Z=° and I €(Z=°)9. Then,

A9 = (-1 (2g+m—3+ci+ca+.. .)!A(g)
I,b;(c1,c2,...) (2g+m_3+c2+ ] )' Ib;(0,c2,...)

for all me Z=° with 2g+m >3, be (Z=°)™, and c=(c;),ez+ € (Z20).

Proof. Let AP be as in (5.18) and e = (1,0,0,...) € (Z=°)>. If (g,1) # (1, (0)) or |¢|>2, then
(5.3) and the vanishing statement after (5.3) imply that

A, = (29—24me+]e) Af

If (9,1)=(1,(0)), then (5.3), the vanishing statement after (5.3), and (5.4) imply that

(m+|c|—1)!- {(_1)’ if le[=1;

A(gé) = (20—2+m-+]c A(g,é) —I—C(l)
(2 ) Az (me+lel—llel), if lel=0.

Iicte; (0);(1)

Combining these observations with (2.6), we obtain
A(g) = _—(2¢0—2 A(g)
I,b;c+ep ( 9 —l—m—}—|c]) I,b;c*
The claim follows from this identity. O

Example 5.6. By (5.5) and (5.15),

C(O)_ 1, ife=0; C(l) 1 1, ife=0;
0 10, otherwise; O 0, otherwise.

Combining this with (5.18), we obtain

L0 _ [(m=3+le])l, ife=0e@=)™ g _ [T ife=0e (7)™
B i o, if e£0.

Since

b[!, if [b[>m—3;

(oo = {)

the (g,1)=(0,()), (1, (1)) cases of (2.6) reduce to

2 >((_1)b/|(n|qbl;|rb\::\>( 11 (b’r )) :(_1)||C||(m+’c’_3)!<m—3f\)<‘:\—||c|y>’

w1 (bl i [b[zm—t;
=35

otherwise; 0, otherwise;

b/e(220)S(e rj)ES(c) N I
1( bl [V , b
SIe — (1) (e fe] 1)1
b’e(zg;ﬁw(( | m=1+ld (rj)lgsm s Pl =) m—14|c|—|c]]

for m>3 and m > 1, respectively. These two identities are immediate consequences of the first two
statements in Lemma 5.1.
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Example 5.7. By (5.5) and (5.15),

1 .
C((O))§§: ﬁ _(|§|_2)'7 leE{O,l}m7 |6|22’
0, otherwise.

€ 1 ad Cr o . m
A =51 llel+lel-2)tmtlel (e + D) T () it ce o

c’'e(zz0)° r=1

with (—=1)!=—1 and (—2)!=0; all other coefficients A(ﬂf) with (g,7)=(1,(0)) provided by (5.18)
vanish. Thus,

o _ (m—le)t | if e€{0,1}™, |e|=1;
Ao =55 ) ~Uel=2)L if e€{0, 137, |e[>2;
0, otherwise.

If r€Z" and e, € (Z=°)* denotes the r-th standard coordinate vector, then

T, if e€{0,1}™, |e|=0;

q0 _ (mefe)t J (m=r), if e€{0,1}™, ¢/ =1;

(©er 24 —(lel=2)!((le| = 1) (r=1)+m), if e€{0,1}™, |¢] >2;
0, otherwise.

5.2 Sums of residues of generating series
For g, m € Z=" with 2g+m >3, I €(Z=")9, c€ (Z=°)>, and e € (Z=")™, let ngf) €Q be as in (2.19).
Proposition 5.8. Let g,mcZ>° with 2g+m>3, 1€ (Z2°)9, and be (Z=%)™. If
(o ¢]
¢, ¥1,...€qQu(M)lg] and 1+ 2*(h.q) = e“‘””‘(l +> %(g)hb), (5.20)
b=0
then

_b’

Sy (v n{

m’=0 ble(ZZO)m

[b|+[b’|=pg (I)+m~+m'

2*(h, >}>

ZZ>0 . 6;0 +% e e\ 1+ 90 (0) (5:21)
le \<Mg(1)+m
€ <by Vke[m]

|~ (11 (I)+m—|lc) [b|—|é] bk
o <ug<f>+m—\c\—re\E(bk—ek)!)
in Qallq].
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Proof. Fix co€Z=Y and c=(c;) ezt € (Z29)°. Let

v Uﬁl’ w(e) = r_[l(<r+1>!)‘”,

S(co,c) = {(T,j)EZZOXZ+Z (r,7)e{r}xlc] VTGZZO},
9 _ NN {Ag;r; Tob ) r+1
Whoe= SO e (0

b/e(220)S(c0:©) (rg)eS(eoe) "I

In particular, |S(co, c)|=co+|c| and the numerator above vanishes whenever the argument of the
factorial in the denominator is negative. By Corollary 5.5 and Proposition 2.1,

2g+m—3+co+|c|)!

(
l(;],)l;co,c = (_1)CO+|C‘+”C”

(2g+m—3+]|c|)!
~gie b|— ¢l ULEE
" Ao ( | ) ’ (5.22)
EG(ZZ;)mI’C pg(I)+m— |[c[|—e] ,g(bk—ﬁk)!
le| <pg (I)+m
€, <bg Vke[m]

with A€ as in (2.19).

We establish (5.21) by comparing the coefficients of W"¥® on the two sides. By (5.20),

> r+1-b ifb=0;
Rtz mg) = Z(: )éfi)l_b)!‘l’r(q) + {S(Q) ;f be 1 (5.23)
r=max(b—1,0 ) = L.

The coefficient LHS,,,/(co, c) of W in the m/-th summand on the left-hand side of (5.21) is a
sum over the collections of disjoint subsets Sy, S1,... of [m'] of cardinalities ¢, ¢, ... and tuples
b’ € (229)5(¢0°) such that

|b|+b'| = pg(I) +m+m' € Z7°.
The factors in the m/-fold product in (5.21) that contribute ¥, are indexed by the elements of S;
the j-th such factor arises from hS_CiO{h*b;vj 2*(h,q)} with r >b; ;—1. This leaves m'—co—|c| factors
that contribute ((¢q) from hi)_%O{Z*(h, q)}. The associated summand contributing to LHS,,/(co, c)

is then

Mcm’—co—|c| H ((—Dblm Cr+1_b/r,j >

n e s
" (r,j)€S(co,c) b?”,]‘ (T+1 bn]).

Pl melel (s T ) r+1\
S et ()

w(c) m/! i)

(r,j)€S(co,c)

the first expression above is defined to be 0 if b]. ; >7+1 for some (r, j) € S(co, ¢). Since the number
of collections of subsets above is

m’ m'
(corcorieco1e) = TP ph == el
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it follows that the coefficient of Wi"¥® on the left-hand side of (5.21) is

¢Ibl=pg(I)—m+c|

o
(9)
Z LHS, s (607 C) = w(C)Co!C! b,I;co,c”
m/=0
The claim now follows from (5.22) and the last statement in Lemma 5.1. O
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