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Abstract

We present an approach to a large class of enumerative problems concerning rational curves in
projective spaces. This approach is far more elementary than the “elementary” techniques of
classical algebraic geometry used to solve some enumerative problems. It involves the topology
of moduli spaces of rational maps and makes no use of their finer properties as algebraic stacks.
Applying our method in many cases is completely straightforward. We demonstrate it by
enumerating one-component rational curves in the three-dimensional projective space that have
a triple point or a tacnodal point. The only difficulty in deriving a formula enumerating rational
one-component curves in a complex projective space that have a k-fold point, for example, is
purely notational. The computational approach itself should be applicable to enumerative kinds
of problems in other settings as well.
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1 Introduction

1.1 Background

Enumerative geometry of algebraic varieties is a fascinating field of mathematics that dates back
to the nineteenth century. The general goal of this subject is to determine the number of geometric
objects that satisfy pre-specified geometric conditions. The objects are typically (complex) curves
in a smooth algebraic manifold. Such curves are usually required to represent the given homology
class, to have certain singularities, and to satisfy various contact conditions with respect to a
collection of subvarieties. One of the most well-known examples of an enumerative problem is

Question A If d is a positive integer, what is the number ng of degree-d rational curves that pass
through 3d—1 points in general position in the complex projective plane P??

Since the number of (complex) lines through any two distinct points is one, n; =1. A little bit of
algebraic geometry and topology gives no=1 and n3=12. It is far harder to find that nys =620, but
this number was computed as early as the middle of the nineteenth century; see [Ze, p378]. The
higher-degree numbers remained unknown until the early 1990s, when a recursive formula for the
numbers ng was announced; see [KM] and [RT].



For more than a hundred years, tools of algebraic geometry had been the dominant force behind
progress in enumerative algebraic geometry. However, in [G], Gromov initiated the study of pseu-
doholomorphic curves in symplectic manifolds and demonstrated their usefulness by obtaining a
number of important results in symplectic topology. Since then moduli spaces of stable maps, i.e. of
the parameterizations of pseudoholomorphic curves, have evolved into a powerful tool in enumera-
tive geometry and have become a central object in algebraic geometry. In particular, these moduli
spaces lie behind the derivation of the recursive formula for the numbers ng in [KM] and [RT]. The
latter work, in fact, gives a recursive-formula solution to the natural generalization of Question A
to projective spaces of arbitrary dimension:

Question B Suppose n>2, d, and N are positive integers, and p=(p1,...,un) is an N-tuple of
proper subvarieties of P™ in general position such that

I=N
codim cp = Zcodim@m =d(n+1)+n—3+ N. (1.1)
I=1
What is the number ng(u) of degree-d rational curves that pass through the subvarieties i1, ..., un?

Condition (1.1) is necessary to insure that the expected answer is finite and not clearly zero. For
easy geometric reasons, it is sufficient to solve Question B, as well as other similar questions, for
tuples p of linear subspaces of P of codimension at least two. Thus, the enumerative formulas
given below are stated and proved only for constraints x that are points in P? or points and lines
in P3. However, the formulas themselves are valid for arbitrary constraints.

Following the work of [G] and [K|, moduli spaces of stable maps into algebraic manifolds be-
came subjects of much research in algebraic geometry. Algebraic geometers usually denote by
ﬁo, ~(P",d) the stable-map compactification of the space of equivalence classes of degree-d holo-
morphic maps from P! with N marked points into P”. These spaces are described as algebraic
stacks in [FP]. While their cohomology is not entirely understood, it is shown in [P] that the
intersections of certain tautological cohomology classes in ﬁo, N(P",d) can be computed. Even
though the derivations in [P] make some use of the algebraic structure of Mo n(P",d), the formu-
las themselves are purely topological and very simple. As an application to enumerative geometry,
[P] expresses the number |S; ()| of Question C in terms of intersections of tautological classes in
9o N (P",d) and then in terms of the numbers ng.

Question C If d is a positive integer, what is the number |Sl (,u)‘ of degree-d rational curves that
have a cusp and pass through a tuple p of 3d—2 points in general position in P? 2

A similar approach to enumerative geometry of plane curves is taken in [V]. Using relation-
ships derived in [DH], [V] expresses the “codimension-one” enumerative numbers of rational plane
curves, such as those of Questions C-E, in terms of intersection numbers of tautological classes in
ﬁo, ~N(P™, d) and the latter in terms of the numbers ng.

Question D If d is a positive integer, what is the number %h}p) (,u)‘ of degree-d rational curves
that have a triple point and pass through a tuple pu of 3d—2 points in general position in P2?

Question E If d is a positive integer, what is the number %!8{1)(/1)‘ of degree-d rational curves
that have a tacnode and pass through a tuple jn of 3d—2 points in general position in P??



Questions A and C-E can actually be solved using more classical methods of algebraic geometry,
as is done in [R1] and [R2]. However, the derivations in [R1] and [R2] involve fairly complicated
algebraic geometry. In contrast, the computations in [P] and [V] involve much less algebraic ge-
ometry and rely on known results, obtained via fairly complicated algebraic geometry elsewhere,
including [DH], [FP], and [K].

The method given in this paper can be used, in a straightforward, if somewhat laborious, manner,
to express the number of rational curves in a complex projective space,that have a k-fold point,
for example, and pass through a set of constraints in general position, in terms of intersections of
tautological classes in the moduli spaces of stable rational maps. In Subsection 1.4, we describe
in more detail the scope of the applicability of this method. Its application makes practically no
use of algebraic geometry. The method itself relies on a number of technical results, only some of
which are contained in this paper, and the rest elsewhere, including [LT], [MS], [RT], [Z1], and [Z2].

The author thanks Tomasz Mrowka and Jason Starr for helpful conversations during the prepara-
tion of this manuscript and Izzet Coskun, Joachim Kock, and Ravi Vakil for comments concerning
the initial draft. Most of this work was completed while the author was at MIT.

1.2 Outline of the Method

The first step in our approach is to describe a subset Z of a moduli space of stable rational maps,
or of a closely related space, such that the cardinality of Z is a known multiple of the number we
are looking for. We would also like the subset Z to be the zero set of a reasonably well-behaved
section s of a bundle V over a reasonably nice submanifold S of the ambient space M. For
example, in the case of Question C, we might take S to be the subset of imo,l(]lﬂ,d) consisting
of the equivalence classes of maps whose images pass through the 3d—2 points in P? and take
Z to be the subset of S consisting of the equivalence classes of maps whose differential vanishes
at the marked point. Alternatively, we can also allow Z to be the preimage under a reasonably
well-behaved map h: S — X of a submanifold A of X'. For example, in the case of Question D,
we might take S to be the subset of 93?0,3(192,(1) consisting of the equivalence classes of maps b
whose images pass through the 3d—2 points such that ev;(b) =eva(b), where ev; and evy are the
evaluation maps at the first and second marked points of 9 3(P2,d); then we could take

Z = {eVl XeV3}_1(AP2Xp2) N S,

where Apz,p2 denotes the diagonal in P? xP2. In the case of Question E, we might take the am-
bient space to be the projectivization of a natural rank-two bundle over ﬁog (P2, d). However, in
practice, we will keep track of the points on P! that get mapped to the constraints, i.e. there will
be marked points labeled by the positive integers 1,..., N, where N is the number of constraints.
The points that describe the singularities of the image curve will be labeled by 1, 2, etc.

If S is a smooth compact oriented manifold, V — &S is a smooth oriented vector bundle of the
same rank as the dimension of S, and §: § — V is a smooth section, which is transverse to the
zero set in V', then

F[57H0)] = (e(V), S), (1.2)

where i‘§_1(0)‘ is the signed cardinality of the set §71(0). Equation (1.2) is valid under more
general circumstances. In the cases of interest to us, the ambient M is an oriented stratified



topological orbifold and S is a smooth submanifold of the main stratum M such that S—8 is
contained in a finite union of smooth manifolds of dimension less than the dimension of §. Under
these assumption, S determines a homology class in M. Furthermore, if § is a continuous section
of V over S and e(V) is the restriction of a cohomology class on M, then equality (1.2) still holds.
By (1.2), if s is any continuous section of V over S such that s|S is transverse to the zero set and
Z=5"1(0) NS is a finite set,

i|Z| = <6(V)7S> — Cys(s), (1.3)

where Cyg(s) is the s-contribution of dS to the euler class of V. In other words, Cyg(s) is the
signed number of zeros of a very small generic perturbation 5 of s that lie near S. If the behavior
of s near OS can be understood, it is reasonable to hope that the number Cy5(s) can be computed,
at least in terms of evaluations of some cohomology classes. On the other hand, in the case of
Question C, S is a tautological class in the appropriate moduli space of stable maps. Thus, if e(V)
is also a tautological class, (e(V'),S) is computable, and we are done. Most of the time, however,
we will have to describe (e(V),S) as the signed cardinality of a subset Z’ of a space which is a step
closer to a tautological class than S and apply equation (1.3) with Z’. Eventually, we will end up

with intersections of tautological classes in moduli spaces of stable rational maps.

The topological setup of the previous paragraph is only slightly more general than that of Section 3
in [Z1]. However, it is not sufficient for our purposes. We now present two significant generaliza-
tions of this setup. The first is that equation (1.3) makes sense even if the section s is defined only
over S and does not extend over S—S. In such a case, we can use a cutoff function to define a new
section s’ that vanishes on a neighborhood of S—S and thus extends to a continuous section over S.
The term Cyg(s) is then the signed number of zeros of a very small generic perturbation § of s
that lie near S. If we can understand the behavior of s near S and choose the cutoff function
carefully, it is again reasonable to hope that we can determine the number Cy5(s).

The second generalization has a very different flavor. Suppose S and M are as above and X is
a smooth compact oriented manifold. If h: M — X is continuous map such that the restriction
of h to every stratum of M is smooth, then h|S is a pseudocycle in the sense of [MS] and [RT],
i.e. it determines an element of H,(X;Z). In particular, if A is an immersed compact oriented
submanifold of X such that dim S4+dim A =dim &', there is a well-defined homology-intersection

number B

{({n|S}1(A)) = (h1(A),S)).
If Y is an immersed compact oriented submanifold of X such that

V= [A] e H(X:Z),  h(0S)NY =1,
and h is transversal to ) on S, then
({rlSyHA)) = ({rsy ) = *{rSH V). (1.4)

Alternatively, if 0 is a very small perturbation of h on a neighborhood of S in M,

({nsy 1)) = H{els1(A)].

Thus, if h : M — X is a continuous map as above such that h|S is transversal to A and
Z={h|S}71(A) is a finite set,

H2| = ({nIS}H(A))) — Cas(h, A), (1.5)



where Cyg(h, A) is the (h, A)-contribution to the intersection number ({h|S}~1(A))), i.e. the signed
cardinality of the subset of #71(A) NS consisting of the points that lie near S for a small generic
perturbation @ of h near dS. If the image of a stratum Z; of S under h is disjoint from A, then
clearly Z; does not contribute to Cyg(h, A). If h maps Z; into A, on a neighborhood of Z; we can
view h and 6 as vector-bundle sections. Thus, if we can understand the behavior of h near S, com-
puting Cy5(h, A) is no different than computing Cy5(s) in the topological setup presented first. On
the other hand, in the cases of interest to us, we will be able to find a submanifold ) as in (1.4) such
that H{h|S} ()| can be expressed as evaluation of tautological classes on S; see Subsection 4.1,
for example. If S itself is not a tautological class in a moduli space of rational stable maps, we will
have to describe {h|S}~1())| as the signed cardinality of a subset Z’ of a space which is a step
closer to a tautological class than S and apply equation (1.3) or (1.5) with Z’. Eventually, we will
end up with intersections of tautological classes on moduli spaces of stable rational maps.

In Subsection 2.2, we describe our topological assumptions on S, M, and the behavior of s or h
near OS. These assumptions imply that the sets s71(0) NS and {h|S}~1(A) are finite. Roughly
speaking, we require that S be contained in a finite union of smooth manifolds Z; such that near
manifold Z; the section s or the map h can be approximated by a polynomial map between vector
bundles over Z;. The polynomial map may contain terms of negative degree. Propositions 2.18A
and 2.18B of Subsection 2.3 give a reductive procedure for computing the contribution from each
space Z; to Cys(s) or to Cyg(h,A) in good cases. The method presented there is an improvement
over that of Section 3 in [Z1] even for the basic topological setup. In particular, its use does not
require applications of the Implicit Function Theorem to model a neighborhood of S in S. The
complexity of applying this theorem increases rapidly with the dimension of the boundary strata,
as a comparison between Subsections 5.4 of [Z1] and 2.3 of [Z3] suggests. Propositions 2.18A
and 2.18B describe how to set up a finite tree with evaluations of cohomology classes assigned to
the nodes and with integer weights assigned to the edges. The number on the left-hand side of (1.3)
or (1.5) is the sum of all evaluations of cohomology classes in the tree multiplied by the product
of the weights between the given node and the root. The root of the tree is assigned the first term
on the right-hand side of (1.3) or (1.5).

In order to apply the topological method of this paper to enumerative problems, we use Lemma 3.4
and Proposition 3.5. The former is a rather elementary result in complex geometry and implies that
various bundle sections over smooth strata of moduli spaces of stable rational maps are transverse
to the zero set. The latter depends on the explicit construction of the gluing map in [Z2] and
describes the behavior of these bundle sections near the boundary of each stratum. In many cases,
Proposition 3.5, combined with Lemma 3.4, implies that the natural submanifolds S of moduli
spaces of stable rational maps, or of closely related spaces, that are needed for counting singular
rational curves are well-behaved near S and that the behavior near 9S of various natural vector-
bundle sections over S can be approximated by polynomials.

1.3 Computed Examples

We now describe the main enumerative results derived in this paper using the computational
method outlined above. These are the enumerations of triple-pointed and of tacnodal rational one-
component curves in P? and of rational one-component cuspidal curves in P" that pass through
a collection of constraints in general position. The reason we choose these examples is that they



illustrate all the aspects of our method and lead to new results. The numerical values of some
low-degree numbers can be found at the end of the paper. Note that our low-degree numbers pass
the standard classical checks; see Section 8.

We start by giving a formula describing the number of cuspidal curves in P"™. This is actually
the least interesting example of the three mentioned, as it should have really been done in [Z4].
However, the solution to this example is easier to state and explain than the answers to the two
other primary examples.

Theorem 1.1 Suppose n>2, d>1, N >0, and p=(p1,...,un) is an N-tuple of proper subvari-
eties of P™ in general position such that

I=N
codim cp = Z codimcpy = d(n+1) —2+ N.
=1

The number of rational cuspidal degree-d curves that pass through the constraints p is given by

2k<n+2 n+2—2k na1 -
$100/ = 3 0= S (M) (o o V()
k=1 =0

We now explain the notation involved in the statement of Theorem 1.1. The compact oriented
topological manifold Vi (1), which in general may be an orbifold, consists of unordered k-tuples of
stable rational maps of total degree d. Each map comes with a special marked point (i,00). All
these marked points are mapped to the same point in P™. In particular, there is a well-defined
evaluation map

evy: Vi(p) — P",

which sends each tuple of stable maps to the value at one of the special marked points. We also
require that the union of the images of the maps in each tuple intersect each of the constraints
Ui, .-.,un. In fact, the elements in the tuple carry a total of N marked points, y1,...,yn, in addi-
tion to the k special marked points. These marked points are mapped to the constraints pu1, ..., un,
respectively. Roughly speaking, each element of Vj(u) corresponds to a degree-d rational curve
in P, which has at least k irreducible components, and k& of the components meet at the same
point in P". The precise definition of the spaces Vi (1) can be found in Subsection 3.1.

The cohomology classes ay and 7, are tautological classes in Vi(p). In fact,

ag = evycl (O (1)).

Let Vi (n) be the oriented topological orbifold defined as Vi(p), except without specifying the
marked points yi, ..., yny mapped to the constraints p1,..., un. Then, there is well-defined forget-
ful map,

T Vi(p) — Vi(w),

which drops the marked points y1, ..., yxny and contracts the unstable components. The cohomology
class g ;€ H* (Vg(p)) is the sum of all degree-l monomials in the elements of the set

{T* V(1,00)s -+ T WP(h00) } C H>(Ve(p))-

7



As common in algebraic geometry, 1(; o) denotes the first chern class of the universal cotangent
line bundle for the marked point (i,00) €P!. In Subsection 3.1, we give a definition of 7; that does
not involve the projection map 7. The algorithm of [P] for computing intersections of tautological
classes in ﬁo, ~(d,P™) applies, with no change, to computing the intersection numbers involved in
the statement of Theorem 1.1.

From the point view of this paper, counting rational curves with a triple point or a tacnode should
be viewed as a Level 2 problem. Indeed, the sets of such curves are subsets the space of one-
component nodal rational curves. Counting the latter curves is a Level 1 problem, since the next
level down are the rational curves that pass through the given constraints, which correspond to
tautological classes in moduli spaces of stable rational maps. Thus, the first two propositions below
express Level 2 numbers in terms of Level 1 numbers. After stating them, we give some clarification
on the notation involved and then state several lemmas that express the relevant Level 1 numbers
in terms of Level 0 numbers, such as those of Theorem 1.1.

Theorem 1.2 Ifd, p, and q are nonnegative integers, such that 2pt+q=4d-3, the number of rational
one-component degree-d curves that have a triple point and pass through a tuple u of p points and
q lines in general position in P3 is %|V{2) (1)|, where

V20| =V (b HO)| + g, VD (et HY) + (160548151, 81 (1)) + 2| V5D (1)
—{(12— d)a +8a07701+27701,v(1) )) —2[S2(w)]-

Theorem 1.3 If d, p, and q are nonnegative integers, such that 2p+q = 4d—3, the number of
rational one-component degree-d curves that have a tacnodal point and pass through a tuple p of
p points and q lines in general position in P3 is %|S£1)(,u)|, where

1 _
|81 )| =(6ag+g . Vi () + (gt 55,0, V5" (10) + 7| S2(0)

— (20a5+1975 . S1(1)) — 2]V ()]

We define the spaces Vél)(u) as follows. Let V(l)(u) be the space of k-tuples of stable maps as
in the construction of the space Vi (u), but with the following exceptions. Every element of each
k-tuple lies in the main stratum of an appropriate moduli space of stable maps, i.e. the domain of
the map is P!. Furthermore, one of the elements of each k-tuple b carries a special marked point,
labeled by 1, and the value of the map at this point is evy(b). In the spaceAV2(l’1)(,u) each of the
two components carries a special marked point, one of which is labeled by 1 and the other by 2.
Furthermore, evj(b) =ev,(b) for all 2-tuples b in Vél’l)(,u). The spaces f/,gl)( ) and V(l )( ) are the

closures of V,El)(,u) and V(l )( ) in the unions of appropriate products of moduli spaces of stable
rational maps. We denote by S}(u) the subspace of V(1) consisting of tuples of maps with the
simplest possible additional natural singularity. For example, the differential of every element of
S1(p) vanishes at (1,00). The set Sy(p) is described in detail by Lemma 1.5. Figure 1 depicts the
images of typical elements of these spaces as well as of the space V2(71;87’11)(,u), which appears in a
relationship between Level 1 numbers; see the remark following the proof of Lemma 5.8. We give
formal definitions of all these spaces in Subsections 4.1, 4.4, and 5.1. Finally, u+ H" denotes the
(N+1)-tuple of constrains (p1,...,un, H"), where H" is a generic linear subspace of P of complex

dimension r.
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Figure 1: Images of Typical Elements of S, and V}

Lemma 1.4 If d, p, and q are nonnegative integers, such that 2p+q=4d—3, and p is a tuple
of p points and q lines in general position in P2, the number of rational connected two-component
degree-d curves, such that one-component is a nodal curve and the other is attached at the node of
the first component as depicted in Figure 1, is %\Vél)(,uﬂ, where

VD ()] = [Va(ut HO)| + (ag, ValptH")) + 3|Va ()| — (12— d)ad+dagng , +2n5 5,78 1, Va(1)).

Lemma 1.5 Ifd, p, and q are nonnegative integers, such that 2p+q=4d—3, the number of rational
connected two-component degree-d curves that have a tacnodal point and pass through a tuple p of
p points and q lines in general position in P is given by

Sa ()] = <6a +4agng, 1+7702=V2 )) — 3[Va(u)|.

Lemma 1.6 Suppose d, p, and q are nonnegative integers, such that 2p+q=4d—3, and p is a
tuple of p points and q lines in general position in P3.

(1) The number of rational connected two-component degree-d curves, with the components arranged
i a circle as in Figure 1, that pass through the constraints u and have one of the nodes on a generic
hyperplane is given by

1<a07v<1 V() = (ag, Volu+{H" - H?})) — (4a2+agny ;. Va(w)).

(2) Furthermore,
5 5. VD (1)) = (.3, Vot T F2 ) Vit H) [+ g, Vit H) -+, Vo)) =3[V ()]

Lemma 1.7 Suppose d, p, and q are nonnegative integers, such that 2p+q=4d—3, and p is a
tuple of p points and q lines in general position in P3.

(1) The number of rational degree-d curves, that pass through the constraints p and have a cusp
on a generic hyperplane is given by

(ag, S1(p)) = <6a0170 1+4a0170 1—1—(10770 1 Vi(p)) — <4a +ag75 15 Va(p)).
(2) Furthermore,
<77f),17‘§1 (lu)> <4a0770 1+6%770 1+4a0770 1+770 1’V1 > |V3 |

Lemma 1.8 Suppose d, p, and q are nonnegative integers, and p is a tuple of p points and q lines
in general position in P3.



(1) If 2p+q=4d—1, the number of rational one-component degree-d curves that pass through the

constraints p and have a node is %|V{1)(,u)|, where

V0] = (2= 0)a—dagmy,,—n 1. Vi) + V(o).

(2) If 2p+q=4d—2, the number of rational one-component degree-d curves that pass through the
(1)

constraints p and have a node on a generic hyperplane is %(ao,f}l (1)), where

(ag, ViV (1) = ((2d—6)a} —4aZng , —agnd . Vi(w)) + (a2, Vi (u+H")) + (ag, Va(u)).

(3a) If 2p+q=4d—3, the number of rational one-component degree-d curves that pass through the

constraints p and have a node on a generic line is 2(& Vf )( )), where

(aé,f/f)(p)) = 2(ag, Vi(u+H")) — <4a0170 1+a0770 V() + (ag, Va(p)).

(8b) Furthermore,

(agno, > V1" (1)) =(agn, 1 Vi(u+H®))+(adng 1, Vi (ut-H"))+d{adng 1, Vi (1))
— <4a2—|—a0770 1,]}2( )>
<770 17v(1)( )> :<7'](2)71,91(M+H0)>+<CL()T](2)71791(M+Hl)> <4CL07]0 1+d %770 17Vl > |V3 ‘

Every term on the right-hand side of every expression in Lemmas 1.4-1.8 is a Level 0 number, i.e. it
is an intersection of tautological classes in a product of moduli spaces of stable maps and thus is
computable via the explicit formulas of [P]. We define the space Va(u+{H': H?}) in the same way
as Va(u+H'+H?), with the only exception that we require H; and Hj to lie on different elements
of the tuple b.

Remark: If one were to derive a completely general recursive formula for counting rational curves
with singularities, no separate formula would be necessary for the generalization of (2) of Lemma 1.6,
(2) of Lemma 1.7, and (3b) of Lemma 1.8. Using [P], one can express all classes 7} , on products of
moduli spaces of stable rational maps in terms the subspaces of possibly other products of moduli
spaces of stable rational maps that consist of stable maps sending their marked points to various
constraints in P". In many cases, using Proposition 3.5, one can thus express evaluations of the
classes 7y, on a space S of maps that represent curves with certain singularities in terms of the
numbers of singular curves that pass through various constraints. Furthermore, the level of the
latter numbers will be no higher than that of S.

We prove Theorems 1.2 and 1.3 in Sections 4 and 5. In particular, we describe the structure
of the spaces Vfl)(u) and 1_/2(1’1)(”) in Subsection 4.2 and conclude that they define a homology
class in a compact oriented stratified topological orbifold. Since S;(u) is shown to be an oriented
topological manifold in Subsection 5.4 of [Z1], it follows that all the terms on the right-hand side of
the formulas in the two propositions are well-defined. In Subsections 4.1 and 5.1, we write V]EQ) (1)

and 8}1)(/1) in the form (1.5) and (1.3), respectively, and express the first term on the right-hand
(1)

side in terms of evaluations of tautological classes on V;’ () and on related spaces. Lemmas 1.5
and 1.7 are proved in [Z1]. The first statement of Lemma 1.8 is a special case of Theorem 1.1
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in [Z4]. The remaining statements of Lemma 1.8 and Lemmas 1.4 and 1.6 are proved in Section 6.
In Subsections 7.1 and 7.2, we show that our method recovers the formulas of [KQR] and [V]
solving Questions D and E, which are the P? analogues of the problems addressed by Theorems 1.2
and 1.3. We conclude by proving Theorem 1.1 in Subsection 7.3, where we construct a tree of
contributions and thus illustrate a point made in the second-to-last paragraph of Subsection 1.2.

1.4 General Remarks

Given the claims made in the abstract, the reader may wonder why this paper is so long, why the no-
tation is so involved, and why a more general case is not done. Doing a more general case, instead of
the examples we work out, may in fact shorten this paper. However, the additional notation needed
to describe a general case is likely to completely obscure the computational method presented here.

The topological part of our method consists of Propositions 2.18A and 2.18B. The somewhat in-
volved notation of Subsection 2.2 formally states what it means to take the leading term(s) of a
section along the normal direction to a submanifold. Proposition 3.5 gives a power-series expansion
of all relevant vector-bundle sections near all boundary strata of moduli spaces of stable rational
maps. Description of the terms involved requires quite a bit of notation. However, as we see in
later sections, very few boundary strata actually matter in our computations, and the expansions
of Proposition 3.5 corresponding to such strata are rather simple. In practice, it is best to draw a
tree of these simple strata along with all the relevant topological data; then deriving formulas such
as those of Theorems 1.2 and 1.3 becomes a nearly-mechanical task.

The sections and linear maps between vector bundles that we introduce in Subsection 3.2 are most
certainly not algebraic in any sense. Nevertheless, it is likely that the numbers of zeros of these
and related linear maps have an algebraic interpretation, and that the same is true of our entire
computational approach. Furthermore, there seem to be some general properties that remain to
be explored. For example, finding any difference between our formulas for |S;(i)| in Theorem 1.1
and for the genus-one correction term C'Rj(p) in Theorem 1.1 in [Z4] requires a rather careful
comparison of the two. One may also notice some similarity between the expressions for various
Level 1 numbers in Lemmas 1.4-1.8. A topological property of the number of zeros of an affine
map in a simple case is described in Corollary 4.7 of [Z3].

We conclude this introductory section by describing some classes of enumerative problems definitely
and likely solvable by the method described in this paper. Suppose C is a one-component curve
in P, or in another algebraic manifold M, and u: C —C is a normalization of C, i.e. C is a smooth
connected complex curve and u: C — M is a holomorphic map such that the image of u is C and u
is one-to-one outside of a finite set of points of C. If § is a point in C, let 04 (p) be the nonnegative
integer such that the first o, (p) derivatives of u at p vanish, but the derivative of order o, (p)+1
does not vanish at p. For example, if o,,(p) =0, du|; #0, i.e. p is a smooth point of the branch of
the curve C corresponding to p. If o, (p)=1,

dul;=0,  but  DFu=Ddul; # 0,

where D denotes the covariant differentiation with respect to some connection in T'M. In other
words, the branch of the curve C at p corresponding to p has a cusp at p. If p is a point of C, we
denote by oo(p) the set of branches of C at p; in particular, |oo(p)|=|u=1(p)|. For each i€ oq(p),
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let o(p;i) = ou(p;) if p; is the point in C such that u maps a small neighborhood of p; into the
branch i at p. Let oo(p)=|]00x(p) be the partition such that
Dg“(ﬁi)ﬂ)u [ Dg“(ﬁj)ﬂ)u < i,j€oo(p) for some k.

For example, if o¢(p) =00,1(p) ={p1,p2} and o(p;1) =0(p;2) =0, the curve C has a tacnode at p.
We take

a(p) = (00(p), {00k (P)}, {o(p;i)}).

The infinite set {o(p): p€C} describes the singularities of the curve C. However, for all but finitely
many points p in C, og(p) ={i} is a single-element set and o(p;i)=0. Thus, we say that the curve
C has the set of singularities

{o(a): a=1,..., N}, where o(a) = (ao(a), {o0,k()}, {a(a;i)}),

if there are distinct points p1,...,py of C such that for all a and some identification of og(«) with
the set of branches of C at pq, o(a) =c(ps). The method of this paper can be used to determine
the number of one-component rational curves in a projective space that have any one-element set
of singularities of the form {(c,{c},{o(i)})}. In other words, the curves are to have one |o|-fold
singular point and the branches of the curves are to have cusps of the orders {¢(i)}. In particular,
we are not imposing any tacnodal kind of condition. The singular point of the curves may be

required to fall on a subvariety.

Some types of singularities that cause problems for this method are the flex, two nodes, two cusps,
and the tacnode. The reason is that the expansions of bundle sections given in Propositions 3.5
are not sufficiently fine in the cases when the boundary stratum involves curves of very low, but
positive, degree. For example, one of the strata of the space of one-component degree-d rational
curves with one marked point y; consists of two-component curves, one of which has degree one
and carries the marked point y;. Every element of this stratum has a flex at yq, i.e. is a zero
of bundle section s. However, Proposition 3.5 does not give a sufficiently fine description of the
behavior of this section s near this stratum. On the other hand, a simple dimension-counting
argument shows that such a boundary stratum cannot occur if the dimension n of the projective
space is two. If we would like to count one-component curves that have two cusps, or two nodes,
or a tacnode, the problem stratum is the one consisting of two-component curves, one of which is
a double line and carries two marked points. Again, a dimension-counting argument shows that
this boundary stratum does not occur unless n is at least 6, 4, or 5, respectively. Indeed, among
the examples worked out in this paper are the enumerations of tacnodal rational curves in P? and P3.

Many types curves with multiple components can be counted as well. In fact, as the results
described in Subsection 1.3 indicate, counting one-component singular curves involves counting
multiple-components curves with simpler singularities. We plan to elaborate more on what types
of curves can be counted and why in a later paper. Finally, due to the explicit nature of the
gluing maps used, it should be possible to sharpen the expansions of Propositions 3.5 along the few
problem strata that appear in more general cases. If so, every enumerative problem, in the sense
described above, will be solvable.
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2 Topology

2.1 Preliminaries

This section contains details of the topological aspects of the computational approach of this pa-
per. We describe the setting in the next subsection and state and justify the reductive method
for computing boundary contributions in Subsection 2.3. The present subsection collects a few
basic facts that are used elsewhere in this section. The key statements here are Definition 2.1 and
Propositions 2.3A and 2.3B.

We fix a smooth cutoff function f: R— 10, 1] such that

0, ift<I;
=< - d "(t)>0 ifte(1,2).
B(1) {1, o wd FB>0ifte)

If §>0, let B5€ C>°(R;R) be given by B5(t) :5(5_%15). If n is a positive integer, denote by Y,, the
union of the n codimension-one coordinate subspaces C*x {0} x C"~1=* in C".

Definition 2.1 Suppose m and n are positive integers and A=(a);j is an mxn integer matric.
(1) Function p: C"—Y, — C™—-Y,, is a degree-A monomials map if

p(21,.vzn) = (200 ozt 2T ) V(z1,...,2,) €C" =Y.

(2) Degree-A monomials map p is nondegenerate if rk p=rk A = m.

(3) If m=mn, nondegenerate degree-A monomials map p is positive (negative) if all components of
the vector A™11 are positive (negative).

(4) If m = n, nondegenerate degree-A monomials map p is neutral if it is neither positive nor
negative.

In (3) above, 1 denotes the column vector of length n consisting of all ones. If m =n, let detp
denote the determinant of the square matrix A.

Definition 2.2 Suppose n is a positive integer, A is an n xXn nondegenerate integer matriz, and
A1 and As are row vectors of length n. Let p, p1, and py be monomials maps of degrees A, A1,
and As, respectively.

(1) If p is a positive monomials map, p1 >, p2 if ATA™ < Ay AL

(2) If p is a megative monomials map, p1 >, p2 if A;A™1L > A A711.

Remark: The notions of nondegenerate, positive, negative, and neutral of Definition 2.1 are invari-
ant under every reordering of coordinates on the domain and/or the target space. The same is true
of the partial-order relation introduced by Definition 2.2. We describe geometric consequences of
these properties below.

If p: C"—Y, — C™-Y,, is a monomials map and d,t € R", let t3sp: C"—Y,, — C™ denote the
smooth map given by

{tBsp} (2) = tB5(|z])p(2), where [z|=v/|z124. . +|z 2 i z2=(21,...,2).

We write Bs(0,C™) for the open ball of radius ¢ about 0 in C™.
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Proposition 2.3A If p: C"-Y,, — C" =Y, is a degree-A neutral monomials map and K is a
compact subset of C"—Y,,, there exists §* =50*(A,K) €RT such that

(Bs+(0,C™) —Y,) Nnp HRY - K) = 0.

Proposition 2.3B Suppose p: C"—Y,, — C"—Y,, is a degree-A positive (negative) monomials
map and IC is a precompact open subset of C"—Y,,.

(1) The set p~1(RT - K) is closed in C"—{0}.

(2) For every 6* € R*, § € (0,0%), and 6, € (62, 00), there exists e=e(A,d6*,0,04,K) R such
that for all t€(0,€), the map

7185+ (Bager2(0,C™) = Y,) N {7 Bsp} TH(K) — K
is a smooth covering projection of oriented order |det p| (—|det p|). Furthermore,
n -1 -1 n
(Byse1/2(0,C")=Y,) N {t~ Bsp} (K) C Bs, (0,C").

(3) If p1 and py are monomials maps of degrees Ay and Ay such that py > ,pa, for every e e RT,
there exists 6 =0(A, Ay, As, €) such that

1p2(2)] < €elpr(2)]  Vz e (Bs(0,C")=Y,) Nnp ' (RY - K).

The rest of this subsection is devoted to proving these propositions. Note that

det D,0|(z1 i) = (detp)z]’fh_1 gl where Aj:Zam-. (2.1)

n
=1

Thus, Im p contains an open subset of C" if (and only if) p is nondegenerate in the sense of (2) of
Definition 2.1. Since p is a rational function in complex variables, it follows that Im p is a dense
open subset of C” if p is nondegenerate. Since p is given by monomials, Im p is in fact all of C"-Y,,.
Thus,

p:C"-Y, — C"-Y,

is a local diffeomorphism. By Lemma 2.8, this map is in fact a covering projection of order | det p|.

Denote by Y, the union of the n codimension-one coordinate subspaces R* x {0} x R*~1=F in R™,
Let Y=Y, N S" 1. We identify C"—Y,, with R* x (S"~1—Y*)x (S1)" by the map

C"—Y, — R x(S" 1=V x (SY)",
21y ...y |20 z Zn
o) — (1 s (2 )

2| 2] [zl

With respect to this decomposition,

p(r,p,0) = (f(T, ), g(r, go),h(@)), where
(f(ﬁ)ag(f)) =p(r)eR", h(ewl, . ,ew") = p(ewl, .. ,ew") c (Sl)”c(C",

Proposition 2.3A follows immediately from
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Lemma 2.4 If p is a neutral monomials map, for every compact subset K of S”_l—ff,;", there
exists § ERT such that for all v €(0,9), {g(r,")}~1(K)=0.

Proof: We use the variables s1, ..., s, to denote the standard Euclidean coordinates on the target
space R™, as well as the corresponding component functions of (f,g). Let

a21—01,1 ... (2p,—0ln
A — . .
Gp1—0a11 ... Apn—Aaln
It is sufficient to show for some i=2,...,n,
si(r si(r
lim sup{ﬁz\z|<r}:0 or lim inf{ Z(_):|[|<r}:oo
r—0 81([) r—0 Sl(f)
This condition is equivalent to
j=n
li o et e (— - _
pm sup { + Z(am ay;)t;: tj €(—00,t)} 00
j=1
= a;j—a1 ;>0 Vi=1,...,n or a;;—a;;<0 Vj=1,...,n. (2.2)
Note that the two lines above are equivalent because A is assumed to be nondegenerate. If (2.2)
is not satisfied by any i=2,...,n, for every nonzero vector z € R"~! there exists a vector c € R"
such that .
ztAc > 0 and Cly...,cn>0.

This means that the image of A* contains no nonzero vector with all components of the same sign.
Thus,

3(z1,...,z,) Eker A—{0} st x1,...,2,>0. (2.3)
Let /ij the matrix obtained from A by removing the jth column. Since p is nondegenerate,
det Aj. #0 for some j. Then, by Cramer’s Rule,

(—1)7+7 =1 det .,le, (—=1)7" det .,lel ,
Ty = - —Tj) = ——————=— T V' (2.4)
det A (—1)7 det A;
‘ _ (—1)7" det A, y :
Since p is neutral, W < 0 for some j'. Thus, (2.4) contradicts (2.3).
i

Lemma 2.5 If p is positive or negative monomials map, for every r €R™, the map
g(r,): S"l_yr — gn-l_yx 0 — g(r,0),
s a local diffeomorphism.

Proof: We assume that n >2; otherwise, there is nothing to prove. Suppose g(r,-) is not a local
diffeomorphism at r=(ry,...,r,) ER™—=Y,,. Then, there exists cc R"—{0} such that

n

ercj =0 and Z (aij — al,j)rj_lcj =0 Vi=2,...,n. (2.5)
j=1 j=1
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The first equation above is equivalent to the condition ¢ € TES"_I. The second equation means
that the ratio of the ith and the first Euclidean components of the function (f,g) does not change
in the direction of ¢ at r. The n conditions (2.5) are equivalent to

2 2
T r

A(l) (ZQ)Q, —0e Rn’ where ./4(1) (22) E.A(l) (’I"%, o 7"2) _ asi1—ail ... a2p,—0a1n

Gp1—0a11 ... Anpnn—Aaln

This equation has a nonzero solution only if det AWM ([2) =0. However,

det AW ([2) = Z(—l)j_l(det fl])r?

j=1

Since p is positive or negative, all the elements of the set {(—1)j ~Ldet ./Zl]} have the same sign.
Thus, det A (r*) does not vanish on R™—{0}. It follows that the differential of g(r,-) is an iso-
morphism everywhere on S7~! —f’; .

Let Y* =Y, N S?"~1 cC". We identify C"—Y,, with R* x (S?"~1-Y*) and denote by

(£.9): RT < (S*1-y) — RF x(S*" 1Y)
the pair of maps corresponding to p.
Lemma 2.6 If p is a positive (negative) monomials map, for every r eRY, the map
O e =

is a local orientation-preserving (-reversing) diffeomorphism and is a covering projection of oriented
order |det p| (—|det pl|).

Proof: (1) We assume that p is a positive monomials map; the negative case is proved similarly.
By Lemma 2.5 and the decomposition § = (g,h), g(r,-) is a local diffeomorphism. Since p is
orientation-preserving everywhere, g(r,-) is orientation-preserving at (r, ) if

<{D,0|(,n,9)}_1 (%) (%» > 0. (2.6)

Let ceR"™ be given by Ac=1cR". Then,

d 0
p(t21,. .., t%2) =tp(2z1,. .., 2n) and Etp(z:)‘t:]L =9 (2.7)
Since p is positive, c1,...,c, €RT and thus
d
a|(tclz1, Lt z) | > 0. (2.8)

The desired inequality (2.6) is immediate from (2.7) and (2.8). The remaining claim follows from
Lemma 2.8 and (2.7), since the curves

t— (tclzl,...,tc”zn), te(0,00), and t— (twl,...,twn), te(0,00),
with (21,...,2n), (Wi, ..., w,) €S~ foliate C"—Y,, and intersect each (2n — 1) sphere r =const

exactly once.
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Corollary 2.7 Suppose p is a positive (negative) monomials map, §* ER™T, 6€(0,6*), and K is a
precompact open subset of C"—Y,,. Then, there exists e €R™ such that for all t€(0,¢€), the map

71 B5p: (Bygeir2(0,C) = Y,) N {t18sp} 1 (K) — K
is a smooth covering projection of oriented order |det p| (—|det p|).

Proof: (1) We prove this corollary in the case p is negative. If p is positive, a stronger claim can be
obtained by a similar and somewhat simpler argument. With notation as above, 35p corresponds
to the pair (Bsf,§) with respect to the splitting of C" —Y,, =R* x (§?"~1 —Y*). Thus,

99 ) (2.9)

00

et D(Bap)5) = Ba(r) det Dol g+ B5() (0 et ()|

Let KC S§?n=1_y* be the image of K under the projection map onto the second component. Since
the closure of K in C"—Y,, is compact, Lemma 2.6 implies that the set

o= U {a)})'0
51/2§r§25*1/2

has compact closure in S$?"~!—Y;*. Thus, there exists C'>0 such that

det Dp|( g <C and f(r,0)det <8g) " <-Cc! V(r,0) € (51/2,25*1/2) xU.  (2.10)

00

0)
The second bound is obtained by using Lemma 2.6. Choose >0 such that

By(r)>2C2B5(r)  Vre(6Y/2,6124y). (2.11)
Note that combining (2.9)-(2.11), we obtain
det D(B5p)] .5 <0 V(r.0)€ (612,612 4n) < U. (2.12)
Let €>0 be such that

e-max{|w|:w6]€}<%min{ﬁ5(|g|)‘p |ze(51/2 1,26"1/2) x U} (2.13)

(2) We claim that e satisfies the required properties. Suppose t <€, z=(r,0) € Bys1/2(0,C"), and
{t7'Bs5p}(z) K. Then,

€ (6Y/2,26"/%) = 0 {g(r,)} 1K) C U.

Assumption (2.13) on € then implies that (r,6) € (51/2,51/2—1—%17) x U. From (2.12), we conclude
that the determinant of the derivative of t~13;5p at z is negative and the map

7 85p: (Byguar2(0,C™) = Y,) N {t185p) " (K) — K

is a local orientation-reversing diffeomorphism. It remains to see that for each point (s,) € KC,
1 - -
H(r,@)e (51/2,51/24—517) xU: Bs(r)f(r,0)=ts, g(r,0) 19}| | det p|.
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By Lemma 2.6, there are smooth paths
0, : [51/2,51/2+%n] —U, i=1,...,|detpl, s.t.
{30, )} 7' (0) = {6:(r):i=1,...,|det p|} and 6;(r)£0;(r) Vre [51/2,51/2%77], i#].
By (2.12) and (2.13),
(712,082 =0, {8} (8" 450, 0:(6Y+ ) > s,
and d%{@;f}(r,ei(r)) >0 VT€(51/2,51/2+%77).

Thus, for each i = 1,...,|det p|, there exists a unique number r; € (51/2,51/24_%77) such that
{85} (ri,0i(r;)) =ts, as needed.

Corollary 2.7 essentially concludes the proof of (2) of Proposition 2.3B. The claimed inclusion is
achieved if in the proof of Corollary 2.7 7 is chosen so that §'/24n< .. Furthermore, part (1) of
Proposition 2.3B follows from Lemma 2.8, the first identity in (2.7), and the assumptions that all
the exponents ¢; have the same sign.

We next prove (3) of Proposition 2.3B. Suppose A is a positive monomials map and K=p1(K).
Since K is a compact subset of C"—Y,,, there exists >0 such that B,.(0,C")NK=0. On the other
hand, by Lemma 2.8 and the first identity in (2.7), if t€R" and p(z) €t - K,

(21, 2p) = (w1, ..., t"wy,) for some (wi,...,wy)€p *(K) = |z| > ¢tmincip,

Thus, if |z] <4,

Z?—g‘ _ pAre—Aic (g) (A2-c—Ai-¢)/ min Ci.

Pz(w)‘ <C
p1(w)

Since A - ¢> A - ¢ and min ¢; >0, the right-hand side above tends to zero with §. If p is negative,
the proof is similar.

Lemma 2.8 If p: C"-Y, — C"-Y,, is a nondegenerate monomials map, p is a covering projection
of order | det p|.

Proof: By (2.1), we only need to compute the order of the cover. We can view p as a rational
map from (P1)Y to (P')N. In turn, this rational map induces a holomorphic map p: M — (P1)V,
where M is a compact complex manifold obtained from (P')" by a sequence of blowups along
submanifolds disjoint from C”—Y,,. Then,

ordp:<ﬁ*(w1A...Awn),[M]> :/Mﬁ*(wl/\.../\wn) :/cn_y prlwi A Awy),  (2.14)

where w; is the Fubini-Study symplectic form on the ith P!'-factor of the target space. Since

wi:%(fﬁ;\jgsm see [GH, p31], by (2.1),

i )n r%A1_2...rfA”_2dzl ANdzy N ... Ndz, \NdZ, (2.15)

pPrwi A Awy) = \detp|2(%

2a1,1 2an,1 2an,n

(147 ...T?Lal‘")2...(1—|—r1 a2
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Combining (2.14) and (2.15) and switching to polar coordinates, we obtain

2A1—1 2A,—1
.r dry...dr
Ordp_2"|detp|2/ / 1+ 2a11 2a1n)21 (1+ 2an1 n 2ann)2- (216)
iy ") e

The change of variables,

reduces (2.16) to

dr ... dr, ° gr \"
ordp = |detp|/ / (R G i |detp|</0 (1—1—1")2) = |det p|.

as claimed.

2.2 Topological Setup

In this subsection, we give formal definitions of the topological objects to which the computational
method described in the next subsection applies.

We start by extending the concept of monomials maps to vector bundles. All vector bundles we
encounter will be assumed to be complex and normed. Vector bundles over smooth manifolds will
in addition be smooth. Given a vector bundle F — X and any map 6: X — R, put

Fs = {(b;v)€F: |v], <d(b)}.

If F :@ie ; Fi is the direct sum of nontrivial subbundles and Io C I, let

Y(FL) =P @ F.

1€lo jeI—{i}

Definition 2.9 Suppose Iy, I, and J are finite sets, and A= (ai;) is an integer-valued function
on (IoUI)x(loUJ) such that for all j€ly, a;j=0 ifi#j and a;;=1 if i=}.
(1) If F; — M is a vector bundle for each j€ly and a line bundle for each j€J,

P= @F,  F= @R uhee L= QF™,

jelolJ i€loll jeloJ

function p: F=Y (F;J) —Fisa degree-A monomials map on F if

mip((V))jenus) = Qui™ Y (v;)jeru €F-Y(F;J), ielyul,
jelouJ

where 7;: F — F} is the projection map. . .
(2) If p is as in (1), B;— M is a vector bundle for eachi€l, E=@, ; E;, and E=@,.; E;® F;,
function .

p: E&F —-Y(E®F;J) — E

is a degree-A monomials map on EQF if

mip(wi)ier, (V)jerous) = w; @ mp(v) Y (wi)ier, (V)jerus) € E®F —Y(E®F;J), i€l.
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If p and p are as in (2) above, we let Fj(p)=E; and p;(v) = p;i(v) € F(p) for any ve F—Y (F;J).
If p is as in (1) of Definition 2.9, we call p nondegenerate if the restriction of p to a fiber of F' is
nondegenerate in the sense of Definition 2.1, for some choice of identifications of the sets Iy LI I and
Iyl J with the sets of integers 1,. .., [lpUI| and 1,..., |IoUJ|. If p is nondegenerate and |I|=|J|, we
call p positive (negative, neutral) if the restriction of p to a fiber of F' is positive (negative, neutral).
Similarly, suppose p is a positive or negative monomials map, I1 and I5 are one-element sets, and
A; and Ay are integer-valued functions on I; x (Ip U J) and Iy x (Io U J), respectively. If p; and
p2 are monomials maps of degrees A; and A, respectively, we write py >, py if this relation holds
for the restriction to a fiber; see Definition 2.2. Due to the remark following this definition, the
notions of nondegenerate, positive, negative, and neutral depend only on A; the partial ordering
relation depends only on A, A;, and As.

Given any map p: 2 — Q between subsets of vector bundles over some space X, amap §: X — R™,
and a real number ¢, we define the map t35p on €2 as in Subsection 2.1. If p is a positive or negative
monomials map, we denote by deg p the oriented degree of t~!35p given by Proposition 2.3B.

The next two definitions characterize the topological spaces with which we work. Ms-orbifolds,
as described by Definition 2.10, include spaces of stable maps. Examples of pseudovarieties, as
described by Definition 2.11, that we encounter are subspaces of spaces of stable maps that consist
of elements corresponding to curves with specified singularities.

_ n—1
Definition 2.10 Compact topological orbifold M=M, U | | My is a mostly smooth, or ms-, orb-

k=0
ifold of dimension n if

(a) M=M,, is an open subset of M, and Mx—M;. C |J M; for all k=0,...,n;

i<k
(b) My, is a smooth oriented orbifold of dimension 2k for all k=0,...,n;
(c) for each k=0, ... ,n—1, there exist a smooth complex vector orbi-bundle F, — My, and an iden-

tification ¢y, : Uy, — Vi of neighborhoods of My, in F, and in M such that ¢y qﬁ,;l(/\/l) —ViNnM
18 an orientation-preserving diffeomorphism.

In general, there is no firm consensus about the orbifold category. For our purposes, we put the
following, rather strong, requirements on the objects involved in Definition 2.10. Each smooth
orbifold M, of Definition 2.10 is the quotient of a smooth manifold M), by a smooth action of a
compact Lie group G. All points of M}, have finite stabilizers, and the set of points with nontrivial
stabilizers has codimension at least two in M. In other words, this set is a finite union of smooth
manifolds of dimension at most 2k—2+dim G. In addition, there exists a vector-bundle splitting

T./\;lk = TUMk SY) Tth,

where TV M}, is the vertical tangent bundle and T h My is a complex vector bundle on which Gy,
acts by complex-linear automorphisms. We call Fj, — M}, a smooth complex vector orbi-bundle
if there exists a smooth complex vector bundle Fp — M}, on which G, acts smoothly.

By compact topological orbifold M, we mean the quotient of a compact Hausdorff topological

space
n—1

M= N, u || A

=0
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by a continuous action of a compact Lie group GG. For the purposes of Definition 2.10, /\;l;g denotes
the preimage of My under the quotient projection map M — M, G = G,,, and the restriction
of the continuous G-action to M,, agrees with the smooth G,-action of the previous paragraph.
Condition (c) of Definition 2.10 means that there exist

(c-1) a splitting G, = GxG};

(c-ii) a Gg-invariant neighborhood Uk of My, in Fk,

(c-iii) a G-invariant neighborhood V;, of M, % in M;

(c-iv) a G—equwarlant topologlcal G ﬁbratlon ¢k Uk —>Vk such that
(c-iv-a) (M) =M/ and @y : ¢; " ( n) — Vi N M,, is smooth;

(

c-iv-3) for every x € ¢, 1 (M,,), nh . oddyle : T"M;, — Tgk(x)

¢ (@) M is an orientation-preserving
k

isomorphism.

Throughout the rest of the paper by a vector bundle over a smooth orbifold we will mean a smooth
complex normed vector orbi-bundle. With notation as above, this means that Fj, carries a G-
invariant Hermitian inner-product. Similarly, V — M is a vector bundle if

(a) V is the quotient of a topological Hermitian vector bundle V—M by an action of G}

(b) V| My is a vector bundle for all i=0,...,n.

In (a), the action of G preserves the Hermitian structure.

_ n—1 B n'—1 B B
If M=M, U | M} and M'=M,, U || M] are ms-orbifolds, continuous map m: M — M’ will
k=0 k=0
called an ms-map if for each k=0, ..., n, there exists &' =0,...,n’ such that 7: M — M), is a

smooth map.

Definition 2.11 Let M be an ms-orbifold as in Definition 2.10.

_ _ n—1

(1) Smooth 2m-dimensional oriented suborbifold S of M is an m-pseudocycle in M if S—S C | | My
k=0

and SNMy, is contained in a finite union of smooth suborbifolds of My, of dimension at most 2m—2.

(2) Pseudocycle S is a pseudovariety if S is a smooth submanifold of M.

This definition of pseudocycle is a variation on that of [MS] and [RT]. For fairly straightforward
topological reasons, every pseudocycle of [MS] and [RT] determines an integral homology class.
For nearly the same reasons, every pseudocycle & of Definition 2.11 determines an element of
Hopm(M;Q). If a€ H*™(M;Q), denote the evaluation of o on this homology class by (a, S). We
write OS for the boundary of S, i.e. the set S—S.

If S is a pseudovariety in M, by a vector bundle V — S we will mean a topological Hermitian
vector bundle over a neighborhood Uy of S in M such that for each k=0, ... ,n the restriction of V/
to Uy N My, is a smooth Hermitian bundle. Similarly, we denote by I'(S; V') the space of continuous
sections of V over Uy that restrict to smooth sections on Uy N My, for all k=0,...,n. For the
sake of simplicity, we restrict the presentation of our main topological tools to vector bundles over
pseudovarieties as this is sufficient for the purposes of counting rational curves in projective spaces.

Throughout the paper, we assume that every smooth oriented manifold Z comes with a system of

trivializations, i.e. a smooth map
Vz: TZs — Z,
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where § € C(Z;R™), such that 9z |T; bvZs(v) is an orientation-preserving diffeomorphism onto an open
neighborhood of b in Z that sends (b;0) to b. If V— Z is a vector bundle, we assume that that
such a map ¥z comes with a choice of a lift of ¥z to a bundle identification

*
192;‘/: WTZV‘TZ(; — ‘/,

i.e. an isomorphism of smooth Hermitian vector bundles that restricts to the identity over ZCT Z.
If V' is given as a direct sum of proper subbundles V;, ¥z.;y will be assumed to be induced by
the identifications ¥z.y;. If M is a smooth oriented manifold, £ — M is a vector bundle, and
k€T (M; E) is a section transversal to the zero set, we assume that the smooth oriented submanifold
Z=r"1(0) comes with a normal-neighborhood model, i.e. a smooth map

Yy By — M,

for some § € C(Z;R"), which is an orientation-preserving diffeomorphism onto an open neighbor-
hood of Z in M such that ¥|Z is the identity map. If V — M is a vector bundle, 9, comes with
a choice of a bundle identification

19’“‘/: 7TE‘/‘EL; - v‘lmi%
which respects vector-bundle splittings as above. Furthermore,
/@(19,.;((); w)) = 0.5 (b;w) V(b;w) € Es.
We will often only imply these identifications in equations involving vector-bundle sections.

Definition 2.12 Suppose M is an ms-manifold as in Definition 2.10, S is a pseudovariety in M
as in (2) of Definition 2.11, and Z is a smooth submanifold of My, for some k=0,...,n.
(1) A regularization of Z in M is a tuple (UZ,E, K, (fk;j)jeJ(Z)); where

(1a) Uz is a neighborhood of Z in My, E — Uz is a vector bundle, and k € T'(Uz;V) is a
section transversal to the zero set such that Z=r"1(0);

(1b) Fi.; — Uz is a non-zero subbundle of F|Uz for each j€ J(Z) such that

FilUz = @sz;j, oi(Up NY (Fi|Uz; J(Z))) COM, ¢ (Uk|Uz) =Y (Fi|Uz; J(Z))) C M.
JjeJ(2)

(2) A model for Z in S is a tuple (UZ,E, K, (Fk;j)jeJ(z);(’)g,wg), where
(2a) (Uz, E, K, (Fr;j)jesz)) is a regularization of Z in M;
(2b) Oz — Uz is a vector bundle of rank 1(dim M—dimS);
(2¢c) Yz :Fr— Oz is a bundle map such that
(c-i) 1z is smooth outside of Y (Fy; J(2));
(c-ii) if veUg|Uz, ¢r(v) €S if and only if 1z(v)=0.

Suppose V — S is a vector bundle and (Uz, E, &, (Frij)jes(z)) is a regularization of Z in M.
In such a case, we assume that the tuple (Uz, E, k, (F;j)jes(z)) implicitly encodes a Hermitian
vector-bundle isomorphism

Vuzv Wfkv‘%:l(Uv)KUvﬂUz) - V|Uvﬂ¢k(Uk|(UvﬂUz))

22



that covers the map ¢ and restricts to the identity over Uy N Uz. This isomorphism is to be
smooth over the complement of Y (F;|Uz;J(Z)). Along with the map 9./, we then obtain an
identification

Vzyv: WE@ka‘(Eéxrk;[;)\(Uva) - V|Uvﬂqbkﬁm]:k((E5><.7-'k;5)|(UVﬂZ))’
covering the map ¢y oty £, for §€ C(Z NUy;R™) sufficiently small.

Definition 2.13 Suppose M is a smooth manifold, F,V — M are vector bundles, and € is an
open subset of F'.

(1) Smooth bundle map e: Q—V is CY-negligible if lim,__oe(v)=0.

(2) C°-negligible map : Q—V is C'-negligible if lim, .o Dpe(v) =0, where Dae denotes the
differentiation of € along M with respect to some connections in F and V.

(3) If p is a positive or negative monomials map on F'= @, ; F; and p is a monomials map on
F with values in a line bundle L, smooth bundle map €: Q—V is (p, p)-controlled if there exist

monomials maps p1,...,pN on F with values in L such that
0>,p; Vj=1,...,N, and lim ( ) g(v)| < oc.
p=pbi ¥ vEQ—Y (F;I),u—0 Z P (v l

Definition 2.14 Suppose M, S, and Z C My, are as in Definition 2.12, V. — S is a vector
bundle, and s€I'(S;V).

(1) A semi-reqularization of s near Z is a tuple

(U27 E7 R, (fk’;j)jEJ(Z); 02@02,102@1/1},]}7 P, Oy, Qv V*)v

where

(1a) (UZ,E K, (]:k])JEJ( 2;0z®0%, )z ®¢%) is model for Z in S such that rk E>rk OF;

(1b) F= @Zel F; — Uz is a vector bundle and p: FplUz—Y (FplUz; J(Z)) — F is a smooth
bundle map;

(1c) v* €T (Uz; 0L ®V) and ay®ay €T (Uz; Hom/(F; OL@V)) is an injective linear map such
that oy is onto along Z;

(1d) there exist §€ C°(Z N Uy;RT) and a C°-negligible map

Evv: FulUz —Y (FilUz; J(2)) — Hom(F;05aV)
st (Py(byv),s(b;0)) = (agp(b;v),avp(b;v)) +v*(b) + &4 v (b;0)p(b;v)

for all (b;v) € Fi,s such that ¢p(b;v)€S. .
(2) Semi-regularization (UZ,E, K, (fk;j)jej(z);co;@og,ng @1/1};.7—“, 0, a+,av,y*) is hollow if
rk Fj, <tk Fi, and either v*=0 or the bundle map

F—0TaV,  (0) — {as®ay }(b;0) + v (b),

does not vanish over Z. .
(8) Semi-regularization (UZ,E, Ky (Frij)jesz); Oz ©O0% bz dYvE; F,p, a+,av,1/*) is meutral if p
is a neutral monomials map, oy |Y (F; {i}) is onto over Z for all ic I(Z), and v*=0.
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Definition 2.15 Suppose M, S, ZC My, V— S8, and s€T'(S;V) are as in Definition 2.14. A
reqularization of s near Z is a tuple

Uz, (Bicrz), (Ri)ier(z): (Frg)jesz); Oz 0%, bz @05 F, pyay, avi (Eier(z), by a-),
where
(a) E;— Uz is a vector bundle for each i€ I(Z);
(b) with E=@;cp(z) Ei and k= (Ki)icr(2),
(U27 Ea R, (fk,])]EJ(Z)7 OE@O§7 ¢§ @T/JE, ﬁa P, 0y, Qy, 0)
is a semi-regularization of s near Z such that p is a positive or negative monomials map and
at|Y (F;{i}) is onto over Z for all i€ I(Z); 3 )
(¢) p=(pi)icr(z) is a degree-A monomials map on E®Fy, with values in E=D, ¢z Ei, for some
integer-valued function A on I(Z)x J(Z);
(d) EF(Z; Hom(E, O;)) s an isomorphism on every fiber;
(e) there exist §€ C(ZNUy;RT) and for each i€ I(Z) a Ct-negligible map and a (p, p;)-controlled
map,
& FrlUz—Y (Feliz; J(2)) — Hom(E;(p), i (Ey)) and &5 = FilUz —Y (FrlUz; J(2)) — i (E;)
st U7 (b0) = acfbimi(b) ) + & (B 0)i(v) + 7 (o) V(B v) € Fr,

where 1, denotes the ith component of 1~ under the decomposition Oz|Z=;c (z) a_(Ey).

Remark: Proposition 3.5 ensures that ¢~ admits an expansion as in (e) of Definition 2.15 in most
cases one would encounter in counting rational curves in projective spaces. However, this expansion
is not needed if Z is s-hollow or s-neutral; see Definition 2.17 and Proposition 2.18B.

If 7,0 — Z are vector bundles and aEI‘(Z; Hom(F, (’))), let dEF(IP’}"; Hom(vr, ﬂﬁif(’))) denote
the section induced by a. Here vz — PF is the tautological line bundle, while mpr: PF — Z is
the bundle projection map.

If 7,0 — Z and « are as above, a closure of (Z, ) is a tuple (M’, 7', 0’), where M’ is an ms-
manifold containing Z as a pseudovariety, and F’ and O’ are vector bundles over Z that restrict
to F and O, respectively, over Z.

Definition 2.16 Let M, S, Z, V, and s be as in Definition 2.14. Regularization
Uz, (Eicr(z), (5i)ier(z) (Fij)jesz); Oz @05 vz 0L Fopap, avi (E)icrz), by o)

of s at Z is closable if (Z,ay) admits a closure (M',F',0') and PF' admits an ms-orbifold
structure such that .
(a) M'C M, Tpzr - PF' — M is an ms-map, and 07;1(0) is a pseudovariety in PF';

(b) 961 (0) is a union of subsets Z; such that &y admits a semi-reqularization at each Z;.

Definition 2.17 Let M, S, V, and s be as in Definition 2.14.
(1) ZC My, is s-hollow (neutral, reqular) if s admits a hollow semi-regqularization (neutral semi-
reqularization, closable reqularization) near Z.
(2) Section s is reqular if s is transversal to the zero set and there exists a finite collection {Z;}ier,
of smooth disjoint manifolds in M such that

(2a) OS C | Ji; Zi and Z;—2; C Udim2j<dimzizj for all i€ Ig;

(2b) Z; is either s-hollow, s-neutral, or s-reqular for every i€ I.
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Suppose s €I'(S; V) is a regular section as in (2) of Definition 2.17. Let {Z;};cr be the subcollection
of s-regular subsets. To each i€ I}, we associate the tuple

0i = (M, S, i, Oy, s deg py),
where, with notation as in Definitions 2.15 and 2.16,
M;=PF, §=a;"(0)CM;, vi=yp—38, Oi=r%V — S8, a;j=ayel(S;,Hom(y;, 0;)),
are the objects corresponding to Z;. We will write deg o; for deg p;.
2.3 Contributions to the Euler Class
In this subsection, we describe the topological part of the computational method of this paper:

Proposition 2.18A Suppose S is an m-pseudovariety in ms-orbifold M and E,O — 8 are vector
bundles such that tk E=1 and tkO=m+1. If a € F(S; Hom(E, (’))) is a regular section, for a
dense open subset T'(S;0) of sections v€T'(S;O), the affine map

Yop=a+v: B[S — O, Ya,p(b;v) = ap(v) + oy,

is transversal to the zero set. The set zpa_}(O) is finite, and its signed cardinality i|1/1;719(0)\ is
dependent only on o and is given by

N(a) =" |15 5(0)] = |a™1(0)

)

where ot EF(S; Hom(E, (’)/(C)) 1 the composition of o with projection map onto the quotient of
O by a generic trivial line subbundle.

Proposition 2.18B Suppose S is an m-pseudovariety in ms-orbifold M, V — S is vector bundle
of rank m, such that e(V') is the restriction of a cohomology class on M, and s € T'(S;V) is a
regular section. Then, s~1(0) is a finite set, and

i‘s_l(O)‘ = <e(V),S> — Z dego; - N(0;) = <e(V),5> —Cps(s),

i€lx

where I* is a complete collection of effective reqularizations of s on S, as in the last paragraph of
Subsection 2.2 and N(0;)=N ().

Remarks: (1) Together the two propositions give a reductive procedure for counting the number of
zeros of a section over the main stratum of a pseudovariety, provided that the section is “reasonably
nice.” Indeed, one application of both propositions reduces the rank of the target bundle by one.
In the holomorphic category, every section is in fact “reasonably nice.” By Proposition 3.5, many
sections of interest to us also have the needed properties.

(2) In Proposition 2.18A, E can be a vector bundle of arbitrary rank, provided the rank of O is
adjusted appropriately and the section & is regular. In such a case, N(a) = N(&). In fact, one
can obtain such a reduction even if the original map « is a polynomial; see Subsection 3.3 in [Z1]
for details. In addition, it is not necessary to assume that « does not vanish over S. However, in
practical applications, the boundary of M can be enlarged to absorb the zero set of a.
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(3) If E, E' — M are vector bundles, pEF(S ;Hom(E, E' )) is an isomorphism on every fiber, and
o€l (S;Hom(E, 0)), then N(a)=N(aop™'), provided both numbers are defined. Note that the
isomorphism p is assumed to be defined over S, and not over S. We will call the replacement of «
by aop~! a rescaling of the linear map. A good choice of the isomorphism p may greatly simplify
the computation of the number N(«) via Propositions 2.18A and 2.18B. In actual applications,
our isomorphisms p will be such that N(«) is defined if and only if N(aop™!) is defined.

(4) If oy and ay are as in the last paragraph of Subsection 2.2, N(ay )= N(ay@ay). In particu-

lar, if Z; is a finite set and thus a.{@ay is an isomorphism over every point of Z;, then N (ay)=%Z;|.

For computational purposes, it is useful to observe that if E — S is a vector bundle of rank n

such that ¢(E) is the restriction of an element of H*(M),
k=n
Xp+) cr(B)NEF=0€ H(PE;Q) and (pAy ' PE|S)=(u,S) Vue H™(M;Q); (2.17)
k=1

the same formula in a more standard setting can be found in [BT], for example. In the situa-
tion of Proposition 2.18A, but with E of an arbitrary rank, Propositions 2.18A and 2.18B and
equation (2.17) give

N(a)=(c(0)e(E)™,8) — Cpppps(@™). (2.18)

The last term above is zero if o extends to a section of Hom(E, O) over S that has full rank over
every point of S. In the computational sections of this papers, we view formulas (2.17) and (2.18)
as parts of Propositions 2.18A and 2.18B.

In the rest of this subsection, we prove Propositions 2.18A and 2.18B. Before proceeding, we first
comment on the topology on I'(S; Q) to which the first proposition makes an implicit reference.
There are many topologies in which the statement of the proposition is valid. One of them is
defined via convergence of sequences on compact subsets in the C%-norm on Up and the C?-norm
on compact subset of Up N My; see Subsection 3.2 in [Z1] for more details.

The proof of Proposition 2.18A is essentially the same as that of Lemma 3.14 in [Z1]. The finiteness
claim is proved as follows. Suppose (b;,v;) € E[S is a sequence such that ¢ (b, v,) =0 and {b, }
converges to some b*€9S. Let

(U27 Elv K, (fk’;j)jEJ(Z); Og@ogﬂf)g’@?ﬁ;]}a P, Q4 AE*0, V*)v

be a semi-regularization of a at a submanifold Z of M containing b*, as provided by (2) of
Definition 2.17. By replacing Z with ZNUgNUp, if necessary, it can be assumed that Z; CUg N Up.
As in the proof of Lemma 3.12 in [Z1], from the sequence {(b;,v,)} we can obtain a zero of the map

wa,D;Z: E®f E— E®O+ @ 07 wa,D;Z(b;U) = (Oé+('l)), aE*@O(U) + 77)7

if v* =0. This is a bundle map over Z. By (lc) of Definition 2.14, the first-component map is
surjective. Thus, for a dense open subset of elements of I'(S; ), the map v, .z is transversal to
the zero set. Assumptions on the dimension and the ranks imply that 9, 5.z (b; v) does not vanish
if 7 lies in this open dense subset; see (b) of Definition 2.12 and (1a)-(1c) of Definition 2.14. On
the other hand, if 7*#0, we can obtain a zero of the map

Vopz: ERFOFE — E@01T 00O, Vamz(b;w,v) = (ap(v), apgo(v) + ) + v w.
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In this case, rk F < rk Fi and thus the map v, 5,z again has no zeros if v is generic. We con-
clude that 1/1;,17(0) is a finite set. The independence of i‘ﬂ)a_,};(()ﬂ of the choice of ¥ is shown by
constructing a cobordism between zpa_}l (0) and 1/1;7192 (0); see part (5) of the proof of Lemma 2.22
below for a similar argument. The final claim of Proposition 2.18A is nearly immediate from the
definition of 1, 5; see Subsection 3.3 in [Z1]. The trivial subbundle mentioned in the statement of
the proposition is simply C, if 7 € I'(S; O) is generic and thus does not vanish.

We next prove Proposition 2.18B. The first step is to construct a section 5€I'(S; V) such that 5=s
outside of a small neighborhood of AS that contains no zeros of s. This is achieved by cutting s
off near 08, so that the new section extends over S by zero. This procedure changes the estimate
of (1d) of Definition 2.14 in a well-controlled manner. We then add a small perturbation tv to §
such that 5+t has transverse zeros on S and no zeros on S. The total number of zeros of this
section is then the euler class, (¢(V),S). On the other hand, for each element of s~1(0) there will
be a nearby zero of the perturbed section. All the remaining zeros will lie near S. The final step
is to show that all such zeros lie near the s-regular subsets of dS, for a good choice of v, and can
be expressed in terms of the zeros of affine maps.

Let {Z;}icr, be a collection of smooth manifolds in M as in Definition 2.17 with corresponding
semi-regularizations

(UiaEia’%ia(fki;j)jEJ(Zi);O;@Olﬂ_vwi—@d);_;j}ivpiaai;—i—aai;VaV;k)v

By replacing Z; with Z; N Uy, if necessary, it can be assumed that Z; C Uy. Let 6; € C(Z;R™T) be
such that 9, is defined on Ej ,

ﬂni;fki (E'Si Xzi}—ki;gi) - Uki, and qbki’lg"fi;]:ki (Egi Xzifki;gi) C Uy.
If § €C(Z;RY) is less than &; and K is a subset of Z;, let
Ui(0) = Eis X 2, Frs—Y (Bi® Fir; J(20),  Wil5K)=dx, (Vnsi7, (Biss Xk Fizs)) C M.

We denote W;(0; Z;) by W;(6). Since all the zeros of s are transverse, the next lemma implies that
571(0) is a finite set.

Lemma 2.19 There exists 6 € C(Z;; R such that W;(6F) Ns~1(0)=0.

Proof: Let &; = .+ ®ay,v. By (1c), (2), and (3) of Definition 2.14 and (b) of Definition 2.15, there
exists e5, € C(Z; R™) such that

| (b; ) + v (b)] > eq,(b)|B]  V(b;0)EF;. (2.19)
If &4 v is a CY-negligible map as in (1d) of Definition 2.14 corresponding to Z;, let
Eit-(b,r)=sup { [ v (bsw,v)| : (byw,v) €E5 x 2, Fy 5, lwl, v <r, (b;0) €Y (Fi,, J(2:))}-
Then, &1 is continuous and lim, ¢ &;.4(b,7)=0. Suppose

(b;w,v) €U (6), kUi, (byw,v) ES, and S(QSki"lgm;}‘ki(b;w,’U)):o,
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where § <4;. Then, by Definition 2.14,
[Gspibi 0) + v (5)] < Eicr (b, 6(8)) i) (2.20)
By (2.19) and (2.20), if &4 (b,8(b)) <ea, (b) for all be Z;, W;(6) Ns~1(0)=0.

Choose v €T'(S; V) with the following properties:
(A1) for all i€ I, v;=v|z, has no zeros, and the map

Vi, s F — OF @V, Vi, (b;0) = (i1 (v), 7 (b) + ey (V)

is transversal to the zero set. Furthermore, if Z; is s-hollow, the sets R* - Im ;.5 (b; v) and Ru are
disjoint.

(A2) If Z; is s-regular or s-neutral, ¥;.;,|Y (F;; j) does not vanish for all j € I(Z;);

(A3) If Z; is s-regular, 1/12_1711 (0) is a finite set.

Note that (Al) and (A2) are just transversality assumptions, due to (1c) and (3) of Definition 2.14
and (b) of Definition 2.15. Conditions (A3) holds if #; is the restriction of a section ¥’ € T'(Z;; V)

such that W;:_i vV'ela,, (5{;}_(0); W}iv)'

Lemma 2.20 If Z; is s-hollow, there exists 6F € C(Z;;RT), with the following property. If W is
an open neighborhood of S in M, there exists € >0 such that for all n € C(S;R), t e RT, and
V' eL(S; V), satisfying V'|lw =vlw and ||[v—v'||c2(s—w) <€,

Wi(67) N {ns+t/} 1 (0) = 0,
Proof: By assumption (A1), the map
F, R — Of @V, (b;v) — (i (b;v), 7 (b)+ayy (V) + 7§ (b),
has no zeros over Z;. Thus, there exists da, 5, € C(Z;; R*) such that
0, 7(0)) + G(650) + 7 (0)] = m iDL +|@(0:0))) Vo) e (221)
By continuity of v, there exists ¢; , €C%(Z; xR;R) such that lim, g €iv(b,r)=0 and
|I/(¢ki19,{i;}‘ki(b; w, v)) —Di(b)‘ <&y (b,0(b)) V(byw,v)€U;(8) s.t. Dk, Vnyimy, (b;w, V) ES.
If V' €T'(S; V) is such that V[ =v|w and [[v—v'||c2s_w) <€,
HI/—I/,}((bkiﬁ,{;fki(b;’LU,U))| < Ciw(b)d(b)e V(bsw,v) €U(S) s.b. b V7, (bw,v) €S,
where C; w € C(Z;; R) depends only on W. Thus, by the above and (1d) of Definition 2.14,
1(0,t74(b)) + @i (1(dr; Vns:7, (05w, 0))pi(b;0)) + 0Pk, Uy, (03w, 0)) ()| (2.22)

< e, (0) 71 (0, 6(0)) | @ (( bk, Vs 7, (b5 0, 0)) i (b5 0)) | + (€4, (b, 6(b)) +Ciw (b)3 (b)e)
V(b;w,v)el;(5) s.t. ¢kiz9,€i;fki(b;w,v)68 and {ns—i-tz/}qﬁkiﬁ,ﬂ;ﬂi(b;w,v):O,

where €4, is as in the proof of Lemma 2.19. By (2.21) and (2.22), W;(d) N {ns—l—tz/}_l(o):@ if

ea; (D) 7184(b,0(b)), 10 (b, 6(D)), Ciw (b)S(b)e < iéai,ai(b) Vbe Z;.
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Lemma 2.21 If Z; is s-neutral, there ezists ;7 € C(Z;;RY), with the following property. If W is
an open neighborhood of S in M, there exists € >0 such that for all n € C(S;R), t € RT, and
V' el(8;V), satisfying V'|w =vlw and [[v—v'||c2(s—w) <e,

Wi(67) N {ns+t/} 1 (0) = 0,

Proof: By assumptions (A1) and (A2), ;2 (0) is a discreet subset of F; —Y (F;;1(Z;)) and con-

1,04
tains at most one point of each fiber. For each v € v 1711 (0), let Ky be a neighborhood of ¥ in
F; =Y (Fi; 1(2;)) such that the closure of Ky in F;—Y (Fi; I(Z;)) is compact. For simplicity, it can
be assumed that all the sets Ky are disjoint. By Proposition 2.3A, there exists d,, 5, € C°(S;RT)
such that

fk’i?&pi,f/i N pi_l( U R" - ]Cf’) =0
o€y, ;. (0)

Then, there exists 65, € C(Z;; R™) such that for all TeR
|(0,172-(b))+6z2- (Tpi(b;v)ﬂ > 517i(b)(1+|6(7j(7'pi(b;’l))) D V(b;v)E.Fki;(;piyﬁi—Y(ﬁ-;f(Zi)). (2.23)
On the other hand, by the same argument as in the proof of Lemma 2.20,

[(0,53(b)) + i (n(b; w,v)p;s (b;v)) | (2.24)
< ea, (0) a4 (0,6(0)| @i (n(b; w, v)pi (b5 0)) | + £ (€4, (b, (b)) +Ciw (b)3(b)e)
V(b;w,v) eU;(§)  s.t. qbkiz?,{i;y:ki(b;w,v)ES and {ns+t1/}gbki(b;w,v):0,

if V'lw=v|w and [|v—v'||c2(s—w) <e. Thus, W;(§) N {T]S—i-tl/}_l(O):@ if
1
Edi(b)_l§+(b,(5(b)),€i7y(b, 3(b)), Ciw (b)o(b)e < Zépi(b) Ybe Z; and 0 < 0p,,5,-
Lemma 2.22 If Z; is s-regular, there exist 067 € C(Z;RY), compact subset Ka,.n, of Zi, and
i, € € RT with the following property. If W is an open neighborhood of S in M, there erists
ew ERT such that for every ne C(S;R), satisfying
n(d)kiﬂﬂi?}—ki (w,v)) =05, (|v]) V(w,v) € Eisr X ks, 5 Fhizor St Ok, (w,0) €S,

te(0,¢;), and V' €T(S; V), satisfying V'|lw =viw, [v—V'llc2s—w)<ew, and ns+tv' is transversal
to the zero set on S,

i|VVZ(5;") N {ns—l—tl/}_l(o)‘ = deg p; i‘z/;;;(O)! and W;(67)N {778+t1/}_1(0) CWi(07; Ka,p,)-
Furthermore, if W* is a neighborhood of Z; in M, 6§ can be chosen so that W;(6;) CW*.

Proof: (1) Let K be an open neighborhood of the finite subset zp;;l(O) of Fi—Y (F;;1(2;)) such
that the closure of K in Fi—Y(F; 1(2;)) is compact. Let Ka, 5, =p; (R - K). Note that by (1) of
Proposition 2.3B, K5, 5, is a closed subset of Fj,, —Z;. We take

IthDi = T Fx, (Iediyﬂi) =Tg, (IE)
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This is a compact subset of Z;.
(2) As in the proofs of Lemmas 2.20 and 2.21, there exists d;, € C(Z;; R") such that

[(0,7:(b)) + @;(b; ©)| > 65, (b) (1+]ai(b;0))  V(b;0)eF;—R- K. (2.25)
On the other hand, as before, by the estimate (1d) of Definition 2.14,
10, 74(b)) + @i (n(b; w, v)pi(b;v))] (2.26)

< E1.(b, 87 (1)) | (n(b; w, )i (b3 0)) | + t(ei (b, 67 (6)) +Ciw (D)ew)
V(b;w,v)€U;(6;7) st dp w7, (byw,v) €S and {ns+tv'}(b;w,v)=0,

where & (b, 6% (b)) =ea, (b)) "'&4 (b, 8% (b)) and C; w (b) =C;w (b)5* (b). By (2.25) and (2.26),

W;(65) N {ns+t/} 71 (0) © Ok Ons:, ({(w,0) € B;@F,: vEKa, i |w], U] <57 (b)})
) ! (2.27)
i 2 (0,67(6), 200 (b, 57 (1), Cow D)ew < 05,(8) VbEZ..

(3) Let p; = (piir)iver(z,) and a;;— be the monomials map and the vector-bundle isomorphism as
in (c) and (d) of Definition 2.15, respectively, corresponding to Z;. Similarly, for each ' € I(Z;),
let &, and €;, be a C'-negligible map and a (p;, p; )-controlled map as in (e) of Definition 2.15
corresponding to Z;. Since qy;— is an isomorphism on every fiber and the image of é;i, lies in the
subbundle a;._(E; ;) of O™, we can define a C''-negligible map

Eiir: FrlUi =Y (Fi,\Uis J(2:)) — E; by & (w,0) = i (& (w,v) & piir (v)).

By Contraction Principle, there exists _ € R such that for all (w',v)€E;; XKa, o, FTh, s
the equation

w + Z 51'71'/(10,11) = w’, ’LUEEZ';Q(L,
ie1(25)

has a unique solution. Furthermore, this solution satisfies |w|<2|w’|; see the proof of Lemma 3.18
in [Z1], for example. Let e_ € RT be such that

iy (@) > e[| ViEE|Ks, 5, (2.28)
By (3) of Definition 2.13 and (3) of Proposition 2.3B, there exists d; € R™ such that
€_0_

|eiu(w,0)] < iEA] \p“ )| Vi eI(Z), veKa,p st [ <Oy
It can be assumed that d; <d_. Then by (e) of Definition 2.15,
€_0_

‘ai;—((w_‘_gi,i’(wvv)) ®Pi,i/(U))‘ 2|I( | |Pm | (229)
V(w,v) € Eisr X 2, Fp6: St vERa, 5, U] <y, Dr;Vnyimy, (W, V) ES.

(4) Let ;= %53. If 64 <infx, , 67, by (2) of Proposition 2.3B, there exists ; €R™ such that for
all t€(0,¢;),

,7:1431.;5; N {t_lnpi}_l(/C) C szi,&_‘_,
and 7 Yp;z Fier 0 {t e} TH(K) — K
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is a covering projection of oriented degree deg p;. Then, by (2.27)-(2.29) and the assumption on d_,
for all t€(0,¢;)

_ 1
Wi(d) 0 {ns + 10/} 71(0) C pr Oy, ({(bw,0) € B Fp, - bEKa, 5, 0], 0] < 35 (0)})
1 ~ 1
if 0x < 507(0) VbEKa p; and E4(b,67 (b)), ciw (0,07 (1)), Ciw (D)ew < 407, (b) WDEZ;.

(5) By Definition 2.14, the set W;(87) N {ns-+tv/ }_1(0) consists of the solutions of the system
Yy (w,v)=0¢€ O~
Y (w,0)=0€ OF  (w,v) €U (). (2.30)
{ns+t/}(w,v)=0€V

By our assumptions, the zeros of this system of equations are transverse. By (1)-(4) and Defini-
tions 2.14 and 2.15, the zeros of (2.30) are the same as the zeros of the system

i pi(w,0) + Y ierz,) (& (W, 0)pii (V) + e (w,v)) =0 € O
s, ([v]) (i +Ei4-(w,0)) pi(v) =0 € OF (w,v) EU(57),  (2.31)
B5i(|v\)(ai;v+§i;v(w,v))pi(v)—ktl/(w,v):o eV
where €;.1 and &; denote the O* and V-components of €i:+,v. We will show that the zeros
of (2.31) are cobordant to the zeros of the system
o pi(byw,v)=0 € O~
ai;v(ﬁgi(|v|)pi(b;v)) =0e Ot (b;w,v) €U; (6]). (2.32)
it (Bs, ([v])pi(b3v)) +t73(b) =0 € V
We construct a cobordism between the two zero sets as follows. If h_, A, and hy are bundle maps
from X=10,1]xU;(5) to O, O, and V, respectively, and h=(h_,hy, hy), let

X(h)= {(7’, (b;w,v)) e X B5,(|v]) (a¢;+—|—7'€i;+(b; w, ’U))pi(b; v)+hy(7,b;w,v)=0,
Bs; ([v]) (ai;v +71&5.v (b w, v)) pi(b;v) +t(7'1/(b; w,v)+(1—7)7; (b)) +hy(1,b;w,v)=0,

i i (B, 0)+7 D (E (b w,0) i (b5 0) + 27 (b w,0)) +h (7, by w,0) =0,
i'el(Z;)

Since the zeros of (2.31) and (2.32) are transverse, for a generic choice of h with the boundary
condition h,_, =0, X'(h) is a smooth oriented manifold such that 0X(h)= &1 (h)—Xp(h). By the
same argument as in (1)-(4),

~ 1 1
X(B) € [0,1]x{(biw, v) € E;@ Fi, s (b50) €Kayy 6 < [0 < 567(0), |w]< 557 (0)},

if Vlv(T b;w,v)|, |hs (T, b;w,v)! <

t6,,(b) Vbe Z;,

W =

and |h_(1,b;w,v)| < 4|I Mp“ (v)] Yo €Ka, 5 s.t. 8 <|u| <85 (D), i €I(Z).

The lower bound on |v| above follows from the fact that (s, (|v|) is zero if |v| < ;. Thus, X' (h) is a
compact space if h is sufficiently small. We conclude that

()] =* | Xo(h)| = deg pi =[5, (0)]. (2.33)
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The second equality is immediate from (A1), (A2), (A3), and (2) of Proposition 2.3B. This con-
cludes the proof of the main claim of the lemma. The other claim is clear.

Proposition 2.18B is essentially proved; it only remains to construct a cutoff functicln n that has
good properties. Let Wy = [ |;c; Wi(d7/2). This is an open neighborhood of S in M. By
Lemmas 2.19-2.22, it can be assumed that s~(0) N Wy =0 and that

Pr; (ﬂfii?]:ki(Ei?‘s; X’Cai,vifki;52‘)) N b (ﬁﬁj;ﬂj (Ej; 307 X Kajo,; Fk, 5*)) =0 Vi,jelg st iF g

Let Wy be an open neighborhood of S in M such that W, C Wy and let 1/ : M — [0,1] be a
smooth function such that 7'|Wo =0 and 7'|M—W;=1. For each i€ I, let K}, , be a compact
subset of Z; such that Kg, , C Int Zilcldi _and

Vi

Ok, (Vrisy, (Eicor X;cgi’ﬁifki;ag)) N on, (Vni7, (Ejisr <Kl Fior)) =0 Vi, jEI st i#].
Choose a smooth function 7, : E;® Fy, — [0, 1] such that
M| Eisse 2% Ky, Frssz 2 = 1 and 1| (Ei® Fr, — Eio; Xy, Fiessr) = 0-
If §; €R™ is as in Lemma 2.22, we define 7;: S — [0, 1] by

) ) ) if b" = ¢, V7, (b w, v) for some
(b w, 0) 35, ([0]) + (L=} (b w, 0)) ' (%), (b w,0) € Bigr X1 Frossr

0 (b%), otherwise.

i (b*) =

This function is smooth on &S, since it is the restriction of a smooth function on M. Let
n=n"+> m
el

Since 7 vanishes on a neighborhood W of 9S8 in M, the section §=mns of V over S extends by
zero to a continuous section over S. Since v does not vanish on S, we can assume that v does not
vanish on W as well. Furthermore, 7 satisfies the requirements of Lemma 2.22 with v replaced by
(1—n')v and ¢ replaced by 0; /2. Since 1 does not vanish on the complement of W7, it follows that
ns+t(1—n')v is transverse to the zero set on (S—W7) U W. Thus, for all t,e € R, there exists
v € T(S;V) such that

V/‘S—Wl :(1_77/)V|S_W17 v |W 1 77 |W’ ||V,_(1_77/)V||CQ(S—W) <¢

and ns+tv/' is transversal to the zero set on S. Since ns+tv/ does not vanish on S and is a positive
multiple of s outside of W1,

(e(V),S) = i‘{ns—l—tu’}_l(O)}‘ = !—I—Zﬂ{ns%—tu ) N W5(65/2)]. (2.34)
i€l
On the other hand, by Lemmas 2.20-2.22,
> H{ms 0/} O) W57 /2)] = D deg pi F[) (0)

icls iels

(2.35)

provided ¢ and € are sufficiently small. Proposition 2.18B follows immediately from equations (2.34)
and (2.35), assumptions (Al) and (A3), and the second remark after the statement of the propo-
sition.

32



-3

Figure 2: A Graded Linearly Ordered Set

3 Spaces of Stable Maps

3.1 Notation

In this subsection, we describe our notation for spaces of tuples of stable rational maps and for
important vector bundles over them. The zeros of certain sections of these bundles can be identified
with rational curves with prescribed singularities. In many cases, using the topological method of
Section 2 and the analytic estimates of Subsection 3.2, one can express the number of such zeros
in terms of intersection numbers of certain tautological cohomology classes, that are also defined
in this subsection. The notation described below is a generalization on that of Subsection 1.3 in
[Z1] and of Section 2 in [Z2]. Thus, we omit some details.

Definition 3.1 A finite partially ordered set I is a linearly ordered set if for all i1,ia,h €1 such
that i1,19 < h, either i1 <iy orig<iy.

If I is a linearly ordered set, let I be the subset of the non-minimal elements of I. For every he I ,
denote by ¢, € I the largest element of I which is smaller than h, i.e.

vy =max {i€l:i<h}. (3.1)

Definition 3.2 A linearly ordered set =1~ U 1" is graded if I-IcI, u,el* for all he I*T N I,
and for every i€ 1~ there exists h€ It such that 1, =1.

A graded linearly ordered set (or glos) can be represented by an oriented graph. In Figure 2, the
small black and large gray dots denote the elements of I~ and I'", respectively. The arrows specify
the partial ordering of the linearly ordered set I. We use gloses to encode the structure of an I-
tuple of stable maps. The set I~ will describe the nodes of the domain of the map. For example,
the domain of an IT™-tuple of stable maps with the structure depicted by Figure 2 will have two
connected components. One of these components will consist of six irreducible components and
contain a double point and two triple points. We give more details below.

If I=I"UI"isaglos, I~ and I" are linearly ordered sets. We denote by I~ and I the subsets
of the non-minimal elements of I~ and I*, respectively. If h € I*, we define Lf as in (3.1), but

with I replaced by I*. If hy, ho €1, let

[hl,hg] = {i€I+Z hlgighg}, [hl,hg) = {i€I+: h1§i<h2},
(h1,ho] = {i€l": hy<i<hsy}, (h1,ho) = {i€l": hy<i<hsy}.
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If I=I"UIT is a glos and i* is an element of [T, we define a new glos
I(i*) = I~ () U It(*)

as follows. We take I*(i*) = I* LU {i%. }, where i, and i* are new elements. We define a partial
ordering > on the set I=(i*) by

h=i if h,i€l and h>i; i=dy if ielandi>4"; i >0 if i€l and " >i; @ >d".
It is easy to see that I(i*) is indeed a glos.

As usual, we denote the south pole of the 2-sphere S? CR? by co and identify S?—{oo} with C via
the standard stereographic projection gy mapping the origin in C to the north pole of S2. If M is
a finite set, a P"-valued bubble map with M -marked points is a tuple

b= (M,I;z,(jy),u),
where =1~ U I7 is a graded linearly ordered set, and
g1~ —8%—{oc0}, j:M—IT, y:M—5%—{co}, and u:It—C=(5%P")
are maps such that

(th)xin)#(bhzvxhz)) (jlpyll)#(jlzvylz)v (thxh)#(jl)yl) Vhyhl)hQEf_v lvll)ZQGM;
Up, (00) =upy(00) Vhy,he €IT s.t. 1y, =tp,, and uh(oo):uL;(mLh) Vhelt.

We associate such a tuple with Riemann surface

5 = <h|e_1|+ zb,h)/w, where ¥y, = {h}xS%,  and

(h1,00) ~(h2,00) Vhi,ho €' st th,=tp,, (h,00)~ (i}, 2,,) Vhel™,

with marked points (j;,;) € £pj,, and continuous map uy, : ¥, — P, given by |2 5 = up, for
all he IT. We require that Yp,n contain at least two singular and/or marked points of 3, other
than (h,00) if up.[S?]=0€ Ho(P"; Z). In addition, we implicitly consider each point (h,00) to be
a special marked point. Figure 2 is basically the dual graph of ;. The black dots simply specify
which of the special marked points are identified and thus are mapped to the same point in P”. If

b= (M, I;aM, (5, yM), ) and by = (M, I;2®, (), y?), )

are two bubble maps and T is a subset of T 1+ and of I2Jr , we say by and bo are I-equivalent if there ex-
ists a homeomorphism ¢: ¥, — ¥, such that gb|gb1’i is holomorphic for all i€ I, ¢(Xp, ;) CZp, 4

for all i e, Up, = Upy © P, qﬁ(jl(l) yl(l)) = (jl(2),yl(2)) for all [ € M, and for every i € I} there exists
i' € I} such that ¢(i,00)= (i, 00).

The general structure of bubble maps is described by tuples 7 = (M, I; j, d), with d; € Z specifying
the degree of the map u;, on ¥ ;. The above equivalence relation on the set of bubble maps induces
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an equivalence relation on the set of bubble types. If I It we denote by A(T |f ) the group of
I-automorphisms of 7 let A(7)=A(T|0). For each i, let

HT ={hel =i} and  M;T ={leM:j=i}.
If ieI~, we put
HT = {hel®: =ity (0 TiE
0, ifigl™.
Let H7 denote the space of all holomorphic bubble maps with structure 7. This is a smooth
complex manifold; see [MS], for example.

We denote by Llﬂ 7 the set of I-equivalence classes of bubble maps in H7. Then there exists
a smooth submanifold By of Hs such that UT‘ 7 is the quotient of Br by a natural action of
the group

Gri= A(T|I) x G, where Gr = (Sl)l+

For any i€ I, denote by Z/{7(-|)I the quotient of B7 by the group

i 5 i i It—{i
G(T)|I = A(T|I) x G(T), where G(T) = (51) i

Then, UT‘ 7 is the quotient of UT(,‘)I by the residual S'-action. If i € It is fixed by every element of
the group A(T\f ), corresponding to the first quotient we obtain a line orbi-bundle L;7 — Llﬂ i

In general, the direct sum of the line bundles L;7 taken over all elements of the orbit A(T|I)-i is
well-defined. If h€ T, let FrT=L"TRLT.
h

Gromov-convergence topology on the space of all holomorphic maps induces a partial ordering on
the set of bubble types and their equivalence classes such that the spaces

40 (@) YRy R
u; T|1+ = Ujp. and Uy =Ugpp. = U Upie
T<T T<T

are compact and Hausdorff. Here 7 = (M f 7, @) and the unions are disjoint if taken over
It-equivalence classes of bubble types. If T<7T, let

(@) () YRy

The residual S'-action on U 7@ extends to an action on I/ 7@, and thus the line orbi-bundle Li’j'—%/{f
extends over Uy as the line bundle L;7.

For each [€ M, he I, and i€I~, we define evaluation maps Hy — P" by

evl((M7I;:L‘v (]73/)7“)) = ujz(yl)’ th((M,I;ZL‘, (]73/))“)) = ’LLh(OO),

and ev; =evy if he IT and_Lh = 4. These maps descend to all the quotients defined above and
induce continuous maps on Uzy. If M C M U I~ and p=p,; is an M-tuple of submanifolds of P,
let

Ur(p) = {belr: evi(b) €y VIEM},
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i o

Figure 3: The Domains of Elements of U7 and Uz ()
and define the spaces Uz (i) and Z/{Tﬁ—(,u) analogously.
If 7= (M,I;j,d) is a bubble type and k€ I", we define the bubble type %E(Mk,fk;j(k),d(k)) by
My = MT UHT;, Li={ku}cl; j¥=k vieM; dY=d,.

Let Ur 1 =[]}er+ Uz, and Ur 1= [lrer+ Ur,. Note that the spaces Uz and Ur are contained in
Ut 7 and Ut 7, respectively.

Suppose 7 = (M, I;5,d) is a bubble type, i* is an element of I such that d; # 0 and My is
nonempty subset of M;+7. We define bubble type 7 (My)= (M, 1(i*);j',d') by

i, if 1€ My; 0, if i=1%;
J] = i, if 1€ MT — Mo; d, =< dp, if i=17;
71, otherwise; d;, otherwise.

If l e M, we will write 7(I) for T({l}). In Figure 3, we show the domain of an element of the
space Uy, where I ={i*} is a single-element set, and the domain of an element of the space UT (M)
where My={ly,l5} is a two-element set. In this and later figures, we denote each component of the
domain by a disk and shade the component(s) on which the map into P™ is nonconstant. We indi-
cate marked points on the ghost components, i.e. the components on which the map is constant,
by putting small dots on the boundary of the corresponding disk. The point labeled by ¢*, i.e. the
same way as the component, is the special marked point (i*,00). Lemma 3.4 and Proposition 3.5,
as well as the decomposition (3.4), show that it is crucial to clearly distinguish between ghost and
non-ghost components.

If [N]={1,...,N} is a subset of M such that the set M —[N] contains no positive integers, we put

a(LiT) = (LLT) — Z PDZ:{T,T [HT(MO),T(MO)] € H? (HT,T)- (3.2)
0#£MoC M« TN[N]

By Proposition 3.5, Z/_{T,T is an ms-orbifold and L_{T( Mo), T (M) 18 an ms-suborbifold of 1/_17,7- Thus,
the cohomology class on the left-hand side of (3.2) is well-defined. We illustrate definition (3.2) in
Figure 4 in the case IT={i*} is a single-element set. In this figure, as well in the future ones, we
denote spaces of tuples of stable maps by drawing a picture of the domain of a typical element of
such a space. On the other hand, let

TGt HT,T —>E{Ti/, where 7;/ - (Mi_[N],Ii;j(i),d(i)),
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M
e (£5) N ‘ = a(In)n ‘ -
g ’ @#MOC[N}

7" i
Figure 4: An Example of Definition (3.2)

be the composition of the projection onto the ith factor with the appropriate forgetful map. By
Lemma 2.2.2 in [P],
(L T) = iy,

where ;= is the first chern class of the universal cotangent line bundle at the marked point (i*, c0)
over the moduli space ﬁo,(Mi_[N])u{i*}(di*,P”) of stable rational degree-d;= maps into P" with
marked pointed labeled by the set (M;—[N]) U (i*,00). In particular, ¢; (£ 7T) is the first chern
class of a line orbi-bundle over Uz 7. Whenever the bubble type 7 is clear from context, we will
write ¢y (L) and ¢y (LF) for ¢ (L*T) and ¢;(£:T), respectively. If M is a subset of M LI I~ that
contains [N] and p is an M-tuple of constraints in P such that g, Ny, = for all distinct elements
l1,l3 of N,

Uz ()] Ner(LiT) = [Urey ()] Ner(Li: T(1) = [Urqy(p)] Ner(Ly: T(1) VIEMT. (3.3)

Note that by Lemma 3.4, Uz (p) is a pseudocycle in Uz 7 and thus induces a homology class.
The first equality in (3.3) can be deduced from [P].

We are now ready to formally explain the notation involved in the statement of Theorem 1.1. Let
n, d, N be positive integers and let y be an N-tuple of constraints in P". If k> 1, denote by Vj(u)
the quotient of the disjoint union of the spaces Uz (11) taken over all bubble types T = ([N], I1.; j,d)
such that I,j ={1,...,k}, S d;=d, and I ={0} is a one-element set, by the natural action of the
symmetric group Si. We define the spaces Vi (i) similarly. Denote by Mo Mo € H 2 (Vk(u)) the
cohomology classes such that 7r*7707l and ”*77(),1 are the sum of all degree-l monomials in

{cr(£3), .. a(L)}  and  {a(L),...,a(L})},
respectively, where 7: J,Ur — Vi(u) is the quotient projection map. For example, if k=2,
Tos = 6 (L) + (L) + A (LHer (L) + 1 (L£3)eF (L3).
Let ag=evici(ypn) € H 2(Vi(w)), where ypn —P" is the tautological line bundle.

Suppose T=(M, f;j,@) and T = (M, I; j,d) are bubble types, such that 7 <7, M is a subset of
MU I, and p is an M-tuple of constraints in P”. Let

Iy = {’iEI+Z dZZO}

Suppose I cIT—I" and for every i€ Iy there exists h € I'™ such that i <h. We can then construct
a decomposition of the spaces Uﬂj—(,u) and Z/{Tﬁ—(,u) which is useful in computations as follows. Let

T=(M,I;j,d) be the bubble type given by

M=M-{JMT, T=(1u|JMT)/~ u~h il iclandhe({i}UHT)UMT.

icly i€lp

37



hoo
lb = Mo X .

- 2*,l1,l2

Figure 5: An Example of the Decomposition (3.4)

The set I has a natural glos structure induced from I. Let d;=d; and j;=j; whenever i€ It C It
and [ € M C M. Let M’ be the image of M under the quotient projection map [ UM — T L M.
We identify the M-tuple p of constraints with an M’-tuple ji of constraints in P" by

fy = ﬂ -
=t
Since every degree-zero holomorphic map is constant, we obtain

Ur i3 (1) ( T 2 omryonT x Usz( ))/A(ﬂﬁ)

i€lp

(T Reommuonrr x Ur(w) [ ATIT).

i€lp

(3.4)

Here ﬁ(z‘u m7)um;7 denotes the Deligne-Mumford moduli space of rational curves with marked
points labeled by the set (: U H;7) U M;7, and Dﬁ(luH Tyum,T the main stratum of Mo p, 7yun,7-
If i€ Iy C I, by definition the line bundle L;T restricts to the universal tangent line bundle at
the marked pomt 1 over zm(lu m7)um,T- We will denote this bundle by 7. If d;#0 for all ie I+
and Mo C [N]NM;T for some i € I [t, we will write 7 /Mj for the bubble type 7 corresponding
to T =7 (Mj) under the construction of this paragraph. The decomposition (3.4) for the bubble
T (My) of Figure 3 is illustrated in Figure 5.

3.2 Structural Descriptions

In this subsection, we define certain bundle sections over the spaces UT\T These sections are
central to this paper, as the zeros of these and closely related sections count rational curves with
pre-specified singularities. We state a basic transversality lemma that implies that these sections
are well-behaved over Z/{7—|7~— in most cases. The general structure of the spaces Z;{j—(,u) and the
behavior of the sections near the boundary strata are described by Proposition 3.5.

Let gg denote the standard stereographic projection C — S? mapping the origin in C to the south
pole of $%. Suppose b= (M, I;z, (j,y),u) €Br and meZ*. If iel™, let

m—1
(my, _ 1 D" d
T m!dsm—1ds (u 0 gs) (s,£)=0

where (s,t) are the real and imaginary coordinates on C and é)sz_:ll denotes the (m—1)st covariant

derivative with respect to the Levi-Civita connection of some metric g, ; on P". If he I~ andleM ,
we similarly define

1 Dt ¢ m 1 Dt ¢
T dem 1 ds and Dg— l)b:

D(m) b= _ _
Tk s=0 ' m!dsm—1ds

s, (zh+3) wj (Yi+5)

s=0
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IjIere we take covariant derivatives with respect to some metrics g, j, and g ; on P", respectively. If

I is a subset of I, each metric g;; is Kahler near ev;(b), and the family {g;,} is invariant under

the action of the group of GT| 7> Dg—n’q’i) induces a section of Hom(LZ@mT ,eviTP™) over Z/{T| 7 given by
DYV b, ci] = e; DYV, if beBr, ¢eC.

Under analogous circumstances, Dg—mfz and Dg—ml) induce sections of Hom(Lf?mT, eviTP™) and

Hom(L;ff@mT ,ev;TP"), respectively. In a certain sense, the choice of the metrics does not matter,

since D(Tmi)b, D(Tm}zb, and D(Tn?b are well-defined modulo the image of the lower-order derivatives,

and only these quotients have a geometric meaning. However, the method of Subsection 2.5 in [Z1]
for proving the explicit estimates of Proposition 3.5 makes use of special properties of the metric
near the point where the derivatives are taken. Thus, we put

9b,i = gPn evi(b)» Goh =GP ev,(b)s A0 Gb1=GgPn ev,(b)
where gpn . is as in Lemma 3.3, which is exactly Lemma 2.1 in [Z1].
Lemma 3.3 There exist rpn >0 and a smooth family of Kahler metrics {gpn q: ¢ € P"} on P"

with the following property. If By(¢',m) C P" denotes the gpn 4-geodesic ball about ¢', the triple
(Bg(q,rpn), J, gpn g) is isomorphic to a ball in C™ for all g€P™.

d) and 7 =(M, I;j,d) are bubble types such that T <7. For each keIt let

Suppose T = (M, [;
it ) be the one-component bubble type defined as in Subsection 3.1 and let

j

)7
Tu(T)=(My, I; ), dV) < Ty
be the bubble type given by
L={uyU{hel:h>k h#h WWelst. W=k}, j¥=j viem,;  dP=d, vher;
Let UT,T:er i+ Ur, 15 C Z;{j—j—. If M is a subset of I~ U M, we define an evaluation map
. ) evl(bk), if le My;
evy _sz HZ/_{Tk — Xf(M)E(]P’”)I_uﬁu(MnM) by ﬂl(evi’M(b)) = < evi(by), iflEIf;
kel evi(b,), iflel™.

If 11 is an M-tuple of submanifolds in P", let

Aj—(,u) = H{(l‘h)heHij—E(Pn)HiTi T =T Vh,lEHZ‘T, Th € U if ZEM} X H,ul C X,j—(M)
iel- le(MNM)

We denote by NAz(u) C TXT(MHA%”) the normal bundle of Az(u) in X7 (M) as well as an
T ~
extension of this normal bundle to a neighborhood of Az (u) in X5(M). By definition,

Uz () = ev%’lM (Aj—(,u)) NUz 7 and uT\i'(/‘) :eV%}M (Aj—(,u)) NUF 7

The following lemma and now-standard arguments, such as in [MS], imply that ¢z ,(p) is a smooth
orbifold, if p is a tuple of constraints in general position:
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Lemma 3.4 Suppose u: S2—P" is a holomorphic map of degree d, z1, ..., 2, €S2, v; ETziS2—{0}
fori=1,....k, and mq,...,mpeZ®. If d+1>k+)_,m;, the map

i=k j=m;

¢: {CeT(S%wTP"): de=0} — P P TunP"s  ¢i5(§)=Di"¢|

i=1 j=1

18 surjective.

In the statement of this lemma, Df;if . denotes the jth covariant derivative of { along u in the
direction of v. The meaning of the lemma is the same no matter what connection is used near
each point. The proof is a very slight generalization of that of Corollary 6.3 in [Z1]. Lemma 3.4
implies that if d is sufficiently high, a certain section over the space of degree-d holomorphic maps
is transverse to the zero set. In many actual computations, low, but positive-degree, cases will not
appear for simple geometric reasons. For example, the space of degree-one maps whose image is a
cuspidal curve is empty. Thus, if k=1 and m =2, the relevant implication of the lemma is valid
as long as d>0.

Let
= AT =P FTT)} — Uz 1.

hel+—I kel+

If 7 is a bubble type such that I~ =0, we will write F7 for F#7. By (2) of Proposition 3.5,
F5zT is the “normal bundle” of U5 - in Uz 7. Part (3) of Proposition 3.5 describes the behavior
of various evaluation maps and bundle sections over Uz 7 near the stratum Uz , of the boundary

of Uz 5. However, before we can state the relevant expansions, we need to introduce more notation.
9

If keI, hy,ho €L}, and 1€ My, let

’L'T(hl,hQ):maX{Z'EIlji 1< hq, ’ighg}, iT(l,hQ):iT(jl,hg);
0, ifd;=0Vie [’iT(hl, hQ), hl] U [’iT(hl, hQ), hg];
XT ,h1 (hg) =<1, ifd;=0Vie [ij’(hl,hg),hl] U [ij’(hl,hg),hg]—{hg}, but dh2 #£0;

2, otherwise.
Put Xhi (T) = {hg € I]j_ P XT b (hg) = 1} and XZ(T) = {hg € X5, (T) : hy ﬁjl} If

V= [(Ma 1333) (jay)vu)7 (Uh)h€[+_f] S f'j'T = @ fkT
ker+-1

and m, m’ €7Z, let

mhl;h2(v): Z Loy, H v € L 7 (h1, hg)T’

hE(iT(hl ,hg),hg] iE(iT(hl,hg),h)

pa@) = > w ]I wrw [T welipaT

he (i (h1,l),51] i€(iT (h1,l),h) i€(i7 (h1,0),41]
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g = @) e ® W) eFmT, (35)

i€(kyiz (h1,h2)] i€(i7 (h1,h2),ha]
- ®-m ®@m'
where f,g?h? )T:< ® .7'—2'7) ®< ® fiT) .
1€ (ki (h1,h2)] 1€ (i7 (h1,h2),h2]

(m;m’)
15

The map PT oo is defined if hy =k or v & Y(]—}T; I+—f). Ifiel, —f, we define the map
p%;;r;;) by (3.5), but with iz (hy, he) replaced by ¢; €1 Ij . Furthermore, we define the map pgfnzzn )
by replacing hs in (3.5) with the unique element h(i) € I, such that tp(y =1. We will write zy,,(v),
pT i:hy and F1, T for x,.4(v), p1j;:n, and Fj., 7T, respectively, whenever [ € M. Finally, if d; #0
for some i€ [k, 5], let JT’T(l) =1; otherwise, let 05—77—(1) =0. In the former case, we put

. i€ My, if d;, #0; 0, if d;, #0;
g(T)=q" " . o . yir(v) = .
mln{zelk 1<, dp=0 Vhe(z;]l]}, if dj, =0; yny(v), if dj, =0,

where he I} is given by v, = (T) if j; (T) Efk_
Proposition 3.5 Suppose T = (M,I;j,d) and T = (M, I;j,d) are bubble types such that T <T.
(1) The spaces Uz 7 and Uz - are smooth orbifolds, while Z/_{ff s an ms-orbifold.
(2) There exist 6 € C(Uz s RY) and a map ¢5 ;= F3Ts — Uz 5 such that ¢5 , is a home-
omorphism onto an open neighborhood WT,T of Z/{j—g— m Z;{j—j—, gbj—j(]:j—’]:; NY(F;T; I+—f)) 18
contained in aljlj—j—, and

(bj—ﬂ—: fj—’]?;—Y(f,j—T; I+ —I~) — u,j—j— N WT
is an orientation-preserving diffeomorphism.
(8) Furthermore, there exist normal-neighborhood models and collections of trivializations such that
the following identities are satisfied by all elements ke I and (b;v) € F5+T5—Y (F3T;1T—1):
(3a) if M is a subset of I~ UM,

v i1 (07 7(v) = evz (D) + e 7 (v),

where e3 yr: FT5—Y (F77; It—1) —evh MTXT(M) is a C'-negligible map;
(3b) if keIt and meZ™,

m S m—1 m—m/ m/ m/ m;m/
D(ilz%‘j(v) = Z <m’—1> Z Ti;n (V) {D'g',h)+gg',h)(v)}p'(2',k;h)(U)’
m'=1 hexk(T)

where each map sg?l};) cFiTs =Y (F7T, It—1) —>H0m(L§mlT, eviTP") is Cl-negligible;
(3c) if le M and meZT,

(m) _ m/ ! —m f (') (m") (msm)
Dy o7 r(v) =0z 7(1) > <m>ylff (v) {DT,j;("f)+ETJ:(T>(“)}/)T,J’;(T>;J’I(“)
m’=m+1
m > m—l—m/—l —(m+m’ m/ m’ m;m/
e S (T S ) -a) D)+ @ i
m'=1 hexi(T)

where E?;;(T) (v)=0 if m'#m and E,(Z??f(j—) is a C'-negligible map on FzT5—Y (F7T;1 —1).
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[ A D() L7 7 ( {D7h1+57h1 }Uh1+{DTh3+€g'h5 ) }Uhy @ Uny

Figure 6: An Example of the Expansion (3b) of Proposition 3.5

The expansions (3b) and (3c) above may look somewhat complicated. However, it is clear from
the construction that they involve monomials maps between vector bundles. Figure 6 illustrates
the expansion (3b) in a case when I'™ ={i*} is a single-element set and m =1. Note that, while

M

the stratum L{Tﬁ of Figure 6 has codimension three in Z/_{f, the section Dj, o depends only on

two parameters of the normal bundle, vy, and vy, ®vp,, at least up to negligible terms. Such bub-
ble types 7 will always be hollow in the sense of Definition 2.14 and will not effect our computations.

One of the crucial points about the expansions (3b) and (3c) of Proposition 3.5 is that the terms
that appear between the curly brackets depend on h, j;(7), and m’, and not k, I, or m. Thus, by
subtracting expansions of lower-derivatives with appropriate coefficients from expansions of higher-
derivatives, we can get rather good estimates on the latter along the subspaces of the main stratum
of a moduli space on which the former vanish; see the proofs of Lemmas 4.8 and 4.10, for example.

Statements (1) and (2) of Proposition 3.5 are basically special cases of Theorem 2.8 in [Z1]. The
map ¢¢7T of Proposition 3.5 is the product of the gluing maps, as constructed in [Z2], correspond-
ing to each pair of bubble types 7;(7) < 7. Claims (3a) and (3b) are proved in Subsection 4.1
of [Z2] and in Subsection 2.5 of [Z1], though only a slightly weaker version of the m =1 case of
(3b) is stated as part of Theorem 2.8 in [Z1]. The proof of (3c) uses essentially the same trick as
the proof of (3b) in [Z1]. The difference is that we make (j;,y;), instead of (k,o0), a node and
then use the explicit nature of the gluing map qu—k Tu(T) to do integration by parts as before. The
appropriate normal-neighborhood models and collections of trivializations referred to in (3) are
described as follows. In (3a), we use the product of exponential maps in every component taken
with respect to the family of metrics of Lemma 3.3. In (3b) and (3c), all the relevant bundles have
the form Hom(L?ﬁfm, ev;TP"). We use parallel transport in the metric gy ; to identify qb*f TeV;k TP

with ﬂ}fTeV;k TP™. On the other hand, the map qu—k Tu(T) constructed in [Z2], is descendant from
an S'-equivariant map gbj—k Tu(T) from a b}mdle over BTk ) to Z;{%?, This map qu—k Tu(T) induces an
identification of the line bundles qb*i TLkT and W*fTTLk’T over Fz75.

Remarks: (1) By the construction of the map ¢z, 7.(F) 10 [22], if ve FzTs—Y (F5T; It—1),

o7 (V) = (M, Liz(v), (7, y(v)), u), where  y(v) = ypu(v) Vi€ M.

We use this fact in Section 4. B B B
(2) Even in rather simple cases, the bundle 737 — Uz + is not the normal bundle of U3 , in Uz 7,
as can be seen from [P]. Statement (2) of Proposition 3.5 only implies that the restrictions of F77
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of the normal bundle of Zfli 7 in Zfli 7 to Uz 7 are isomorphic.

4 Example 1: Rational Triple-Pointed Curves in P3

4.1 Summary

In this section, we illustrate our computational method by proving Theorem 1.2. We first describe

the set V]EQ) (1) that appears in the statement of the theorem. If N =a-+b, we view u as an [N]-tuple
of constraints in P3, where [N]= {1, ..., N } Let I;=1I; UI] be a two-element glos. We denote
the unique elements of I;” and I 1+ by 0 and 1, respectively. Put

Ty = (Mo, I,;59,d0), T = (My, 15§D, d), T = (My, I; 5®,d0), where
MO = [N]’ Ml = MO L {i}, M2 = M1 (| {2}7 (k) —1 VlEMk, dgo) :d

The tuples 7g, 71, and 75 are bubble types, and we set

1) 1)

VI () = {betts( )evi(b):evi(b)} u(

and V(2

— {beUn(u): evi(b)=evi(B)},
= {beufy) (n): Vi(b):e"i(b)}-
The cardinality of the last set is clearly six times the number of rational curves that have a triple

point and pass through the tuple x of points and lines in P3.

Let f/fl)(,u) and Z;{(Ti)(,u) denote the closures of the space V}l) (1) in Uz, (1) and of the space U%)(u)
in Uz, (u), respectively. In the next subsection, we describe the boundary of the set 5[% )(,u) and
conclude that Z/{% )(,u) is a 3-pseudovariety in Uz,. Thus, the map

evyXevy: L{%)(u) — P3xP3, {evixevs }(b) = (evi(b),evs(b)), (4.1)

is a 6-pseudocycle in P3xP3 in the sense of [MS] and [RT], i.e. the map (4.1) defines an element in
Hg(P3xP3;Z). In particular, there is a well-defined homology-intersection number

(VP (1)) = ({ev xevs) ™ (Aps ps), U (1))
= N ({evixevs) LH X H), UL (1)),

r4+s=3

where Aps, ps and H" denote the diagonal in P3xP3 and a linear subspace of complex dimension r

in P3, respectively. However, this number is not |V§2) (p)] in general. Since the map evj x evy is
transversal to a generic submanifold H" x H® of P? xP3, by definition,

<<V(2) >> |V ,U—FHO)‘ + <a@79£1)(N+H1)> _’_d<a§7f}£1)(u)>7 (4.2)

where the spaces V{l)(,u—l—HO) and V{l)(,u—l—Hl) are defined as above, but with p replaced by p+1

in the first case and with ¢ replaced by ¢+1 in the second case.

The number ((V]EQ) (1)) can also be obtained by perturbing the map evixevs. If 0: 5{%) (p) —P3xP3
is a small perturbation of evixevs, such that 9_1(Apgxp3)ﬂ8?;l%) (u)=0 and 0|Z/{%) (w) is smooth and
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transversal to Apsyps, then <<V£2) (1)) =% 101 (Apsyps)|. Since U%)(,u) =0 if d=1, by Lemma 3.4

the map evj xev; is transversal to Aps,ps on L{% )(,u). Thus, 6 can be chosen so that §=evj xev,

outside of a very small neighborhood W of 81/_{% )(,u). Then,

(V2 (1)) = H0 (Apsyps| = [V ()] + H{evi xeva} H(Apsyzs) N W]

(4.3)
= W}m (”)‘ +Caz]<;)(“) (evixevy; Apsyps).
2

The last term above is the contribution to ((VF) (1)) from the boundary of 5[% ) (w); it is the analogue

of the term Cyg(s) in Proposition 2.18B. If evj x evs maps a stratum Z of 8@%)(,@ into Apsyps,

near Z the map evj xevy can be modeled on a section of a bundle over Z. In Subsection 4.4, we
use the topological approach of Section 2 to compute this contribution. Theorem 1.2 follows from
equations (4.2) and (4.3) and Corollary 4.13.

Before concluding this subsection, we formally define the space f/él’l)(,u). We do not need this
space in this section, but it is used in the next section and it is natural to describe its structure
along with the structure of the space f/fl)(u). Let Iy =1, UL be the glos such that I, = {0} is
a one-element set and I = {1,2} is a two-element set. If 7 = (M, I3;j,d) is a bubble type such
that j; =1 and jézi, put

Z/{7(—1) = {belr: evi(b)=evs(b)}.

Let 5[7(—1 ) be the closure of Llj(—l ) in the space Ut or equivalently in 5{7—,7—. We define Vél’l)(,u) and

f/él’l)(,u) to be the disjoint unions of the spaces Z/{(T1 )(,u) and Z;{(T1 )(,u), respectively, taken over all
bubble types 7 as above such that dj,d; >0 and d;+d;=d.

4.2 On the Structure of L?%)(u), V(1), and Similar Spaces

In this subsection, we describe the closure Z;{% )(,u) of the space Z/{% )(,u) in Uz, (1), or equivalently,
in Uz,. The tuple u can be arbitrary, and, in fact, P3 can be replaced by any other projective
space. Lemmas 4.1 and 4.2 imply that L{% )(u) is a pseudovariety in Us, if p is as in the previous
subsection and is a pseudocycle in general. The two lemmas in particular describe the kinds of
curves that can appear in the limit of rational one-component nodal curves, reproducing a known
result in algebraic geometry, but in a fairly direct way. More importantly, we obtain a description
of what happens in the limit on the finer level of stable maps. The analytic expansion (3b) of
Proposition 3.5 plays a crucial role in the proof of the second lemma. We conclude this subsection

with Lemma 4.3, which describes the structure of the space 1_/2(1’1)(#).
If T=(M>,I;j,d) is a bubble type such that 7 <75 and i,l€ [TUMy, let
x7(i,1) = max (x7,:(0), x7.(7));

see Subsection 3.1. Note that by continuity of the map evi xevj, Z/_l%)(,u) C{evixevi} H(Apsyps).

Figures 7 and 8 summarize the three lemmas below. All other boundary strata are either empty
or will be hollow with respect to all sections that we encounter. The map may be constant or not
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Figure 7: Some Boundary Strata of Vl ( )

on the disk shaded light gray. The lines connecting two marked points indicate that the map has
the same value at the two points.

Lemma 4.1 If T=(My,I;j,d) is a bubble type such that T <Ty and x7(1,1)>0, the map
evixevi: Urig (1) —P3xP?

is transversal to the diagonal Apsyps. Thus,
1 _
U(T|)72 (1) = {evi xevi} " (Apayps) NUz 7(1)

is a smooth submanifold of Uy r, (1) of dimension less than the dimension of L{%)(,u) with normal
bundle isomorphic to ev’i“T]P’3.

Proof: The first statement is immediate from Lemma 3.4. The second claim follows from the first,
since the dimension of Uz |z, (1) is less than the dimension of Uz, (1).

Lemma 4.2 If T is as in Lemma 4.1, but x7(1,1)=0, for every he It and k € Z there exists a
C'-negligible map
’(T,)l,h FTs=Y(FT; I+) — Hom(L%kT, ev’i‘T]PS)’

where § is as in Proposition 3.5, such that with notation as in Proposition 3.5 and with appropriate
identifications,

{eleevl} o171 Z Z yhl wi;h(v))_k{pg@?]ﬁ"gg{i)i;h( )}pg('],i)h(v)

k=1 hex;(T)

for allve FTs—Y (FT;IT). Thus, L_{%)(,u) NUzx, 1 C S717(1t), where

St (1) = {bEZ/{ﬂTz ZDT nup =0 for some vy € LT s.t. (vh) #O}
hexi(T)

In particular, Z)%)(u) N Uz, 1 is contained in a finite union of smooth submanifolds of Uz, T of

dimension less than the dimension ofuq(—?(,u).
Proof: In this case, we choose a specific identification of small neighborhoods of Aps,ps in F%(T]Pﬁ
and in P3 xP3:

((z,2),(0,w)) — (z,exp, , w),
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Figure 8: Some Boundary Strata of V.

where exp, . denotes the exponential map with respect to the metric gps ,; see Lemma 3.3. Since
x7(1,1) =0, evi(b) = ev;(b) for all b € Uz, 7, and thus 91 = gy for all b € Ug, 7. The above
expression for {evi xevi}(qﬁfzj(v)) is then simply the “difference” between the values of ev; and
evi at ¢z, 7(v), which is computable from (3b) of Proposition 3.5:

e}

{evl xevl} ¢7'2 Z yl,l "D ;Z?[qb’f',’f(v)
= (m—1 . — k k 05k
T ( 3 <k 1>y1 L(0) 1, (0) k) {DE, 4+ @)} ) (44
S —— (U))—k{p(kz) 4+ (v)} (0;k) (v)
i1 L;h T.h ST 1:n pT,i;h )

Note that pg.ﬂikg pg, 1)h for all m € Z. The last expression in (4.4) is the same as the right-hand
side of the expansion in the statement of the lemma; see Subsection 3.1. This sum is absolutely

convergent for all ¢ sufficiently small, since there exists C'e C (Z/{T‘E;RJF) such that

-1 (0k)

< C(b) and |p7'1h

|Ypi (03 0) =2, (b5 0) | o) <ol Vhexi(T), (hv)eFT.

The first inequality is immediate from the definitions of ¥, ; and zj,, while the second follows
from the assumption XT(L i) =0. The above expansion of {evi xevi}oqbq—ﬂ— immediately implies

that El% )(,u) NUz, 7 CS7i5(1t). In fact, the opposite inclusion also holds, as can be seen from
Lemma 3.4 and the contraction principle. The remaining claim of the lemma is obtained by simple
dimension-counting from Lemma 3.4.

Lemma 4.3 Suppose T = (M, Ir;j,d) and T = (M, I;j,d) are bubble types such that 51 =1,
32 =2, and T<T.
(1) If d, >0 for some he It such that h<j; or h<js, the map
evixevj: Z/{ﬂj—(,u) —P3xP?
is transversal to the diagonal Apsyps. Thus,

ué_l‘?z_( ) = {evi XeVi}_l(APSXPS) mu’ﬂ’j’(:u)
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is a smooth submanifold of L{Tﬁ(,u) with normal bundle isomorphic to ev’{T]P’3.
(2) If dj,>0 for all he I such that h<j; or h<js,

{evixevi}(o7.7(0) = 31" Y0 D (ha0) =3, (0) " { DY e )} (0)
i=1,2 k=1 hEX;(T) s )25

for allve FTs—Y (FT;IT). Thus, L_{(Tl)(,u) NUz 7 C Sﬂi(ﬂ), where
ST\?(N) = {bEL{Tﬁ(u): Z Dr pon, =0 for some vp€ LT s.t. (Uh)hexiuxé(T)#O}'
hexi (T)uxs(T)
In either case, L_{(Tl)(,u) N L{fT is contained in a finite union of smooth submanifolds of Z/{fj of
dimension less than the dimension ofujg)(u).

Proof: The proof is essentially the same as that of Lemmas 4.1 and 4.2. The only change is that in
the second case we first obtain expansions for evj—ev; and evs—evs and then take their difference.

4.3 Behavior of the Map evj xev; near 81;1%)(/1)

In this subsection, we use Lemma 3.4 and Proposition 3.5 to describe the behavior of evixevs; near

the boundary of the space L?% )(,u). We assume that s is a tuple of points and lines in P3 as in
Subsection 4.1.

Lemma 4.4 If 7T=(M>,1;j,d) is a bubble type such that T <73, X7(~,Q)>O, and XT(LQ)>0;
{evy xevé}_l(Apg,ng,) N (Z;{%)(,u) NUzp,T) = 0.
Proof: (1) If x7(1,1) >0, by Lemma 4.1,
A9 (1) NUz, 7 < UL ().
Since every degree-one map into P3 is injective, the map
evyxevs: U(Tl‘)TQ (1) — PP xP?
is transversal to Apsyps by Lemma 3.4. Since the complex dimension of 1/17(.1‘)7-2 (1) is less than three
by Lemma 4.1, it follows that
{evy xevé}_l(Apg,ng,) N (Z;{%)(,u) NUzp,T) = 0.
(2) If x7(1,1)=0, by Lemma 4.2,
U (1) NUziz; € S ().
Since every degree-one map into P? is an immersion, the map
evi xevy: SﬂTQ(,u) — P3xP?

is transversal to Aps,ps by Lemma 3.4. Since the complex dimension of S7z,(u) is less than three
by Lemma 4.2, it follows that

{evixevs} ™ (Apsyps) N (UY) (1) N Uz 1) = 0.
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Lemma 4.5 If T = (M, I;j,d) < 73 is a bubble type such that XT(LQ) =0, Xy(i,ﬁ) >0, and
U(TI‘TQ( )#0, then
U (1) MUz 7 C {evixevs ) (Apoges),  xr(1,1)>0, and  py(T)|€{1,2}.

Furthermore, there exist a rank-|x;(T)| vector bundle FT— Uz, T, a monomials map p: FT— FT,
a section ozEI‘(Z/{T2 7 Hom(FT; eV*TIP’S)), and a C°-negligible map

e: FT-Y(FT;I") — Hom(FT,eviTP?)

such that R
{evixevs} (o7, 7(v)) = {a+te(v)}p(v) VoeFTs—Y (FT;IT).

The vector-bundle map « is injective over UT(-‘)TQ (). Finally, if It = xi(7T), p is the identity

map, and

av)= ) (yé_xh)_I@’D(T)hvh Vo= (vh)nex; (1) € FT-
hEXi(T)

Proof: The first two claims of the first sentence are clear; the third follows by dimension-counting
from Lemma 3.4. On the other hand, equation (4.4) with 1 replaced by 2 gives

{evixevs}(¢7,7(v)) = Z (yh;ﬁ(v)_mi;h(v))_I{D(Tl,)h""éT,Q;h( )}p(TO,Ql,)h(U)
hexi(T)

Thus, we define the monomials map p=(pp,) hex; (T) and the linear map « by:

pr(v) = H Vs Uh hexl(T)) Z (yh;g—mi;h)_léb D%)h@h, where

i€ (i1 (2,h),h] hex;(T)

mi;h:xh/ if hIE(i (

,h);
P ) ifngZT(? h);
M2\ aw, it W e(ir(2,h); 4] and o, = iz (2, h).

h] and f, =ir(2,h);

Of course, we write b = (M, I;z,(j,y),u) as before; then x; and y; are sections of a bundle

over U, |7. By Lemma 3.4, the map « is injective over U(T‘)T ().

Lemma 4.6 If T =(M,,I;7j,d) is a bubble type such that T < Ty, x7(1,1)=x7(1,2)=x7(1,2)=0,
and Sy, (1) #0, [x7(T)|€{1,2}. Furthermore, the following properties hold.

(1) There exist a rank-|x;(T )| vector bundle ]:"T—>UT|7—2, section a €T (U, Hom(FT, ev’{T]P’3)) ,
and a monomials map and C°-negligible map

p.e: FT-Y(FT;I") — FT, Hom(FT, ev”{TIP’?’)
such that

{evixevs (g7 (v)) = {ate()}p(v)  VWEFT; st ¢nr(v)elds).
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(2) If xi(T)={h} is a single-element set, a is injective over 87‘72(/1). If, in addition, f+zxi(’]'),
plop)=vev YeFT; a(tn)=(ys—zn) @ (y—an) " ®(ys—y;) DY) On VOEFT =FT2
(3) If Ixi(T)|>1, there exist a line bundle L—Ur|z,, a section
oy €T (Urz; Hom(FT, £*®ev’{T]P’3)),
and a monomials map and a C°-negligible map
pi,eyt FT-Y(FT;I7)— L, Hom(FT,L*@eviTP?)

such that ay©a is injective over Sy, (1), oy |[Y(FT,{h}) and oy |Y (FT,{ha}) are onto Im(ay)
over Sti1, (1), and

{evixevi }(on,7(v)) = pt(v) ® {ay+eir(v)}p(v) Voe FTs—Y (FT;I").

If, in addition, f+zxi(’]'):{h1, hao}, p is the identity map, and

ar(v) = (yi—zp,) " @ D(Tl?hlvhl + (yi—an) ' ® D%)hzvhﬁ
a(v) = (yi_xfu)_l@(yé_xhl)_1®(yi_mh2)_l®(yﬁ_yi) ®(mh1 _xhz) ®D§},)hgvh2
for all v=(vp,,vp,) €FTs.

Proof: (1) The first statement of this lemma follows from Lemma 3.4 by dimension-counting. If
Xi(7)={h} is a single-element set, the remaining claims are obtained by subtracting the expansion
of {evi xevj}odr, 7 given in Lemma 4.2 times (yi;i(v)—xi;h(v)) (yi;g(v)—xi;h(v))_l from the
corresponding expression for {evjxevs}odz, 7.
(2) If |x7(7)|>1, hex;(T), and [=1, 2, we put

i3 (h) = max {ir(h,1),ir(h,2)},
ix(l) =max {ir(l,h): hex;(T)}, i7(l) =min{ir(l,h): hex;(T)}.

If hy € x;(7) is such that either iz (hy,1) =44 (1) or ir(h1,2)=i7(2), we subtract the expansion
of {evixevj}o¢pr 7 given in Lemma 4.2 times (yi.i(v)—aji;hl(v)) (yi.é(v)—aji;hl(v))_l from the
corresponding expression for {evyxevs}opz, 7 and then take the leading term.

4.4 Computation of the Number C eV X eV; APSXPS)

81/7%) (m(
evixevy; Apsyps) appearing in equation (4.3). We

(

perturb the map evixevs to a new continuous map 6 on Uz, such that the image of 82]7—; ) (1) under 6

We are now ready to compute the term C (%-{%) h (

is disjoint from Aps,ps and 9\2/{% )(,u) is smooth and transversal to Apsyps. In order to achieve
these requirements, it is sufficient to perturb evyxevs very slightly on a small neighborhood W' of

82/_{%)(/1) N {evi x eVg}_l(Ame). Then,

C (eVi XGVQ; A]P’3><]P’3) = i‘e_l(Apg,ng) N W‘

oz, ()
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Along the set 81/_{%)(@ N {evi x evs} 1 (Aps,ps), the maps evi X evs and @ can be viewed as
sections of the bundle ev’{T]P’?’. Thus, we can apply the terminology and the computational
method of Section 2 to determine the number of zeros of a small perturbation of evj x evy near

81/_{% ) (1) N{evi xevs} 1 (Apsyps). Of course, we cannot “cut off” the map near the entire boundary

of L_{% )(u), as was done for vector-bundle sections in Subsection 2.3. However, the entire approach

of Subsection 2.3 goes through, since {evi x evs} 1 (Aps,ps) is well-defined on all of the space

7%)(;0, and not just on U(Ti)(,u).

We prove Corollary 4.13, which expresses the boundary contribution C evi X evs; APSXPS)

o) (u)(
in terms of Level 1 numbers, by computing contributions from the individual strata Uz, 7. We
split the computation into four cases, depending on whether XT(L Q) and X']’(i, Q) are zero or not.
By Lemma 4.4, if x7(1,2)#0 and x7(1,2)#0, the space Uz, 7 makes no contribution. The case
x7(1,2) =0 and x7(1,2) #0 is handled in Lemma 4.7. Figure 9 shows the three possibilities for
non-hollow spaces Uz, 7. In all three cases, we express the contribution from the stratum in terms
of the number N(aj) of zeros of an affine map between vector bundles. However, in two of the
cases, this number is zero, basically for dimensional reasons; the remaining number is computed
in Lemma 4.8. The case x7(1,2)#0 and x7(1,2)=0 is symmetric to the one just considered and
no separate computation is needed. The remaining case is dealt with in Lemma 4.12. Figure 11
shows the three possibilities for non-hollow spaces Uz, 7, but in all three cases the corresponding
number N (a1) is zero for dimensional reasons. In both figures, the numbers above the arrows show
the multiplicity with which the corresponding number N («ay ) enters into C ol () (evixevi; AP{SXIPB).
2

Before proceeding with the actual proofs, we formally define more spaces of tuples of stable rational
maps that appear in the statements of Theorems 1.2 and 1.3 and describe curves pictured in
Figure 1. First, let

Si(p) = {bettn,(1): DY b=0}
and let S (i) be the closure of S1(p) in Ug,. If T = (Mo, Is;j,d), let
St(p) = {belr(n): D(Tl7)1vi+D(Tl7)QU§:0 for some (b; vy, vs5) € Li7 ®LsT —Ur }.

We denote by Sa(t) the quotient of the disjoint union of the spaces Sz (i), taken over all bubble
types 7 as above such that dj,d; >0 and d; + d5 = d, by the natural action of the symmetric
group So. Finally, if 7= (M, I>; j,d) is a bubble type such that j; =1, let

UM (1) = {bettr(n): evi(b)=evy(b)}.

We denote by Vél)(,u) the disjoint union of the spaces Z/{(T1 )(,u), taken over all bubble types 7 as
above such that dj,d5 >0 and d; + d5=d.

Lemma 4.7 Suppose T = (M, I;7,d) is a bubble type such that T < Ty, x7(1,2) = 0, and
x7(1,2)>0.

(1) If |TH|> |x; (7)), Ué})(u) is (evi x evy, Apayps)-hollow, and thus Cyy, - (evi X evs; Apsyps) =0.
(2) If [T =x1(T)|=1, [MiT|e{1,2}. If |M{T|=2, Cuy, o (evixevs; Apsyps) = 0. If [M;T|=1,

Cur, r (evixevy; Apsyps) = <6a%+4a001(£§)+0%(£{)7Wl)(“» + [S2(w)] - ‘Vél)(ﬂ)‘
_ <8a%+4c1(£§)751(ﬂ)>'
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Figure 9: An Outline of the Proof of Lemma 4.7

(3) If I =|x;(T)| =2, Cuz, 7 (evi X evy; Apayps) = 0.

Proof: (1) By Lemma 4.1, L_{%)(u) NUT, T CZ/{T(}‘)T2 (). With appropriate identifications, 2/17(.1|)7.2 (1)

is the zero set of the section evz, v, @ (evi—evi) of the bundle evy , NAg (u)@ev’{T]P’?’ over an

open neighborhood of I/{T(-l‘)T2 (1) in Uz, 7. By Lemma 3.4, this section is transversal to the zero set,

since the constraints y are assumed to be in general position. By Proposition 3.5, there exists a
C'-negligible map e_: FT5—Y (FT;1") —evy, 1 NAT, (1) ©eviTP? such that
{evry mo xevi xevy } (o757 (b)) = {evy, m, X evixevy }(b) + e—(b;v)
for all (b;v)e FTs—Y (FT; f+) On the other hand, by Lemma 4.5,
{evixevs}(o7,7(v)) = {ate(v)}pv) € eVITP? YueFTs —Y(FT;1Y),
)

where « is a linear map, which is injective over L[%T2 (1), and its domain is a vector bundle of
rank |y;(7)|. Thus, if |[I]|>|x;(7)|, 1/17(—1‘)7—2 (p) is (evyxevs, Apsyps)-hollow, and
CMT%T (evi X evs; AP3Xp3) =0

by Proposition 2.18B, or Lemma 2.20, and Lemma 4.1.
2) On the other hand, if || =|x; (7|, by the above and Lemma 4.5, Ul 1) is (evixevs, Apsyp3 )-
i T|T2 iX€V3
regular, and by Proposition 2.18B and rescaling of the linear map,

CUT2,T (evi Xevy; Aps ><]P’3) = N(a), where

aEF(L{(Tl‘)TQ(,u);Hom(]—"T,ev’{TIP"g)), alv) = Z (yé—a:h)_l@)D%)hvh.
hEXi(T)

provided « is a regular section, as is implied by what follows. Since the map

FT= @ n7enT —F= P LT, v — (y—a) ' ©on
hex (T) hex; (T)
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is simply a rescaling of factors over Uz, (1),

CMT\TQ (evi X evy; Aps le>3) = N(d/), where
T o F ), )= Y D
hEXi(T)

Note that with respect to the decomposition (3.4), shown in Figure 9, the linear map o’ comes
entirely from the second factor. Thus, if the first factor is positive-dimensional, N(a/)=0, i.e.

CI/{TQ,T (eV]~L Xevs; Aps ng) =0

unless |xj(7)|=1and |M;7T|=1. If |[x;(7)|=1 and |M;7|=1, we conclude that

Cur, r (evixevs; Apayps) = N(ap), where
o EF(T}F)(M); Hom(Li’Tl,eng]Pﬁ)), ai(v) = D(Ti),iv'

The number N(aq) is computed below.
Lemma 4.8 If oy EF(T/F)(M); Hom(Li,eV(i;TIP’S)) s given by oy :D%),i’
N(ar) = {(6a2+dager (£2)+(L2), V1V (1) + |Sa ()] — (V8 ()| — (8a2+4er (£2), S ().
Proof: (1) Since a; does not vanish on VF)(,u) by Lemma 3.4, by Propositions 2.18A and 2.18B,
N(ar) = (6a3 +4ager (L) + (L), W () = Copn (), (4.5)

where ozll denotes the composition of a; with the projection 7T,%‘1 onto the quotient O; of eVST P3
by a generic trivial line subbundle Cv;. Figure 10 shows the five types of boundary strata that are
not aj-hollow. Contributions from the first two are computed in (2) below, from the following two

in (3), and from the last one in (4) below.
(2) If T <T; and x7(1,1)>0, ﬂl)(u) NUT T CLl(Tl‘)T1 (1) by Lemma 4.1. By Proposition 3.5,

D(T?i(qﬁflj(v)) = Z(D%)h—ksh(v))ph(v), where pp(v) = Hvi, VYoe FTg—Y (FT;1I7),
hexi(T) ie(1,h)]

and for some C°-negligible maps ¢, : FT g« — Y (FT; f*) — Hom(L,7, eVSTIP’S). Let F,7 denote
the line bundle determined by pj,. By Lemma 3.4, the map

FT= @AT — LToeiTr, ()0 o — > Dihin
hexi(T) hexi(T)

)

is injective over Uq(-lm (u). If 7y is generic, the same is true of the map

oy FT — LiT®0, {ah(D)}(v) = 7r,7l1 Z D(T{)h@h@@u
hexi(T)
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Figure 10: An Outline of the Proof of Lemma 4.8

By the same argument as in (1) of the proof of Lemma 4.7, Cyy, , (af)=0 unless I+ = xi(7T). If
It =x;(T), by dimension-counting either |I*|=|x;(7)|=1 and |M;T|=1 or [IT]|=]|x;(7)| =2
and |M;7|=0. In the second case, the map a4 is an isomorphism on every fiber of F7 over the

finite set Z/lq(}')?.1 (). Thus, by Proposition 2.18B,

Note that the sum of the numbers |Z/{7(_1|)7.1 (w)], taken over all bubble types 7 < 77 such that
|It|=|x;(T)|=2 and |M;T| =0, is |V§1)(,u)|. On the other hand, if It = x;(7) = {h} is a
single-element set and |M;7| =1, i.e. T =7;(l) for some [ € [N], by Proposition 2.18B and the
decomposition (3.4),

Cuy (0f) = Nlaz),  where @y € T(U),(1); Hom(Ly, 01)),

uT\T1 4

(1)

is the map induced by o4, i.e. the composition of DTl Lk with the projection 7

7, onto the quotient

O; of ev(i;T P? by a generic line subbundle C7;. Thus, by Lemma 4.9,

3" Cltgy oy (1) = (dag+er (L), V1 (1) — 2|S1a ().
lE[N]
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Summing up the above contributions, we find that
* (1
Z Cur, 1 (o) ‘ )| + <4a()+01(L1)7V£1)(M)> —2|Sy;1(w)]- (4.6)
x7(1,1)>0

n (4.6), Si.1(p) denotes the disjoint union of the sets

S1o, (1) = {belz,, (1): g. b=0}, where Toy=(Mo—{l},L1(1);4,d), L) ={0=1}uI,

taken over all [€[N]. The space V{ll) (p) is the disjoint union of the sets

Up, (1) = {belr;, (0): evi(B)=evi ()}, where Tig=(Mi—{1}, 1i(1):].d),
taken over all [ € [N]. As usual, ]791) (1) denotes the closure of Vﬁ) (1) inside of a union of moduli

spaces of stable maps. More geometrically, the image of every element of Sy.;(u) (of Vflf (1)) has
a cusp (a node) at one of the constraints pq, ..., un-.

(3) If 7 < 7y and x7(1,1) =0, Vfl)(u) NU7n.17 C Sty (1) by Lemma 4.2. On the other hand,
by Lemma 3.4, Sr7, (1) =0 unless |x;(7)| € {1,2}. Suppose x7(7)={h} is a single-element set.
With appropriate identifications, Sz, (1) is the zero set of the section ev;, MO@D%)}L of the bundle

evi e /NAT (1 )@Lh®ev*T]P’3 defined over a neighborhood of S7|7; (1) in Uz, 7. By Lemma 3.4,
this section is transverse to the zero set. By Proposition 3.5 and Lemma 4.2,

evr, Mo (qbq—lg—(b; U)) =evr M, (b) +e—1(b;v),
{evixevi}(6n.7(v)) = (Y1 —2p1) @ {Dypte—a(v)}or]), W
for all (b;v)e FTs—Y (FT; f+) and some C'-negligible maps
e_n,e—n: FT5=Y(FT;17) — eviy y NAz (1), L ®evi TP,

On the other hand, subtracting (yi;i(v) —mi;h(v)) times the expansion of {evj xevj}o¢z 7 in
Lemma 4.2 from the expansion of D(l)~o¢7177 in (3b) of Proposition 3.5, we obtain

Dg}l)igbq—l,q—( ) = (yh i, h)®{D(2h+s )}p(v), where p(v)= H v @ H v;,

icter(p),n] e xr(in)
for all ve FTs such that ¢z, 7(v) EZ/{% )(,u) and for some C%-negligible map
e: FT,—Y(FT;1") — L;®*@ ev; TP
By Lemma 3.4, Dg)h does not vanish over Sz, (1), and neither does the linear map
oly: FpT®? — LiT®0y, {ah(D)}(v) = 7TZJ7'1D§?7)h’l~)®’U,

provided #; is generic. Thus, Sz7; (1) is af-hollow unless It = x7(7). On the other hand, if
It =xi(7), by Proposition 2.18B, a rescaling of the linear map, and the decomposition (3.4),
CuTl,T(H) (af) = 2N(aw), where

— * T % * * T 0 2) 5
ar €LMg yag, 7 X St (1); Hom (7] *@my LY, [®01)), QQ(U):T(;_IO{D'%—,)}IU}'
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By dimension-counting, |M;7|€{1,2}. If |M;7|=2, i.e. M;T ={2,1} for some [ €[N], S7(u) is a
finite set and Dg—?)h does not vanish. Thus, by Propositions 2.18A and 2.18B,

Z Cur iz, (af) = 2<C1(L>{)aﬁ{1,h}uMﬁ>‘51;1(M)| = 2[S11(w)]-
x7(1,1)=0,|M;T|=2
If [M;7|=1, i.e. M;T ={2}, by Propositions 2.18A and 2.18B and Lemma 4.10,
N(ag) = <4a0+201(£ ), St (1 > |Sg |
Thus, summing up the above contributions, we obtain

> Cup (o) = (Bag+4er(£3), 81 () + 2| S1a ()| — 2[Sa(p)]. (4.7)
x7(1,1)=0,|x5(7)|=1

(4) Finally, if T <77, x7(1,1)=0, and x7(7) = {h1, ha} is a two-element set, the section Dg})hl does

not vanish over the set Sz, (1). We denote by 7y, : evéT]P’3 —sIm Dé})hl and Wﬁl : ev(i;T]P’3 — Ep,

the orthogonal projections, defined over a neighborhood of S|z, (1) in Uz 7, onto Im Dé})hl and

its orthogonal complement F; in ev(i;T]P’3. With appropriate identifications, Sz7; () is the zero

set of the section evy;, MO@W}t ng})hQ of the bundle evy, ,, NA7 (1)@ Ly, ® Ep, defined over a

neighborhood of ST|71(M) in Uz, 7. By Lemma 3.4, this section is transverse to the zero set. By
Proposition 3.5 and Lemma 4.2,

evry My (67,7 (b)) = eve ag (b) +e—a (b v),
i evixevi} (o5, 7(v) = (th;i_l’i;hg)_l ® {WﬁlOD(TI,)hQJFE—%?(U)}p(TO,;%;)hQ (Vns),
T {evi xevi Hon,7(0)) ={Upi=2in) © (D, +e4m ()01, Wh,)
i ~Ti) @ {70 Dy e ()17, (o)
for all (b;v)€ FTs—Y (FT;IT) and some C'-negligible maps
e_n,e_mpepn: FTs—Y(FT;IT) — v moNAT (1), L, ®Eh17L2®ImD§},)h1'

On the other hand, subtracting the expansion of {evixev;j}ops 7 of Lemma 4.2 multiplied by
(yi_i(v)—xi.h (v )) from the expansion of D quTl 7 in (3b) of Proposition 3.5, we find that

T 1¢T1, = {ah+e(v)}p(v) VweFT; sit. (;57177(@)62/{%)(#),

where p is a monomials map on F7 with values in a rank-two bundle F7, ag: FT — L’{®eVE§)T P3

is a linear map, such that a; G« is injective over Z/l% )(,u), and
e: FT-Y(FT;I") — Hom(FT,L;®ev TP?)
is a CC-negligible map. Explicitly, if I =x;i(7), p is the identity map, and

Oé(’Uhl,UhQ) = (yi_xhl)_l ® (th_ath) ® D'g')hzth
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Thus, if 71 is generic, Sz (1) is af-hollow unless It = x;(7). If It = x;(7), by dimension-
counting M;T = {2} if S717: (1) #0, and by Proposition 2.18B, rescaling of the linear map, and the
decomposition (3.4),

CS’T\Tl (w) (alL) = N(a2), where

a * Tk * * T % ~ 1
a2 €M 3 1, py XS () Hom(n{ LI @73 Ly, 11 Li®O1)),  a2(0) =y, © {D(T)U}'
The set S7(u) is finite and Dg—}) does not vanish. Thus, by Propositions 2.18A and 2.18B,

Z CZ/{T\Tl (Oéf_) = <01(L§)’ﬁ{i,i,h1,h2}7>‘82(:“)‘ = ‘Sﬂu)‘ (4_8)
x7(1,1)=0,|x5 (T)|=2

The claim follows by plugging equations (4.6), (4.7), and (4.8) into (4.5) and using (3.2) and (3.3).

Lemma 4.9 If Oy —>1_)£11) (1) is the quotient of the bundle ev(i;T]P’g’ by a generic trivial line sub-

,%1 : eng]P’g’ — Oy is the quotient projection, and as € F(l_}fll) (); Hom(Ly, (’)1)) 18
. 1 1
given by agzwi OD(Tll,i on Z/lj(—l;)l (1),

bundle Cvq, w

N(ag) = (dag+e1(L2), Vi (1)) — 2|81 (w)].

Proof: By Propositions 2.18A and 2.18B,

)

N(as) = (4ag+e1 (L) Vil (1) = Copon (03, (4.9)

where a% denotes the composition of as with the projection 7#2 onto the quotient Oy of O by
a generic trivial line subbundle Co,. Suppose T = (My,1;j,d) < Ty, is a bubble type such that

D(Tl)l i vanishes somewhere on V}lf () NU7,., 7. Then, by Lemmas 3.4, 4.1, and 4.2, T:’Z'l;l(i) and
;0 ) ;

17£11) (n) N Z/{’Z’l;l,TCS']"']'l;l(/L). By the same argument as in (3) of the proof of Lemma 4.8,
1
Csrin, (@2) = 2|87z, (W)]-

We conclude that
1
C@\‘;fll)(u) (042 ) = 2|51;1(H)|' (410)
The claim follows from (4.9) and (4.10).

Lemma 4.10 If O; — S (i) is the quotient of the bundle evéT]P’3 by a generic trivial line sub-
bundle Ci, 771%1 : ev(i;TIP’?’ — 01 1is the quotient projection, and g € F(Sl(,u); Hom(L?z, (91)) is
@)

; _ 1
given by ag—wﬁloD%’i,

N(ag) = (dag+2¢1(L3),S1(p)) — [Sa(p)|-
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Proof: (1) By Propositions 2.18A and 2.18B,

N(ag) = (4ag+2c1(L%), 81 (1)) — Cas, () (02, (4.11)

where oz denotes the composition of as with the projection 7T onto the quotient Oy of O by a

generic trivial line subbundle C%. We now use the expansion (3d) of Proposition 3.5 to describe
the boundary strata of S1(u) and compute the contribution of each stratum to Cyg, () (ag). Our

description shows that 9S;(u) is a finite set and thus S;(u) is a one-pseudovariety in V;(u) and V.
(2) If T= (Mo, I; j.d) < Ty, by Proposition 3.5,

1 1 1 0;1
Dg'o),iqb%j(v) - Z (D(T,)h+5(7)1 h)p’(fl)( ), where p’Tl HU“
hexi (T) ie(i,h]
for all v € FT sufficiently small. Thus, Si(n) N Uz, 7 is contained in the finite set Szz (u). If
d; #0, section D( ) ; does not vanish on 877, (1) and thus Uz |7, does not contribute to Cyg, (,) (ag),
)

since Dg, 1 deﬁned everywhere on Sy (u).

(3) If d; =0 and Sz7 (1) #0, It =x;(7) and |x;(7)| € {1,2}. Suppose x;(7)={h} is a single-
element set, i.e. 7T = To(l) for some [ € [N]. With appropriate identifications, Sz|z,(u) is the

zero set of the section evyy i, @Dg})h of the bundle evy, , NAg, (,u)EBL}';@eVgT]P’?’ defined over a
neighborhood of Sﬂ%(,u) in Uz, 7. By Lemma 3.4, this section is transverse to the zero set. By
Proposition 3.5 and Lemma 4.2,

evyy, Mo (975, 7(D;0)) = vy ap (b) + €1 (b3 v),
DY 1(¢T07 v)) = {DP), +e _a(v)}v,

for all (b;v)e FTs—Y (FT;It) and some C'-negligible maps
e_n,e—n: FT5=Y(FT;1T) — eviy y N A (1), L @evi TP,

On the other hand, subtracting the expansion of D(1)~ogb% 7 of (3d) of Proposition 3.5 times xy,

from the expansion of D ogb% 7 of (3d) of Proposition 3.5, we obtain
quO, {DTh—l-ETlh }’U®U YoeFTs st. ¢g,7(v)€ES].
By Lemma 3.4, Dgg)h does not vanish on the finite set Sz |7, (1). Thus, by Proposition 2.18B,

Z CMTO 042 —2‘511 | (4.12)
Ixi(T)=1

(4) If x(T)={h1, ha} is a two-element set, the section D(Tl)hl does not vanish over the set Sz, (11)-
Let 73, , Wﬁl, and Ej,, be as in (4) of the proof of Lemma 4.8. Similarly to the previous case, S77, (1)
is the zero set of the section evyy, Mo@ﬂ-}t 017(71,),12 of the bundle evy. )/ NAg (1)@ L}, @E), defined
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over a neighborhood of S77; (1) in Uz, 7. By Lemma 3.4, this section is transverse to the zero set.
By Proposition 3.5 and Lemma 4.2,

evzy My (¢70,7(0;0)) = evyy sy (b) + e (b ),
T Dy 1 (67,7 (v)) = {mit, 0D, +e-2(0) 0,

WthT 1(‘;5707 (v)) = {DT T HE (V) Jom,) + {Whlpé},)h2+€+;h2 (v) }on,

for all (b;v) e FT5s—Y (FT; f+) and some Cl-negligible maps €_.1,6_.2,4.,. On the other hand,

subtractmg the expansion of D quTO,T of (3d) of Proposition 3.5 times zj,, from the expansion

of D oqbq—og— of (3d) of Proposmon 3.5, we obtain

DY 67,7 (0) = (@ny =4 )@ { DY), +e(0) o, VWEFTs s.t. 63,,7(v) €S (n),

where ¢ is a C%-negligible map. Since Dg})h

we conclude that

does not vanish on Sz, (1), from Proposition 2.18B,

> Curryw(02) = [S2()]. (4.13)
Ix; (T)]=2

The claim follows by plugging equations (4.12) and (4.13) into (4.11) and using (3.2) and (3.3).
Lemma 4.11 Suppose T = (Mo, I;j,d) is a bubble type such that T < Ty, XT(LQ) > 0, and
xr(1,2)=o0.
(1) If |[IT[#1 or My, T|#1, Cur, 1 (eviXevs; Apsyps) =0.
(2) If [IT|=1 and |M;, T|=1,
Cutr, 7 (evi X evs; Apsyps) = (6a2+4ager (£1)+(L1), VM (1) + [Sa(w)| — [V (w)]
— <8a0—|—401(£“{),51(,u)>.

Proof: This lemma follows from Lemma 4.7 by symmetry.

Remark: Of course, these contributions can be computed directly, and in fact one finds a somewhat
different expression for the contribution in (2). What this means is that we have found a relationship
between certain intersection numbers:

(8ager(£3), V17 (1)) + 2V57 ()] = (405 — 1 1, V5D () + Vi (w)]- (4.14)

Here Vél(g 1)) (1) denotes a set of tuples of stable maps whose cardinality is six times the number of

rational curves that pass through the constraints p and have the form described by the last picture
of Figure 1. Using [P], it is possible to restate the relation (4.14) in terms of numbers of rational
curves of various shapes.

Lemma 4.12 If T= (M, I;j,d) is a bubble type such that T <To and x7(1,2)=x7(1,2)=0,

CUTQ,T (evi X €eVy; A]P’3><]P’3) =0.
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Figure 11: An Outline of the Proof of Lemma 4.11

Proof: (1) Since x7(1,1) = 0, by Lemma 4.2, Z]%)(u) NUnT C Stip (k). T Sy (n) # 0,
Ixi(7T)|e{1,2}. If h is the unique element of xj(7), mixing the argument in (1) of the proof
of Lemma 4.7 with (3) of the proof of Lemma 4.8, we find that S|z, () is (evi x evs, Aps,ps)-

hollow unless It = x;(7). On the other hand, if [T = y;(7) = {h}, by Proposition 2.18B, the
decomposition (3.4), and a rescaling of the linear map,

Cutr, (eviXevy; Apayps) = 2N (), where

a1 =m3DP € T(My3 yy0r,7 xS (10); w5 Hom (L, eviTP?))

Since |M;7T|> 2, the first factor is positive-dimensional, while the linear map «; comes entirely
from the second factor. Thus,

CZ/{’T2,T (evi X evs; AP3XP3) =0.

(2) If x(T)={h1, ha} is a two-element set, the section Dg—)h does not vanish over the set S77,(11).
Mixing (1) of the proof of Lemma 4.7 with (4) of the proof of Lemma 4.8, we find that Sr7, ()

is (evy X evs, Apsyps)-hollow unless I+ = x;(7). On the other hand, if I* =x;(7) = {h1, ha}, by
Proposition 2.18B, the decomposition (3.4), and a rescaling of the linear map,

Cur, r (evixevs; Apayps) = N(ap), where
oy € F(ﬁ{thhz}uMﬁ xSz (p); maHom(Ly, ® Ly, Im D(Tl)EBeVET]P’?’)),
aq (Uh1 ) th) = (D,g—})’l/hl +D,§—})’Uh2, D,g—})’l}h2) .

Since |M;7|> 2, the first factor is positive-dimensional, while the linear map «; comes entirely
from the second factor. Thus,

CZ/{TQ,T (evi X evs; APBXPB) = 0.
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Corollary 4.13 The contribution from the boundary to the number <<V£2) () is given by

Coo (€vi X eva; Apaps) = (1202 +8agms 1 +202 |, VP (1)) +2[Sa()| — 2|V ()]

— (16a5+81m5 1, S1(p))-

aag )

Proof: This corollary follows immediately from Lemmas 4.1-4.4, 4.7, 4.11, and 4.12.

5 Example 2: Rational Tacnodal Curves in P?

5.1 Summary

In this section, we prove Theorem 1.3. The general approach is the same as in Section 4. If 77 is
the bubble type as defined in Section 4, let

SV (1) = {(b, [vg, vi]) eP(Ly@Ly) — ViV be vV (n), Dy (b, [vg,v1]) =0}

* 1 * * 1 1
where Dy 5 €T (BLi@ LIV ()i 77 0r: ®eViTP?), Dy j(vp,v7) = DY jvg + DY oy,

The set SF)(M) can be identified with the set of rational one-component tacnodal curves passing
through the constraints u, but with a choice of a branch at each node. In particular, the cardinality

of the set 8}1)(/0 is twice the enumerative number of Theorem 1.3.

Note that section D; ; does not extend continuously over all of the boundary of 1_251)(/1). In fact,
this can be seen from (3c) of Proposition 3.5. Nevertheless, the behavior of this section can be
understood everywhere. By Proposition 2.18B and equation (2.17), we have

(S ()] = (6a3+2(L3), V(" (1)) = Copqrsens) (D 1), (5.1)

where C@P(Li@L§)(Di i) is the Dj j-contribution from the boundary strata of P(Li®L]) to the euler
class of fy}:i@,:f ®eng]P’3. This contribution is computed in the rest of this section. Theorem 1.3
1

is obtained by plugging the expressions of Corollaries 5.3 and 5.9 into (5.1) and then using identi-
ties (3.2) and (3.3).

Before proceeding with our computation of the contributions from various strata, we observe that
the section Dj j extends over 17}1)(/1) NUp 7 if T=(My,1;j,d) <7 is a bubble type such that
Ji= 1, as can be seen from Proposition 3.5. If in addition d; #0, by Lemmas 3.4 and 4.1, Dj 3
does not vanish over f/}l)(u) NUpnTC u7('1\)7'1 (). Thus, such spaces Uz, 7 do not contribute to
Cap(Li@L»{)(Di i) and will not be considered below.

5.2 Contributions from the Spaces Uz, r with y7(1,1)=0

In this subsection, we prove Corollary 5.3, which gives the total contribution to Cap( Li® L’{)(Di i)
from all the spaces Uz, 7, where 7 = (M, I;§,d) <T; is a bubble type such that y7(1, 1)=0. We

use Lemma 4.2, which describes the intersection Vfl)(u) N U7, 7, along with Proposition 3.5.
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Figure 12: An Outline of Subsection 5.2
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Figure 12 shows the three types of boundary strata 17{1) (1) NU7, 7 such that

P(Lio L)V (u) nUn 7

is not contained in a finite union of Dj j-hollow sets. For such boundary strata,

P(Li @ L)V (u) N Uz 7

is a union of two Dj j-regular subsets: a section over the base )_/fl) (1) NU7 7 and its complement.

Each number in the odd rows of the last column in Figure 12 gives the multiplicity with which the
number N («) of zeros of an affine map over the larger Dj j-regular set enters into Cap(Li@L’{)(Di’i);
each number in the even rows gives such a multiplicity for the smaller set. Lemma 5.1 computes
the contributions from the first two types of boundary strata of Figure 12; Lemma 5.2 deals with
remaining one.

Lemma 5.1 Suppose T = (M, 1;7,d) is a bubble type such that T < Ty, x7(1,1) = 0, and
a(T)l=1.
(1) If|ITH]> |xi(T)], P(L1©LY)|ST7: (1) is a finite union of D; j-hollow subsets and thus
Ce(ryort)un - (P11) = 0.
(2) If 1= |xi(T)| and M;T ={1},
Cr(L;@12)tr, 7 (D1,1) = (20a5+19¢1(L3), S1 () — 11]Sa(p) |-
(3) If |IF|=|x1(T)| and MyT ={1,1} for some €[N], Co(LioL)un 7 (P11) = 3|S5 (1))
Proof: (1) Let h be the unique element of x;(7"). By Lemma 4.2,

VO (1) Uz, 7 C Spyn (1) = {bEUT 7 (): DY),b=0}.
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With appropriate identifications, Sz, (1) is the zero set of the section ev;, MO@D(Tl)h of the bundle
v e /NAT (1 )@Lh@)ev*TP?’ defined over a neighborhood of Sz|7; (1) in Uz, 7. By Lemma 3.4,
this section is transverse to the zero set. By Proposition 3.5 and Lemma 4.2,

v i, (97,7 (b v)) = VT, Mo (D) + 1 (s v),
{evixevi}(on,7(v) = (Wpi—21s) " @ {DYh+e—2()} @ D) ()
for all (b;v) e FTs—Y (FT;I1) and some C'-negligible maps
e, FTs=Y(FT;I") — evi AN AT (1), L @eviTP?.

(2) Subtracting the expansion of {evj xev;}o¢z 7 of Lemma 4.2 multiplied by
-1
(Wra(v)—21,(v))  andby = (yi5(v) =g, (v))

from the expansions of D ogbq—l 7 and DT lo¢7—1 T, respectively, given by Proposition 3.5, we obtain

D; 167,7([vr, viliv) = {ate()p(v) ¥([vg,vi);v) €FT s s.b. ¢7.7(v) eV,
where p is a monomials map on F7 with values in a line bundle FT,
oa: FT — ’y}:i@L%«@Jeng]P’g’
is a linear map, and
e: FT-Y(FT;I") — Hom(FT, Viser: ®eviTP?)

is a C%-negligible map. Explicitly,
p(v)= H v @ H vy,
i€(ir(h,1),h]  ie(,ir(h,1)]

ofjoe {Inammferrin Hirb Do

~ -3
allvi,vi|,0) = —(y,.; — 5. ®
([ i, i) ) (yh,l l,h) h v, itir(h,1)>

In particular, « is an injective linear map outside of a section Z7 of P(L;z Ll) over Sz, (). Thus,
P(L;® L3)|ST|7: (1) — 27 is Dj j-hollow unless It =x;(T). If I* = x;(7T), by Proposition 2.18B,
the decomposition (3.4), and a rescaling of the linear map,

Co(r;0L:)IS71m, w27 (P1i) = 2N(aa1),  where

o1 €T (PF xSy (1); Hom (3@ L2 5 0eviTPY), F=Li®L; — My nr g 01 =Dy

If M;T = {1,1} for some € [N], D(TQ)h does not vanish on the finite set S7 () and thus

Co(Lior)ISrin, (127 (Di i) = 2(3\F —3\5+ A%, PF)[S7(u)| = 0. (5.2)
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If M;T = {i}, T =1y, and by Propositions 2.18A and 2.18B, and identity (2.17),

CrrioL)|sTyn (0-2r (P11) = 2<<4a@+201(5{)751 (1)) = Co=1 o) (Oéf))

(2)-1

The zero set of « is precisely PF ><277.0 : (0). From the argument in (3) and (4) of the proof of

Lemma 4.10, we obtain
¢ —1(0)(041 ) = (Am PF) (2811 ()] + 1S2(p)]) = 2[S11 ()] + [Sa(w)]-
Putting the last two equations together, we conclude that if M;7T :{i},
Co(1;012)I577, (-2 (Pij) = (8ag+4e1(L7), Su(w)) — 2|82 (p)]. (5.3)

(3) In order to compute the contribution from the space Z7, we keep the two leading terms of
the expression for Dj ; obtained as in (2). We can model a neighborhood of Z7 in P(L; & L}) by
the map

Li® L — P(Li®L]), ([vg,v1],u) — [vg, 03 +u(vg)].
If i7(1,h)=1, near Z7,

)h + e2(u, U))

2 0;2)
D 107, 7([v, vil;u,0) = = (yg,1—21,,) > (DY T ) (w)®
_ 3) (0;3)
- (yi,i_l‘i,h) ®Ul (D T,h +83 ) Ti
Note that by Lemma 3.4, the images of D(2)h and D(g’)h are distinct over Sz, (n). If ir(1,h)>1,
we similarly find Z7 is Dj j-hollow unless It= xi(T). If It = xi(7T), by Proposition 2.18B, the
decomposition (3.4), and a rescaling of the linear map,
Cz;(Djj) =3N(a1), where g EF(ZT;Hom(’y}®L§2@’y§:®L§3;’y}@eng]P’g’)),
= « ww 2 3
Zr CPFxSz(p), F=Li®L] — My 1 a1 (ve,v3) :D%)hvg —I—Dg—.?hv

If M;T = {1,1} for some [ €[N], a; has full rank over Z7 and thus

> Czr (D) =3 Y (3Ar=22x 27)[S7(w)] = 3[Sua (). (5.4)
M;T={1,1} le[N]
If M;T = {1}, Zr =81 (1), and
Cz,(Dj 1) = 3N(a1) = (12a5+15¢1(L5), S1(p)) — 9]S2 ()5 (5.5)

see Lemma 5.12 in [Z1]. The claim follows from equations (5.2)-(5.5).

Lemma 5.2 Suppose T = (M, 1;7,d) is a bubble type such that T < Ti, xr(1,1) = 0, and
IXi(T)[=2.
(1) If I > |x;(T)], P(Li®L3)|STi1 (1) is a finite union of Dj j-hollow subsets and thus

C(LioL)uz 7 (P11) = 0.
(2) If |IF|=|x1(T)|, MyT ={1} if Sz (1) #0, and

> Cergorsiun - (Dii) = 2/S2(w)],
T<T1

where the sum is taken over all equivalence classes of bubble types of the above form.
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Figure 13: An Outline of Subsection 5.3

Proof: The proof is a mixture of the proof of Lemma 5.1 with (2) of the proof of Lemma 4.12; thus,
we omit it.

Corollary 5.3 The total contribution from the boundary strata Uz, 7 such that x7( ,i):O to the
number Cap(LiEBLp(Di i) is given by

Y Coniersiun «(Pii) = (20a5+197; 1, S1(1) = 9|Sa(w)] + 3|Sua ()]
XT(Li):O

Proof: This Corollary follows immediately from Lemmas 5.1 and 5.2.

5.3 Contributions from the Spaces Uz, with y7(1,1)>0
In this subsection, we prove Corollary 5.9, which gives the total contribution to the number
C@P(Li@[/’{)(pi i) from the spaces Uz, 7, where 7 = (M, 1;j,d) <7T; is a bubble type such that

x7(1,1)>0. Note that by the last paragraph of Subsection 5.1 it is sufficient to consider bubble
types 7 such that j; >1.

Figure 13 shows the three types of boundary strata 17{1) (1) NU7T, 7 such that

P(Li@ L)V (u) nUn 7

is not contained in a finite union of Dj j-hollow sets. As in Subsection 5.2, we have to split
each space
* \ 3 ].
(Lo L)V} () Nz, 7

into two or three subspaces, as indicated on the right-hand side of Figure 13. Lemma 5.4 computes
the contributions from the first two types of boundary strata of Figure 13; Lemma 5.7 deals with
remaining one.
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Lemma 5.4 Suppose T =(Mi,I;j,d) is a bubble type such that T <Ty, x7(1, i)>0, and d; =0.
(1) If [T > x5 (7)), P(Li@L*)W(Tl‘)T( ) is a finite union of Dj j-hollow subspaces and thus

Cr(rioLy)un - (P1,1) =0

(2) The total contribution from the boundary strata Uz, 7 such that |IT|= Ix1(T)|=1 is given by
1
S Cowernin (D) = (e (L), ViF (1)) = 3|Sia ().
|[+]=[x1(T)|=1

(3) The total contribution from the boundary strata Uz, 7 such that |IT|=|x;(T)|=2 is given by

1
Y. Cerrerniun .« (Dif) = WY ()]
|+ =|xg () |=2

Proof: (1) By Lemma 4.1, Z;{%)(u) NULR.T CL{(T‘)T( ). With appropriate identifications, Z/{(ﬂ)T( )
is the zero set of the section evz; v, @ (evi—evi) of the bundle evy. , NAg (,u)@ev*{TIP’3 over an
open neighborhood of U(T‘)T (1) in Uz; 7. By Lemma 3.4, this section is transversal to the zero set.
By Proposition 3.5, there exists a C''-negligible map
e_: FTs—Y(FT;1T) — evh 1 NAT (1) @eviTP?
such that
{ele,MO X evi xevi}((;bylj(b; v)) = {ele,MO X evi xevi}(b) +e_(b;v)

for all (b;v)€ FTs—Y (FT;IT). On the other hand, by Proposition 3.5,
Di1¢7,7([v1,v1)iv) = {a+e(v)}p(v) Voe FTs—Y(FT;IT).

In this equation, p is the monomials map on F7 defined by

—

PP (), i hex; (T) = (T);
pr(v) = p(le?h(v% it hexi(T);
A (), i hexi(T), hji

IR]

with values in the bundle F7 = Drei FiT, where

I=x,(T)U{hexi(T): hLj;},  FuT = 311”;7 if hex;(T);
;11127 if hexi(T), hjs.
The linear map a: FT — 'y}ii@ L ®eVSTIP>3 is given by
v1®73(¢1’)j{(7)17h, if hexg; (T)—xa(T);
o([vp, vil 0n) = § v @ (g1 —21,) % © DYy on, i hex;(T);
v @D, o, if hex;(T), hji.
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In particular, by Lemma 3.4, o has full rank over Uq(-l‘)Tl (1) outside of the set

z = ]P)Li, ifhgji VhEXi(T);
T PL; U IP’L’{, otherwise.
As usually, e : FT —Y (FT; f*) — Hom(]:'T,'yzi@Lf ®eV8TIP’3) is a C%negligible map. Thus,
1
P(L;® L’{)\U%)Tl (1) =27 is Dj j-hollow unless It =1. Since x7(1,1)>0 and d; =0, if I* =T and

U, (1) # 0, either 7 =T(1) for some [ € [N] or [I*|=|x;(7)|=2 and M;T =0. In the second
case, the matrix corresponding to the monomials map p is

(0 1)

Z CIP’(LIEBL* WUy () -2
le[N]

Thus, p is neutral, and
2 (Pii) =0. (5.6)

In the first case, the degree of p is —1. Thus, by Proposition 2.18B, a rescaling of the linear map,
and the decomposition (3.4), we obtain

) 2. CP(Li@L@W%)(z)\Tl (w-zr (P1i) = —N(a), where
HH]=Ixz(T)|=1

aq El“(]P’1 fo}f(,u);Hom(’y*@L’{,’y*@eng]P’g’)), a1|u7(—1/l D(Ti)/l -

Thus, by Lemma 5.5,

Z C (L@

0 ez (P1) = ~(dag = LDV 00) + 2081 ()] = Vi)l 67)
l€[N] LR

)

The space Vé;ll’l)(u) is the disjoint union of sets
U (1) = {belr(p): evi(b)=evy(b)},

taken over all bubble types 7 = (My— {1}, I1(1); j,d), where I,(1) = {0 =1} U I, Ji = 1, Js = 2,
di,ds >0, and dj+d; =d. The image of every element of Vé;ll’l)(,u) has two components arranged in
a circle, as in the fifth picture of Figure 1, with one of the two nodes lying on one of the constraints

H1yee s UN-
(3) We next consider the contribution from the space ]P’Li\l/lé.l‘)?-1 (). We model a neighborhood of

PLj in P(L1& L7) by the map
L} ® LE — P(Ljo L), ([vy,vil,w) — [vg,u(vy)].

In this case, with notation as in (2) above, f:in (T)ux;i(7),

(u@p; 3 (V) D 7)), if hexg, (T)—xi(T);
(pn(u,v),a(@n)) = § (WepF]) V), = (U1 —71,) 2@DF, o), if hex;(T);
(o Ph( ), DY) on), if hex; (7).
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As before « has full rank on PL; \L{é}')ﬁ (). Thus, ]P’Lﬂl/lé.l‘)?-1 (1) is Dj j-hollow unless either 7 =T;(l)

for some [ € [N] or |[I1]|=]|x;(7)|=2 and M;T =0. In both cases, the degree of p is one. In the
second case, « is an isomorphism on every fiber, and thus

1
Z CJPL |u )(Di,i) = ‘Vé )(M)|- (5.8)
[T+ |=|x1 (T)|=2

In the first case, via the decomposition (3.4), we obtain
Y ¢ /(Dij) = N(an),  where
PL; 11
le[N] ‘ T‘T (l)(u
T (V{Y (1); Hom(L; ® LY, ev: TP UM 1 vp) =DV P v
Q1€ ( 1.1 (p); Hom(Li © LT, ev ))7 {0‘1| 73;1(/‘)}(“1701) T, iV + T
Thus, by Lemma 5.6,

D Coraurn o (Pra) = (ag Vi (1)) = 5[ ()] + Vi (). (5.9)
lE[N]

(4) Finally, it is easy to see that the set PL* |U(TI|T is Dj j-hollow. Indeed, in this case, the target

bundle F7T has the same rank as the target in case (2), but the domain of p is Li@L;®F T, instead
of FT. Thus, the claim follows from equations (5.6)-(5.9).

Lemma 5.5 If a; €T (P! x 1_2511) (1); Hom(y*® L3, ’y*®ev3T]P’3)) is given by aq !L{(TR (1) —pW

) 7—1;171’
N(ar) = (dag—er (L2), VI (1)) — 2|11 ()| + [V54 ().
Proof: (1) By Propositions 2.18A and 2.18B,
N(ar) = (4ag—e1 (L), Vid (1)) = Cpu, gpn (), (5.10)

where 041L denotes the composition of a;; with the projection map onto the quotient O of v* ®ev3T P3
by generic trivial line subbundle Czy. Suppose 7 <7y, is a bubble type such that

l_}fll)( ) N uTl;lyT #0.

)

(2) If x7(1,1) > 0, by Lemma 4.1, 1_2511) (w) NUz, 1 C MT(}\)TN(M)’ and thus IT = {h} is a single-
element set. Furthermore, d; #0, since our constraints p are disjoint. Thus, if j; = 1, o extends
over P! Xu7('1|)7'1<z(“)’ and this extension does not vanish by Lemma 3.4. Tt follows that P! XU, T

does not contribute to C 5 af). If j3 =h and dj =0, by Proposition 3.5, o again has a

P1xav!) ()
nonvanishing extension over P! Xu7('1|)7'1<z(“)' Thus, we only need to consider the case j; = h and

di,dp>0. By Proposition 3.5,

a1 (qbq—l;l,q—(v)) = {D(Tl’)i+€(v)}v* VYoeFTs—Y (FT;{h}).
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Since Dg)i does not vanish on Z/{?(}')ﬂl(u), from Proposition 2.18B, we conclude that

Z Cplqul;bT(all) = —N(ag) - |V§.11’1)(,u) ; where as€I'(P'; Hom(C, C?/v))

X’T(ivi)>0

is a nonvanishing section. Thus, by Proposition 2.18A,

> ot (o) = =5 (). (5.11)
x7(1,1)>0

(3) If x7(1,1) =0, by Lemma 4.2, V(l)( ) U, 7 CSti7;,(1). Thus, It ={h} is again a single-
element set. Adding the expansion of evi xev; of Lemma 4.2 times (y; —zp,) ™" to the expansion of

D(Tl)l ; of (3c) of Proposition 3.5, we obtain
;0

a1 (o7, 7(v) = —(yi—2n)~ ’® {D h—l—z—: v)}v@v YoeFT; st ¢r, (v )EVfll)
Thus, as in the second half of (2) of the proof of Lemma 4.8, we can conclude that
Z Cp1xu7(l)j(a1l) = 2N () - [S1a(w)|, where aQEF(Pl;Hom(C,C3/'y))
XT(i,i)ZO
is a nonvanishing section. Thus, by Proposition 2.18A,
> CPlqul;l,T(all) = 2[S11 (). (5.12)

The claim follows from equations (5.10)-(5.12).

Lemma 5.6 If g EF(TJ&) (1); Hom(Li & L3, ev*TIP’S)) is given by

3

oy D (1)
a1|u§}13l(u)('vl?v1)_p7—l; D'Z—l i
for all L€ [N],
N(on) = (dag, Vi3 (1)) = 5[S1a ()| + V5" ()]

Proof: (1) Let F=Li®L;. By Propositions 2.18A and 2.18B,

N(an) = (dag, Vi (1)) = C

1
priovln (1) (5.13)

where o?lL denotes the composition of the section &y EF(]P’]: ; Hom(vyr, WI’ED];eVET]P’3)), induced by «,

with the projection map onto the quotient Oy of WI’E,]_-eVST]P’g’ by generic trivial line subbundle Co;.
Suppose T <7y, is a bubble type such that

l_}fll)( )N uTl;lyT #0.

)
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(2) If x7(1,1) >0, then 1_2511)( )NUT, T CUT(-‘)T (1), It ={h} is a single-clement set, and dj #0.
As before, we only need to consider the case j; —h and di,dp>0. By Proposition 3.5,

a1 (61,7 [y, v1),v) = {01 @D +e() " Ve FT;—Y (FT; {R}),
where ¢ is a C%-negligible map. Since the linear map U1®D(71)1 does not vanish outside of the set
Z7 =PLj, by Proposition 3.5 and a rescaling of the linear mai),

J_ (1 1) 1. * ok 2
Z C]P,ﬂ - (al ‘ ()|, where ay €T (P'; Hom(y*,7*®C?))
X’T(l 1 >0
is a nonvanishing section. Thus, by Proposition 2.18A,
~ 1N (1,1)
Z C]P’]—‘| P, )= (0‘1 ) = _‘V2;1 ()]
x7(1,1)>0
On the other hand, we can model a neighborhood of Z7 in PF by the map
L ® L — PF, ([v1,v3],u) — [vg,u(vy)].
Since by Proposition 3.5

aq (¢7—1;177—([U1’Ui]’ ) {D —1-51 )}u@v* + DTi—I—El(U) VoeFTs—Y (FT;{h}),
it follows that Zﬂuj(-l‘)ﬂl(u) is & -hollow. Thus,

1 1)
Z C]}D]:IMT”T Oél = ‘ ( | (514)
XT(i,i)>0

(3) If x7(1,1)=0, ]791) (1) NUr, 17 CS1i77, (1) and It ={h} is a single-element set. Subtracting
the expansion of evi xev; of Lemma 4.2 times

(yj —n) and times (y;—xp) "

from the expansions of Dé,) - and Dé,) . in Proposition 3.5, we obtain
1; l7 1; l7

a1 (¢m, 7 ([, v1),0)) = (g —28) " @ (1;@DF), +e1(v)) v
—(yi—an) @ (vg ®D§?7)h +e5(v))v®?

for all ve FT;s such that ¢, 7(v) EV&). Let

Zr = {[vy, v1] €PF: v1+(y; —ap) Pvg=0€L; }.

Similarly to the argument in (2) of proof of Lemma 5.4, from the above we can conclude that

Z CPﬂST\Tl;l(M)—Z (aq )— 2N (az) ‘Sl 1(
XT(i,i)ZO

, Wwhere as€ F(]P’l; Hom(v*,v* ®(C2))
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is a nonvanishing section. Thus, by Lemma 2.18A,

Z CP}—\ST\TM(M)—ZT (df—) = 2|51;1(:U)‘-
XT(Li):O

On the other hand, the same argument as in (3) of the proof of Lemma 5.4 shows that
Czﬂsﬂm(u)(dﬁ =3|Z7|.

Thus, we conclude that

Y Cerr, (1) = 5[S1a(w)]. (5.15)
XT(i,i):O

The claim follows from equations (5.13)-(5.15).

Lemma 5.7 Suppose T=(My,1I;j,d) is a bubble type such that T <Ty, x7(1,1)>0, and d; >0.

(1) If j; =1, It #1, or dj. =0, P(Ll@L*)| IT is a finite union of Dj j-hollow subspaces and
thus

Cr(ryort)usn - (P1,1) =0

)

(2) The total contribution from the boundary spaces Ur, 7 such that j; > 1, \f+| =1, and d;; >0, is
given by

> Cotpgorsun - (P11) = —(4ag + e (£5), V5 () + V5V ()] + 218 (u)].
di>0

Proof: (1) We proceed as in (1) of the proof of Lemma 5.4. In particular, we have
Di 1077 (v, viliv) = {a+e(v)}pv) VoeFTs—Y(FT;IT).
In this equation, p is the monomials map on F7 defined by

(D (v), if hex;, (T)—x;(T);

_ ) Prid
M A @), it hex(m)

T,1:h
with values in the bundle

FU T, it hex (T)—x;(T);

@ J%hT, where J%hT = ~%—:|-7;1]j)1 ‘
hex;; (T) fT,i;hT’ if hex;(T).

The linear map a: FT — VoL ®eVSTIP>3 is given by
1

Dg},)ji‘('f){}h’ if hex;; (T)—xi(T);

(1)

a([vg, vil, o) = v ® .
—(yh;i—mi;h)_z ® DT wOn, if hexi (7).

In particular, by Lemma 3.4, « has full rank over u7('l\)7'1 (p) outside of the set Z7 =PL;. Thus,
P(Ly® L7)| T‘T( p) — Z7 is Dj j-hollow unless It ={h} is a one-element set, Ji = h, and dj, #0.
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If [t = {h}, j; =h, and dj, #0, the degree of the map p is —1, and from Proposition 2.18B and a
rescaling of the linear map,

CP(L@L*)\u%)Tl( —

of €T (PF; Hom(y5® Lj, vr@eviTP),  F=Li@Li—Us)y (1), of _D(”

Dij) = —N(a}), where

Thus, using Lemma 5.8, another rescaling of the linear map, and an obvious symmetry, we obtain

ZC (L@ LDIUY 7, ()~ Z (Di,i)=—<4ao+61(£)v(“) )+ V()] +2|Sa ()] (5.16)

Finally, it is easy to see that the set ZT| T|T (u) is Dj 3-hollow for all bubble types 7.

Lemma 5.8 Suppose T = (My, I5;j,d) is a bubble type such that 51 =1, Js = 2, d},dé >0, and
d;+ds=d, and F—Usz 7 is a rank-two vector bundle such that cl(]:)\l/_{;})(u =0. If

a1 €l (]P’.7-"|U7(~,1) (); Hom(y* @ Ly; v* @eviTP?))
is given by aq(vi) :Dé})ivi,

N (@) = (dag + s (£5). U (1)) = UL ()] = [thz 1.3

In other words, the sum of the numbers N (1) taken over all bubble types T over the above form
s given by

ZN(al <4a0—|—cl(£ (1)) — ‘ )‘ —2|Sg(p)‘.
T

Proof: By Proposition 2.18A and the assumption ¢; (F) |Z/_{7(~,1)(u) =0,

N(ar) = (4ag + 1 (L), U () — €

orau (m( or), (5.17)

where 041L denotes the composition of a;; with the projection map onto the quotient O of v* ®ev3T P3
by generic trivial line subbundle C;. Suppose 7 = (Mo, I; j, d) is a bubble type such that 7 < T and
Z/_lé,l) (w)NUz 7 #0. The section a; extends over ]P’]-"|8L_{7(~,1) (). Furthermore, by Lemmas 4.3 and 3.4,

this extension does not vanish unless d; =0. Thus, in computing the number C all), we

Pﬂaﬂ(;)(m(
only need to consider bubble types 7 such that d; =0.

1 - . -
(2) I dy # 0, U () N Uz 7 C u(ﬂg( ) and T = 7(1) or T = 7(1) for some I € [N] N M;T.
Furthermore, by Proposition 3.5,

a1 (¢z7(v) = {D7h+5( Jjv  YueFTs,

if A is the unique element of It. Thus, by the same argument as in (1) of the proof of Lemma 5.4,
we conclude that

CIP’]—‘\U(I) (o )(af) = N(ag), where a2 EF(]P’le_lg)f(u);Hom((C,C/fy))

T\T |
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is a nonvanishing section. Thus, from Proposition 2.18A and the decomposition (3.4), we obtain

> Corpy b)) = U ]+ 32 U (. (5.18)

d3>0 le[NINM;T

(2) If d5=0, ag)(u) NUz 7+ CSr7(1), ji=1, j5=2, dj=d5=0, and |I*t]=2. Furthermore,

a1 (o7 7 (v) = {P}) e on Vo= (vpy, vny) €FTs,
if It ={hy,ho} and hy =jj. By an argument similar to (4) of Lemma 4.8, we conclude that
C]ID}“STW_(M)(O{%) = N(ag), where a9 EF(]P’l XST|7'(M); Hom(C, (C/fy))
is a nonvanishing section. Thus, from Proposition 2.18A and the decomposition (3.4), we obtain

Ceriu; , =[Sz 1. (1) (5.19)

The claim follows by plugging equations (5.18) and (5.19) into (5.17) and using (3.2) and (3.3).

Remark: By the second rescaling of the linear map referred to in the proof of Lemma 5.7, the
number ) 5 N(aq) of Lemma 5.7 should not change if we replace Dg)i by Dg)i‘ However, a direct

computation gives a slightly different answer. As a result, we obtain yet another enumerative
relationship:

<770 1=V2 (1) = ‘ 2(1(811 ‘

Corollary 5.9 The total contribution from the boundary strata Uz, 7 such that XT(L i) >0 to the
number Cap(Li@Lg(Di i) is given by

. 1
> Cotrgorgum o (Pri) =(er (L) Vi () — (dag + 2", V5 ()
X'T(ivi)zl

+ 2V ()] +2/Sa(w)]| - 3|81 (w)].

Proof: This Corollary follows immediately from Lemmas 5.4 and 5.7.

6 Level 1 Numbers

6.1 Evaluation of Cohomology Classes on the Spaces ]_21(1)(,u)
(1)

In this subsection, we evaluate various tautological classes on the space 1_/1 (1) and compute the
other Level 1 numbers of Lemma 1.8. We again use the computational method of Section 2, but
first we represent each cohomology class by a vector-bundle section s on neighborhood of Uz (1)
in Uz;. We choose this section s so that it is smooth and transversal to the zero set on all the
strata of Uz, (11), as well as on a finite number of natural submanifolds of the strata. We will impose
additional restrictions on each given section to simplify our computations.
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Lemma 6.1 With assumptions as in (2) of Lemma 1.8,

(ag, V1" () = ((2d—6)a} ~4any  —agn? ;. Vi) + (a3, Va(ut H') + (ag, Va(n))
Proof: (1) In this case, we choose a generic hyperplane H? in P3, instead of a section of evg(’)(lpg).
Let ji be the M =[N] L {0}-tuple of constraints in P given by

fu=m VIE[N];  fg=H
By Proposition 3.5, Uz, (fi) is a pseudovariety in L{T , and thus
evixevy: Uz (i) — P3 x P?
is a 6-pseudocycle and determines the homology-intersection number

(ag, VP (1)) = (WP () = (fevi xevi} ™ (Apsps), U (7))
= Z <<{ev1xevi}_l(HTst),aﬁ(ﬂ)>>, (6.1)

r+s=3
—2d<a V1 (u )>—|—<a§,f/1(/ﬁ+H1)>.

By the same argument as in Subsection 4.1,
<a0,V1 ) = |V1 )| = <<a0,V(1)( ) — CauT( )(evl xevy, Apsyps), (6.2)

where CauT () (evixevy, Apsyps) is the contribution of Uz, (i) to <<V(l)( ))) to be computed as in
Subsection 4.4.

(2) If T=(M,, I; j,d) < T, is a bubble type such that x7(1,1)>0, the map evixevj is transversal to
Apsyps on Ur g, (1) by Lemma 3.4. Thus, the image of Uz 7, (1) is disjoint from Aps,ps, and Uz,
does not contribute to Cang (i) (evixevi, APBXPB). Thus, from now on, we assume that XT(L i) =0.
Note that Uz, (1) =0 unless [x7(7)|€{1,2}.

(3) With appropriate identifications, Uz, (ft) is the zero set of the section ev. y; of the bundle
evy MNATl (f1) over an open neighborhood of Uz 7, (1) in Uz, 7. By Lemma 3.4, this section is

transversal to the zero set. By Proposition 3.5, there exists a C''-negligible map
E_:fT(g—Y(fT I+)—>ev NAq'l( )

such that
Vg N1 (¢7,7(b;v)) = evy yr(b) +e—(b;v)

for all (b;v)€ FTs—Y (FT;IT). On the other hand, by Lemma 4.2,

{evixevitonr(0)= Y (spi—wis) " @{DE)+en(0)bon(v), where pr(v)= []vs
hexi(7) i€ (i1 (h,2),h]

for all ve FTs. Since the linear map,

F = @ LhT, v — Z DThUh,
hexi(T) hexi(T)
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is injective over Uz |7 (fi) by Lemma 3.4, it follows that U7z is (evi X evy, AP{SXPB)—hOHOW unless
xi(T) =]t If xi(T) —=I*, by Proposition 2.18B, decomposition (3.4), and a rescaling of the linear
map,

Cu

T\ﬁ(

a1 € T (M iy (ryuns 7 XUz (A); w3 Hom(F,eviTP?)),  an(v) = ) D(Tlv)hvh
hex;(T)

evi xevi; Apsyps) = N(oq), where

Since the linear map «; comes entirely from the second factor, N(a1)=0 unless |xj(7) [+ M;T|=2
(4) Thus, we only need to consider the case |xj(7)| =1 and M;7 = {1} and to compute the
number N (aq), where

a1 =D € T (Uz, (j2); Hom(Ly, evyTP?)).
Since a; does not vanish on Uz, (i) by Lemma 3.4, by Propositions 2.18A and 2.18B,

N(a1) = (6a3+4dager (L) +cF(L]), Uz, (1)) — Cortz, (1) (a1), (6.3)

where Ozll denotes the composition of a1 with the projection WDLI onto the quotient O of eng P3
by a generic trivial line subbundle Cry.

(5) If T=(Mo,I;j,d)<Tp is a bubble type such that d; >0, the section aj- does not vanish over
Ut 1, (ji) by Lemma 3.4, if 7y is generic. Thus, Uz, does not contribute to CaMT (@ )( 1). If dj =0,
by (3b) of Proposition 3.5,

1;1) 11
T 1¢757 Z {DT h+5(71h )}p’(Z',i;)h(U)’ where pT,l,h H Vi
hex; (T) ie(1,h]

for all v € FT sufficiently small. Thus, as before, we conclude that Z/{Tm(,&) is af—hollow unless
It =x;(T). It It =x;(T), either T ="Ty(l) for some I € [N] or |IT|=|x;(T)|=2 and |[M;7T|=0
Thus, by Proposition 2.18B and decomposition (3.4),

CMT\TO (o) = N(az), where g € F(Uj—(ﬂ); Hom(F, (’)1)),

B L O =eiTF/Cr, axv)=m5; Y Do
hexi(T) hexi(T)

In either case, ao does not vanish L_IT(/]). Thus, by Propositions 2.18A and 2.18B,

CBMT Z <4a0+01 Z/{’To/l > + ‘VQ | (6.4)
IE[N]

The lemma follows by combining equations (6.1)-(6.4) and using (3.2) and (3.3).

Lemma 6.2 With assumptions as in (3) of Lemma 1.8,
_ _ _ _
(a(%, Vf )(,u)> = 2<ag, Vi(p+H")) — <4ag776’1+a%77§71,1)1(u)> + <a§,V2(,u)>.

Proof: The proof is nearly identical to that of Lemma 6.2.
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Lemma 6.3 With assumptions as in (3) of Lemma 1.8,

<a0770 17V£) > <a0770 17V1(H+H0)> < 3770,17]71(#+H1)>+d<ag770,17]}1(/‘»
— <4a§+a@n@’1, 1_}2(”»

Proof: (1) Let M =M1 {0} and let i be the M-tuple of constraints given by fi; = for all I € [N]
and fig=H". 2. If s is a section of the bundle L7 over a neighborhood of Uz, (1) in Uz, such that s is
transversal to the zero set on all smooth strata of Uz, (1), the map

evixevi: s 1(0) NUg (1) — PP x P

is a 6-pseudocycle. In particular, we have a well-defined homology intersection number,

{ager(£2), V) () = (s~ 0) n VD () = ({evi xevi} ™ (Apssps), s~1(0) Nz (7))

_ _ _ 6.5
— (ager (L), Vi (ut+H)) + (aBer (L), Vi (u+HY)) + d{ader (£3), Vi(1)- (65)

As before,

(ager(£2), V) () = *[s( v“ )

(6.6)
—<<a001 (£7) V1 ,u>> CauT (eleeVI,Apdxpd)

where Car,. () (evixevi, Apsyps) is the contribution of s~1(0) N Uz (i) to (s~(0) N Vfl)(/l)».
(2) If T=(My,I;5,d)<T; is a bubble type such that x7(1,1) >0, the map ev; xevj is transversal
to Aps,ps on Urz; (i) by Lemma 3.4. Thus, if s is chosen to be transversal to the zero set on the
set {evjx evi}_l(AP3Xp3) NUr T, (1),

8_1(0) N {eVi xevi}_l(Ap3ng) N U7—|7—1 () =10,

and U7z, does not contribute to Cay_. (7 )(eleevl, A]de]pd) If XT(L i) =0, it can be assumed that

s is transversal to the zero set on the submanifold Sz, (1), i.e. that s71(0) N Sz7, (1) =0. Then,
as in the proofs of Lemma 6.1 and 6.2 we can conclude that s~1(0) NU77; (1) 18 (evixevy, Apsyps)-
hollow unless x5 (7)=1%.

(3) We can also assume that section ¢ 7 is constant along the fibers of the bundle FT over an
open subset K7 of Uz, that contains all of the finitely many zeros of the map affine map

F = @ L, — evST]P’?’, (b,v) Z DT WU
hexi(T) hexi(T)

over s~1(0) N Uz (1) for a generic section v €T (Uz 7 (1); ev(i;TIP’?’). Then, as before,

Cuzrz, (evi xevy; Aps le>3) = N(a1), where

a € F(S_I(O) N (ﬁi,xi(T),MiTqu(ﬂ))?Hom(}—v eVSTIP’g’)), aq (v Z DT 4 Uh-
hexl(T)

(4) 1t cl(ﬁ%‘)vj_{g—m(u) =0, we can choose s so that s7(0) N Uz7 (1) = 0. Thus, we only need

to compute contributions N (1) from the strata Uz (1) to which ¢ (L£3) restricts non-trivially.
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By dimension-counting, |xi(7)| € {1,2} if Uy (n) # 0. If [x;(7)| = 1, either M;7 = {i} or
M;T ={1,1} for some [ € [N]. In either case, c1(L3) restricts trivially to Uz, (1). On the other
hand, if |x;(7)| =2 and M;7 = {1,1} for some I € [N], N(a;) =0, because the second factor in
the decomposition (3.4) is a finite set of points, while the map «; comes entirely from the second
factor. In the remaining case, i.e. |x;(7)|=2 and M;T ={1}, ¢1 (£3) is the pullback of the poincare
dual of a point by the projection map 7;. Thus, in this case,

CMT\T (eVi Xevy; A]P’3><]P’3) = N(a1), where
oy € T'(Uz(f1); Hom(F, eV*T]P’3)), ai(v Z D
hexi(T)

Since a; has full rank on all of Uz 7, (f1), by Propositions 2.18A and 2.18B,

N(a1) = (dag+ (c1(Lh,) +er(Ly,)) Uz (1)) = Copiariy iy (@1), (6.7)

where G;- denotes the composition of the linear map & € I'(PF; Hom('yy:,ﬂﬁifeng P3)) with the
projection onto the quotient of w]}kpfev(i;TPg by a generic trivial line subbundle Coq. If

T'=(Mo,I':5',d) < T
is a bubble type such that & vanishes somewhere on PF Uz 7 (i), 7" =7 (l) for some [ € [N] and
a; 1 (0) NPF|Uz 7 (i) = { (b, [Uny vn,)): bEUT (), vj =0},
as can be seen from Lemma 3.4. From Proposition 3.5, we then conclude that
CoFig (i) (@1) = Uz ()]
Thus, summing equation (6.7) over all bubble type 7 and using (3.2) and (3.3), we obtain
Cang(ﬂ) (evixevi,Aprg) = <4a0+(cl(£ )—I—cl(ﬁ )) Vo(ii )> (6.8)
The claim follows from equations (6.5), (6.6), and (6.8).

Lemma 6.4 With assumptions as in (3) of Lemma 1.8,

<7701,V1) )) = (151> Vi (ut-HO))+{agng | Vi(pHHY) )+ (dagng y +d - agig | Vi) — Vs

Proof: (1) We proceed as in the proof of Lemma 6.3. Let s be a section of L& L] with good
properties. Then, we have a well-defined homology intersection number

(ALY (W) =Us7 0) NV () = ({evi xevi} ™ (Apsups), s7H(0) N U (1))

= Z A (£7) ao UL (1)
q+r=3 (6.9)
=(c1(L3), Vi(p+{H"})) + (aget (£5), Vi(ut+{H'}))
+d- <a cl(ﬁ*) Vi(p)) + 4 g L£3), M (u+{H"})).
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A little care is required to obtain the last equality above. For example, note that
(A(LD)ad, U, () = (L), Vi (p+{H})) + (ager (£5), Vi(p+{H"})),

with our definitions; see (3.2). As before,

(AL, VD (1)) = *|s710) n VY ()]

2 D) (6.10)
= <<Cl (ﬁi), Vl (/L)>> — Caz/'{Tl (1) (eVi Xevy, AP3XP3),

where Cang () (evi xevi, Apsyps) is the contribution of s~1(0) N Uz (k) to (s~(0) N VF)(M)}}.

(2) If T=(Mi,I;j,d)<7T; is a bubble type such that x7(1,1)>0, as in the proof of Lemma 6.3,
the space Uz |7; does not contribute to Cang (1) (evi Xevy, AP{SXPB). If x7(1,1)=0, but It #xi(7T),
Urn (1) is (evi Xevy, APSXPS)-hOHOW and again does not contribute to Cyy (1) (evi Xevy, APSXPS).

If I+ =xi(7), by dimension-counting
Ixi(T)|€{1,2}, M;T = {1} or MiT = {1,1} for somel€[N], OR |x;(7)|=3, M;T = {1}.

In all cases, but the last, c%(ﬁ’{) restricts trivially to Uzz, (1). If [x;(7)|=3 and M;T = {1}, under
the decomposition (3.4), C%(ﬁ’{) is the pullback of the poincare dual of a point by the projection
map onto the second factor. Thus, similarly to the proof of Lemma 6.3,

Ctr iz, (evixevi; Apsyps) = N(ov), where
oy € T'(Uz(p); Hom(F, ev(i;T]P’g’ , F= @ L, ai(v Z D
hexi(T) hexi(T)

Since ap is an isomorphism on every fiber of F over the finite set Uz yr 7 (1), N(on) = ‘L[T(,u)‘.
Thus, over all bubble types 7 as above, we obtain

Cotir, (u) (evi X evi, Apsyps) = [V3(u)]. (6.11)
The claim follows from equations (6.9), (6.10), and (6.11).

6.2 Other Level 1 Numbers

In this subsection, we compute the Level 1 numbers of Lemmas 1.4 and 1.6 and thus conclude the
computation of the enumerative numbers of Theorems 1.2 and 1.3.

Lemma 6.5 With assumptions as itn Lemma 1.4,
VD ()] = [Va(put HO)| + (ag, V(- H')) + 3|Va ()| — (12— d)ad-+dagng , +2n5 572 1, Vo).

Proof: (1) By definition and the usual argument,
VY 0 = 3 (v xevit ™ (Aes ) Ur () — Corgy o (v xevis Ame) ) (6.12)
T

= |Va(u+HO)| + (a5, Va(u+H")) + d{aZ, Va(u anu (o (evi xevy; Apsyps),
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where the union is taken over all bubble types T= (M, Ig;j,d) such that ji =1, d}, czi > 0, and
di+d5=0. Let T = (M, I;j,d) be a bubble type such that 7 <7 and Uri7(n) #0. I x7(1,1)>0,
as in the proof of Lemma 6.1, Uz , does not contribute to Cﬁb_{f(u) (evi X evi; APBXPB). Thus, we

assume, x7(1,1)=0.
(2) By Lemma 4.2,

{evixevitor () = > (Upi—i,)  @{DE), +en(v)}on(v), where pu(v)=[]vs,
hexi(T) i€(iz (h,1),h]

for all ve FTs. Since the linear map,

F = @ LT, v —> Z DThUh,
hexi(T) hexi(T)

is injective over UTW—([L) by Lemma 3.4, it follows that uT\i'l is (evi Xevy, A]IDP:XPS)-hOHOW unless
xi(T)=1I%. If x;(T)=1I* by dimension-counting,

IXi(T)|=|I"|=1 and M;T={i} or M;T={i,l} for some [ €[N]
OR  |xi(T)|=|I*|=2 and M;T={i}.

Furthermore, by Proposition 2.18B, a rescaling of the linear map, and the decomposition (3.4),

CMT\T(V’) (evixevy; Apsyps) = N(a1), where
a1 € T (M 330 (e () XUz (1); Hom (F, eviTP?)), F= P Ln, oa(v)= > DTh
hexi(T) hexi(T)

Since o comes entirely from the second component, N(«1)=0 unless the first component is zero-
dimensional, i.e. unless xj(7)={h} is a single-element set and M;7 ={1}. Thus, we assume that
this is the case.

(3) By Propositions 2.18A and 2.18B,

N(an) = (6a¢ +4ager (Ly) +c3 (L), Uz (1)) = Cory ()
Suppose T’ = (Mg, I';j',d) is a bubble type such that 7/ <7 and HT,|7—(,u) # (). Then, HT,|7—(,u)
does not contribute to Caz;,, (“)(all) unless dj =0. If d}, =0, by Proposition 3.5,

C¥1¢T ’T’ Z {DT/ h/“‘gh’ )}ph/(’l}), where Ph' H Vj,
W exn(T") e

for all ve FT%. Thus, L_{T/ﬁ(,u) is af-hollow unless x;(7)=1"". In such a case, either 7/ =T (1)
for some 1€ M, T or |xp(T")|=|I""|=2 and M, T'=(). In either case,

Cumf(u) (Otll) = N(a), where a9 € P(L_{T, (N)JHOm(}—T/,eVST]P’?’/CDl))

is a nonvanishing section. Thus, using Proposition 2.18A along with identities (3.2) and (3.2), we
conclude that

N(ax) = (6aj +dager (Cp)+F(LR) Uz () = D Uriz(p)]- (6.13)
Ixn(T")|=2
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Summing equation (6.13) over all bubble types T, we obtain

ZCE’ZZ:;(M) (evixevy; Apsyps) = <12a§+4a@77671+277672—77(~2)71, Va(p)) — 3|V3(,u)‘. (6.14)
T

The claim follows (6.12) and (6.14).

Lemma 6.6 With assumptions as in Lemma 1.6,
(ag, V" (1)) = 2(ag, Va(pt+{H' : H?})) — (8a2+2ag115.,, Va(u)).
Proof: (1) Let M =ML {O} and let i be the M-tuple of constraints given by fi =y if I € My and

fig=H 2 where H? is a generic hyperplane in P3. By definition and the same argument as before,

(g VS0 () = 3 ((Levixeva} ™ (Apoes),

T
= 2(ay, Vo(u+{H* :H2})> - anai*(ﬁ) (evi xevy; Apsyps),
T

F(R)) — Coti (i) (evy xevy; A]}DSX]}DS)) (6.15)

where the union is taken over all bubble types T = (Mo, I; 7, cZ) such that ji =1, jg =2, cii, czi >0,
and d; +d; =0. Let T = (M, I;j,d) be a bubble type such that 7 <7 and L{Tﬁ(,u) #0. If dp #0
for some h eI such that h<j; or h<js as in the proof of Lemma 6.1, Llj—’T does not contribute to

Cal/_’i(ﬂ) (evi Xeva; APBXPB); see also Lemma 4.3. Thus, we assume that dj, =0 for all he ] such that
h<jj or h<js.
(2) By Lemma 4.3,

k[ k) | (k) (0sk)
{evixevs}oz 7 (v) Z Z Z Yni (V) =7, (V) {DT,hJFET,%;h(U)}pT,%;h(U)
i=1,2 k=1 hex;(T)
for all ve FT5—Y (FT;I"). Since the map
F= @ L, — eng]P’S, v — Z D%)hvh,
hexi (T)uxs(7) hexi(T)uxs(7)
is injective over UT\T(/‘)v it follows that UT\T(/‘) is (evj x evs, Aps,ps)-hollow unless
Xi(T)Uxs(T) =17,
In such a case, by Proposition 2.18B, a rescaling of the linear map, and the decomposition (3.4),

Cuﬂf(ﬁ) (evqxevs; Apsyps) = N(a1), where

. o ’ ) )
01 € (W iy (yonsy (1) X My oy XUz () Hom(F,evi TE), a(w) = >° D)oy
hexi(T)uxs(T)

Since a; comes entirely from the third component, N(c7)=0 unless the first two components are
zero-dimensional, i.e. unless |xj(7)|=|x3(7)|=1 and |M;(7T)|=|M5(T)|=1. It follows that

Z Cau eV1 X evs; APSXPS) =2N(ay), where
T

a1 € F(l_}g(/l);Hom(LiEBLQ,eVST]P’S)), 041|u~

2 (©) = P vr + Dl e,
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if 7= (Mo,fg;j,cz) bubble type such that czi,di >0 and dﬁdg = 0. Using Propositions 2.18A
and 2.18B, we conclude that

Z C(‘)ZJIT([L) (evi Xer; APSXPB) = <8a§+2a@7]@71, 1_)2(/1)> (6.16)
T

This number is in fact computed in the proof of Lemma 5.13 in [Z1]. The claim follows from
equations (6.15) and (6.16).

Lemma 6.7 With assumptions as in Lemma 1.6,
<77@,1,172(1’1)(M)>:<77@,1,V2(M+{HliH2})>+\V2(M+HO)\+2<%,V2(M+H1)>+2d<a§7]72(#)>—6|V3(M)\-

Proof: The proof is a mixture of the proof of Lemma 6.6 with the proof of Lemma 6.3.

7 Other Examples

7.1 Rational Triple-Pointed Curves in P?

In this subsection, we prove Proposition 7.1, i.e. the P? analogue of Theorem 1.2. The method is
the same as in Section 4, but the computation is significantly simpler, since there are many fewer
boundary strata to consider. Note that the formula of Proposition 7.1 agrees with Lemma 3.2
of [KQR] and Subsection 3.2 of [V].

Figure 14 outlines the computation of the boundary contribution to the homology-intersection
number <<Vf2) (1)). It shows all non-hollow boundary strata and the multiplicity with which the

number N(«) of zeros of an affine map over a closure of each stratum enters into <<Vf2) (n)). In
three of the cases, the number N(«) is easily seen to be zero. Lemma 7.2 computes the num-
ber N(«) in the remaining two cases.

If d is a positive integer, let ng denote the number of degree-d rational curves that pass through
3d—1 points in general position in P2. Following [V], we put

— ng 1 3d—2 —
Ag =ng = (a2, Vi(1)), Ba=——+o, Z <3d _1> didana,na, = (agng 1, V1(1)),
di+da=d """t
1 3d—2 ) -
—Cyg=A0Ag= 5 ) J%: d<3dl_1>d1d2nd1nd2 = Wa(p)| = —<77@717V1(H)>7
1 2=

where /1 is a tuple of 3d—2 points in P2. The computation of the above intersection numbers, with
essentially the same notation as in this paper, can be found in Subsection 5.7 of [Z1].

Proposition 7.1 Ifd is a positive integer, the number of rational one-component degree-d curves
that have a triple point and pass through a tuple p of 3d—2 points in general position in P? is
2
EVIP ()], where
VP ()| = 3(d®—6d+10)Ag — 3(d—6) By + 6C4.
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Figure 14: An Outline of the Proof of Proposition 7.1

Proof: We use the same notation as in Section 4, except now all the stable maps under consideration
have values in P2, instead of P2. Similarly to Subsection 4.1, we have

V()] = (V2 (1)) = Catagy (o (V1 x €55 Apacp2)

(1) (1) (7.1)
= 2nd + d<a6, Vl (,u)> — CagTz (1) (evi X €vy; A]pzx]pz),

where nl(il) denotes the number of degree-d rational curves that pass 3d—1 points in general position

in P? counted with a choice of a node, i.e.
d—1
nl(il) = < 5 >nd. (7.2)

The number <a0,]7§1)(,u)> is computed in Lemma 7.5. In order to compute the boundary con-
tribution 6817172 (1) (evi X evs; APQXPQ), by Lemma 4.4 it is sufficient to consider only bubble types

T = (My, I;j,d) such that 7 < 75 and either x7(1,2) =0 or x7(1,2) = 0. Thus, the number
681172 () (evy x evy; Apzypz) is computed by Lemmas 7.2 and 7.4. Finally, the numbers (1.1 ]79) (1))
and |S1(u)| are given by Lemmas 7.5 and 7.6.

Lemma 7.2 The total contribution to the number 6817172 (1) (evi X €Vs; AP2X]P>2) from the boundary
strata Ug, 7, where T = (Ma,I;j,d) is a bubble type such that T < Ty and either x7(1,2)=0 or
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x7(1,2)=0, but not both, is given by

Z Cur, 1 (evixevs; Apaype) = (6ag+21g 4, vfl)(,u» — 4|81 (w)]-
XT(172)+XT(172)>0

Proof: (1) By symmetry, it is sufficient to consider the case x7(1,2)=0 and x7(1,2)>0 and then

double the answer. By Lemma 4.1, L_{%)(,u) NUTL T CZ/{T(}')T2 (1). By Lemma 4.2,

{evi xevs }on, 7(1) Z (yh;g—!Eh;g)_1{99,)h+€h(v)}0h(v)7 where  pp(v) = H vj,
hEXi(T) ie(iT(hj)’h]

for all ve FT 5. —Y (FT;1T) and some C°-negligible maps
en: FTs—Y (FT;1") — Hom(Ly,ev TP?).

Since the linear map
a: F= @ Ly, —>ev3T]P’2
hEXi(T)

is injective over 1/17(.1‘)7-2 (1) by Lemma 3.4, if It #xi(T), Uq(-l‘)TQ (p) is (evyxevs, Apzyp2)-hollow, and
CUTQ,T (evi X €Vy; Apzxpz) =0

by Proposition 2.18B, or Lemma 2.20, and Lemma 4.1.

(2) On the other hand, if [T =x;(7), by the above and Lemma 4.5, Uq(-l‘)TQ () is (evixevy, Apz,p2)-

regular, and by Proposition 2.18B, a rescaling of the linear map, and the splitting (3.4),

CUTQ,T (evi XEVs; A]P’Qx]P’?) = N(w), where

aer(ﬁ{i}uxi(T)uMi(T) XU7(—.1) (/,L),HOH](.F, eVST]P)Q)), Oé('U) = Z D’g}?hvh’
hEXi(T)

Since the linear map « comes entirely from the second component N(«)=0 unless the first com-
ponent is zero-dimensional, i.e. |xj(7)|=1 and M;7 ={2}. Thus, we conclude that

Z Cur, 1 (evixevy; Apayp2) = 2N (), where oy =pU

€T (VY (w); Hom(Ly, evTP?)).
x7(1,2)+x7(1,2)>1

The number N(a1) is computed in Lemma 7.3.
1 (1 *
Lemma 7.3 If 04122)(71)71 EF(V]E )(,u); Hom(Li,eVOT]P’2)),
N(ar) = (3ag+er(£3), V) (1)) — 2|81 ()]

Proof: (1) Since o does not vanish on Vfl)(u) by Lemma 3.4, by Propositions 2.18A and 2.18B,

N(a1) = (3ay + 1 (L), VM (1) — Cop (1), (7.3)
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where af denotes the composition of oy with the projection WDLI onto the quotient Oy of evzf)T]P’2 by
a generic trivial line subbundle Cy. Suppose 7 = (M, I; j,d) is a bubble type such that 7 <7;.

(2) If x7(1,1) >0, Vfl)(u) NUTLT CZ/lq(-l‘)T1 (1) by Lemma 4.1. If in addition dj >0, a1 does not
vanish on U(Tl‘)ﬁ (p), and thus Uz, 7 does not contribute to Cav(l)(u) (ai). On the other hand, if
1
d; =0 and Uq(—l‘)Tl (1) #0, by dimension-counting via Lemma 3.4, x5(7)={h} is a single element-set
and 7 =7,(1) for some [ €[N]. By Proposition 3.5,
Vi (én7 ) = (DY, +e)}v,  WEFT5—Y(FT;{h}).

Since the section Dg})h does not vanish over u7('1|)7'1 (1) by Lemma 3.4, by Proposition 2.18B,

CUT T al |U7— ‘

Summing up for all bubble types 7 =7;(l), we conclude that

3" Cup,p(ad) = V1 ()] (7.4)

x7(1,1)>0

(3) It T < T and x7(1,1) = 0, VW(u) NUn 7 C Sryz; (1) by Lemma 4.2, If Sz, (1) # 0, by
dimension-counting via Lemma 3.4, x7(7)={h} is a single element-set and 7 =7;(1). Subtracting

(yl —mh) times the expansion of {evj xevj}o¢dr 7 in Lemma 4.2 from the expansion of D(T)i in
(3b) of Proposition 3.5, we obtain
1 1
DY o7, 7(v) = —(yi—an) @ {DP)+e(W) bv@v Ve FTs s.t. é7 7 (v) €U (1).
and for some C%-negligible map
e: FTs—Y(FT;1") — Li®°® ev TP

By Lemma 3.4, Dg?)h does not vanish on the finite set ST|71(M)- Thus, by Proposition 2.18B,

> Cur 7 (o) =2|S7 ()| = 2[S1(w)]- (7.5)

XT(ivi):O
The claim follows from (7.3)-(7.5) along with (3.2) and (3.3).
Lemma 7.4 If T=(My,I;j,d)<T; is a bubble type such that x7(1,2)=x7(1,2)=0,

Cur, 1 (evi X evs; APQXPQ) = 0.

Proof: Since x7(1,1)=0, by Lemma 4.2, a%)(u) NUn 1 CSTi3 (1) I S175, (1) # 0, X5(T) = {h}
is a single-element set. Subtracting the expansion of {evj xevj}opz, 7 of Lemma 4.2 times

(yh;i(v) —l‘i;h(U)) (yh;é(v) _:L‘Q;h(v))

from the corresponding expansion {evi xevs}opz, 7, we obtain
{evixevstoor 7(v) = {ate(v)}p(v) YveFT; s.t. ¢Z7T(U)EU%)(M),
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where p is a a monomials map on F7 with values in a line bundle F7 and a: F T—>eng P? is a
linear map. Explicitly, if hy =iz (h,1) and hy =iz (h,2),

(yh;é_xﬁ;h)_2® (yh;i _xi;h)_l ®(yh;ﬁ _yh;i)’ if hy = ho;

HUZ@ HU“ g')h® (yh;ﬁ_mﬁ;h)_27 if A1 <ho;

i€(h1,h]  i€(ha,h] (yh'é_xﬁ'h)_l(g(yh'i_xi-h)_l’ if hl >h2.

Thus, S7|7; (1) is (evi xevs, Apsyps)-hollow unless I+ =x7(7). On the other hand, if I+ =x5(7),
by Proposition 2.18B, the decomposition (3.4), and a rescaling of the linear map,

CUTQ,T (eVi XeVs; A]P’3><]P’3) =2N(a1), where
x 2 m * * *
ag :7T2D§_,) € F(m{i,h}uMiT x Sz (p); m3Hom(L3, evOT[P?’)).

Since |M;7|> 2, the first factor is positive-dimensional, while the linear map «; comes entirely
from the second factor. Thus,

CMTQJ— (eVi XeVﬁ; AP:SXP:S) = N(Oél) =0.

Lemma 7.5 If d is a positive integer and p is a tuple of 3d—2 points in general position in P2, the
number of rational one-component degree-d curves that pass through the constraints p and have a
node on a generic line is 3{ag, l_}fl)(,u)% where

(ag: Vi () = ((2d=3)ad —agg 1, V1 (1))-
Furthermore,
<770,17V£1)(M)> (ap+d- agig 1 Vi) = [Va(p)].

Proof: (1) In order to prove the first identity, we take /i to be the M = [N]U{0}-tuple of constraints
defined by ji; = p; and g5 = H 1 where H! is a generic hyperplane. Similarly to the proof of
Lemma 6.1,

<a07 V(l)( )> <<CL0, V(l)(ﬂ)» — C(%-{Tl () (evi Xevi, Apzxpz)

(7.6)
= 2d<a Vi) — CaZ;,Tl () (evixevy, Apzyp2),

where Corg, (s )(eleevl, Ap2,p2) is the contribution of dUz; (i) to <<V(l)( ). YT =(M,1;5,d)<Th

is a bubble type such that y7(I,1) >0, the map evj x ev; is transversal to Aps,p2 on U, (i)
by Lemma 3.4 and thus the boundary stratum Uz, 7(fi) does not contribute to the number
Covi. (5 )(ev1 x evi, Apzyp2). If x7(1, 1) =0 and Urir () # 0, x1(7) = {h} and M;T = {1} are
Slnglle-element sets. By Lemma 4.2,

{evixevi}on r(v)= (yi—z1)  @{DP), +e()}v  VweFTs.
Since the section D(Tl)h does not vanish on Uz, (1) by Lemma 3.4, Uz |7, is (evi xXevi, Apz XPQ)-hOl].OW

unless It = {h}. If It = {h}, by Proposition 2.18B, decomposition (3.4), and a rescaling of the
linear map,

C“Tm(ﬁ) (evixevi; Apeypz) = N(ay), where alzD%)i € F(Vl(ﬁ);Hom(Li,eng]Pﬁ)).
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By Propositions 2.18A and 2.18B,

N(a1) = (3ag+c1(LE), Vi) — Capy ) (ai)-
If T = (Mo, I;j,d) <7Tp is a bubble type such that a; vanishes somewhere on Ur g, (1), T ="T1(l)

for some [ €[N]. From Proposition 3.5, we then obtain

Comy (1) = [Via(@)].

Putting everything together and using identities (3.2) and (3.3), we conclude that
Cottr, () (Vi X evi, Apayp2) = (3a3+ager (£3), Vi(u))- (7.7)

The first claim of the lemma follows from (7.6) and (7.7).
(2) Let s be a section of ﬁ’{ with good properties, i.e. as in the proof of Lemma 6.3. Then,

(e (L), V1Y (1) = (er (£3), V1 (1)) = Comropnony, () (V1 X eV, Apape)
= (c1(L£3), V1 (u+H)) + (ager (£3), Vi(u+HY)) + 3(aZ, Vi(n)
= Com1(0)natiz, () (€VT X Vi, Ap2p2)
= (aj+d - ager (L3), Vi(p+H')) — Co1 (06t () (evixevi, Apz,p2).

In the last equality, we used Lemma 5.17 of [Z1], which is essentially Lemma 2.2.2 of [P]. If
T =(M,,I;j,d)<7T; is a bubble type such that x7(1,1) >0, the space U7, does not contribute

to Cang(u) (evi x evi, Apzyp2) unless x7(1,1) = 0 and 7]@71|Z/_{7—‘7—1(u) #0. If x7(1,1) = 0 and
17071|Z;{7—|7—1(u)7é0, IT=x7(T)={h1,h2} and M;(T)={1}. By Lemma 4.2,

{evixeviton 7(v)= Z (yi—xn) ®{D h+€h (v) }on, Yue FTs.
hEXi(T)

Thus,
Cuty oz, () (eVi X eVi; Ap2yp2) = F|s7H(0) N U ()] = Uz ()]
We conclude that
Com1(0)natia, () (€Vi XeVi, Apzxpz) = [Va(p)]. (7.9)

The second claim of the lemma follows from (7.8) and (7.9).

Lemma 7.6 If d>1, the number of rational degree-d cuspidal curves passing through a tuple p of
3d—2 points in general position in P? is given by

|51 |—<3a +3a01701—|—7701,V1 > ‘V2 ‘

Proof: This is the n=2 case of Theorem 1.1; see Lemma 5.4 in [Z1] for a direct proof. The same
formula can also be found in Subsections 4.5 of [P] and 3.2 of [V].

85



L~ s T
cusp T ‘81(/1)|
. 1
. 1 (1)
i)
i l N o D )]
) T ¥ —aa
1 o |V1,1(:u)|
1
i

(1,1)
~ 1,1) —— Vel
- Vy (1) — 5

1

’ i-hollow

1

Figure 15: An Outline of the Proof of Proposition 7.7

7.2 Rational Tacnodal Curves in P?

In this subsection, we prove Proposition 7.7, the P?-analogue of Theorem 1.3. The formula we
obtain agrees with previously known results; see equation (1.2) in [DH] and Subsection 3.2 in [V].

Figure 15 shows the three types of boundary strata 17{1) (1) NU7T, 7 such that
3 \ 3 1
B(Li@ L)V (n) Nz, 7

is not contained in a finite union of Dj j-hollow sets. For such boundary strata,

P(Lio L)V (1) N Uz 7

is a union of one Dj j-regular or hollow subset and one Dj j-regular subset: a section over the base

ﬂl)(u) NU7, 7 and its complement. The second-to-last column of Figure 15 shows the multiplicity

with which each number N («) of zeros of an affine map over a closure of the larger and the smaller

subset, if it is regular, enters into the euler class of the bundle 'yzi ®L* ®GVST P? as computed via
1

the section Dj ;. The last column gives the number N («) for each regular subset of the boundary
strata. Contributions from the boundary strata as in the first row of Figure 15 are computed in
Lemma 7.8. Lemma 7.9 deals with the boundary strata as in the last two rows of Figure 15.

Proposition 7.7 If d is a nonnegative integer, the number of rational one-component degree-d
curves that have a tacnodal point and pass through a tuple p of 3d—2 points in general position
in P? is %|5§1)(,u)|, where

180 ()] = 2(3d—11) A + 2(d—9) By — 8C.
Proof: Similarly to Subsection 5.1,
(S ()] = (3ag, ViV (1) — Cop(rye) (D1 1), (7.10)
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where Cop(L; 0 L) (Dj 1) is the contribution from the boundary strata of ]P’(Li@L’{). This contribution

is computed in Lemmas 7.8 and 7.9. The numbers (a;, f/}l) (w)) and |S1(p)| are given by Lemmas 7.5

and 7.6. Finally, the number of two-component rational curves that pass through 3d—2 points in
general position in P2, counted a with choice of an ordered pair of distinct nodes at which the two
components intersect and with a choice of a branch at one of these nodes, is easily seen to be

3d—2
VWl = > <3d1—1> didy(dyds—1)ng,ng, = 244 +2dBy +2Cq.  (7.11)
di+do=d

Lemma 7.8 The total contribution to C(’)P(Li@L’f)(DLi) from the boundary strata P(Li®L7)|Ur, T,
where T = (M, I;j,d) is a bubble type such that T <T; and x7(1,1)=0, is given by

Y Cortriorsium, 7 (P11) = 5[S1(w)]-
XT(Li):O

Pmﬁ?Q)Bymew42,ﬂ9@0ﬂunTCé%muﬁ It Syig (1) # 0, It = x;(T) = {h} and
M;T = {1} are a single-element sets. Subtracting the expansion of {evjxev;}o¢z 7 of Lemma 4.2
multiplied by (y; —x5) and by —(y; —zp)~! from the expansions of D(Tll)io(;bylj and D%)imj)ﬁj,
respectively, given by Proposition 3.5, we obtain

Dmgbq—l,q—([vi,vi];v) = —{((yi—ﬂch)_1®vi + (yi—xh)_?’@Ui) X Dg?,)h + E(U)}U@’U

for all ([vi,vi];v) € FTs such that ngl,T(u)eu%). Let

ZT = {[Ui’vi] EP(Li@Lik)V/{T\Tl : (yi—a:h)_lvi + (yi—:L‘h)_gUi :0}.

Since the section Dg? )h does not vanish over Sz, (1), by Proposition 2.18B, the decomposition (3.4),

and a rescaling of the linear map,
Co(ty01)1Srim, (20 (D) = 2N(a1),  where a1 €T (P xSi(); Hom(y", v @evsTP?),
is a nonvanishing section. Thus, by Proposition 2.18A,

Y Cerrersisrin -2z (Pii) = 2Q2A=APH[S1(w)] = 2[S1(w)]. (7.12)
X’T(Li):o

(3) In order to compute the contribution from the space Z7, we model a neighborhood of Z7 in
P(Li®L%) by the map

Li ® L} — P(Li®L}), ([vg,vi],u) — [vg, 03 +u(vg)].
Near Zr,

Dmgbq—lg—([vi, vil;u,v) = — (y; —:L‘h)_3® (Dg}h + e9(u, U))U@U@u

— (y;—zp) 2@UI® (Dg—)”)h + e3(u, v)) vRVRV
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for all ([vg,v4];v) € FTs such that ¢ 7(v) ELI%) By Lemma 3.4, the images of D(T)h and D(T)h
are distinct over Sr7; (). Thus, by Proposition 2.18B, the decomposition (3.4), and a rescaling of
the linear map,

> Cz,(Di3) =3]S1]. (7.13)
XT(ivi):o
The claim follows from equations (7.12) and (7.13).
Lemma 7.9 The total contribution to Cap(Li@L%«)(Dﬁ) from the boundary strata P(Ly ® L3) U, T,
where T = (M, I;j,d) is a bubble type such that T <T, and x7(1,1)>0, is given by
1,1)
Z Cop(L; oLt 7 ( —[v; vy ()]
x7(1,1)>0

Proof: (1) By Lemma 4.1, Z/_l%)(,u) NUTL T CZ/IY(}‘)T1 (u). If j;=1or j; >1 and dj. =0, the section
Dii has a nonvanishing extension over U(Tl‘)T( ). Thus, we only need to consider bubble types 7
such that j;=h>1 and dj, >0. Furthermore, if U T‘T( p)#0, It ={1,h}.

(2) If d;=0 and U(TI‘T( )#0, T="T,(l) for some [ €[N]. By Proposition 3.5,

D; 197, 7([v1,v1];0) = —(yi—xh)_2{vi®D(Tl’)h—|—5(U)}v* Voe FTs—Y (FT;I").

Let Z7 =PL;. Since the section Dgph does not vanish on U(Tl‘)ﬁ (1), by Proposition 2.18B and a
rescaling of the linear map,

— 1 . * % * 2
CP(Li@L*)W%)Tl( )—ZT(DLi) = —N(a1), where a3l (P'xS;(n); Hom(v*,~ ®eviTP ),

is a nonvanishing section. Thus, by Proposition 2.18A,
) = — (o= Py )
Cosorautt) (i-zr (PL) = ~(A=A PO Ui ()] = = Uiz ().
On the other hand, with the same notation as in (2) of the proof of Lemma 7.8, near Zr,

Ds 107,17 ([v1, vilsu,v) = _(yi_mh)_2{D§}7)h+€i(’U)}u®’U* + {D(Tlchrsi(v)}v.
Thus, by Proposition 2.18B,
Czr(Diy) = |27| = |U%)71 ()]
We conclude that

Z CP(Li@L’{)WTI,T (Di,i) =0. (7.14)
d;=0

(3) Finally, suppose dj >0. The same argument as in (2) above shows that

CottsmrLnudy, o-zr (PLi) = ~ [z, (1)

but Z7 is Dj j-hollow. Thus, summing up over all bubble types 7 of appropriate form, we obtain

> Cotwronnun » (Pi1) = =5 (). (7.15)
d;>0

The claim follows equations (7.14) and (7.15).
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7.3 Rational Cuspidal Curves in P"

In this subsection, we prove Theorem 1.1. In particular, we construct a tree of chern classes, as
mentioned in the second-to-last paragraph of Subsection 1.2. The sum of these chern classes, with
an appropriate sign, is the number that appears on the right-hand side of the equation in Theo-
rem 1.1. The tree is very similar to that constructed in Subsection 3.1 of [Z4]; the main difference
is that here we focus on intersection numbers, instead of zeros of polynomial maps. Theorem 1.1
follows immediately from Corollary 7.12 and Lemma 7.13.

We first introduce a little more notation. If d, N, and p are as in the statement of Theorem 1.1,
k>1, and m>0, let Viem(1t) and Vi (1) denote the quotients of the disjoint unions of the spaces
Ur(fr) and Uz (1), respectively, taken over all bubble types

T =([N}-Mo, I1; j,d) st. MoCIN], |Mo|=m, IL,={0yU{l,...,k}, dy,...,d;>0, Y di=d,

by the natural action of the symmetric group Si. Here i denotes the ([N]—Mp) U {0}-tuple of
constraints defined by
fu=m if I€[N]-Mo; o= ) m
leMyp
By dimension-counting, the spaces Vj (1) are smooth manifolds. We define the vector bundle
Eim —>Dk,m(li) and homomorphism ag , : Ek,m—>eV3T]P’” over ka(u) by

E, m|u’T @ L;, akm Uz zel+ Z D']' iUis

ielt iel+

whenever 7 is a bubble type as above.

We now construct the tree mentioned above. Each node is a tuple o = (r; k, m; ¢), where r >0 is
the distance to the root 0p=(0;1,0;-), k>1, and m >0. The tree satisfies the following properties.
If r >0 and o* = (r—1;k*,m*; ¢*) is the node from which o is directly descendent, we require
that £ <k, m* < m, and at least one of the inequalities is strict. Furthermore, ¢ specifies a
splitting of the set [k] into k*-disjoint subsets and an assignment of m—m* of the elements of the
set [m]= {(1, 1),..., (1,m)} to these subsets. This description inductively constructs an infinite
tree. However, we will need to consider only the nodes o= (r; k, m; ¢) with 2k+m <n+2. We will
write oo™ to indicate that o is directly descendent from o*.

For each node in the above tree, except for the root, we now define a linear map between vector
bundles. If o = (r;k,m;¢) and s> 1, let {os=(s;ks,ms;ds): 0<s <r} be the sequence of nodes
such that o, =0 and o4t os_1 for all s>0. Put
]}U = ]}k,m(ﬂ), EU:Ek,m B ]}U’ Ao = Ak m, Xo = Vo X]}U) Xa,s = ycr,s X]}cra
where ), = yo‘,ra yo‘,O = {pt}7 y(r,s = PFO'S Xy(r,s—l if 5>0,

I Mo Fo= D0 — o
i€lm ¢ i€lm ¢

For the purposes of the last line above, we view ¢ as a map from [k]—[k*] and a subset of [m)]
to [k*] in the notation of the previous paragraph. Then, v,,; — 9; +¢-1(i) 1s the “tautological”
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line bundle, i.e. the universal tangent bundle at the marked point i. Let
O =0syr, Oos1= eVSTIP’”, Op,s = OU,S_l/Im Ugs—1 if s>1,

where v, ¢ € F(Xms; Hom(’ypf,s,(’)g,s)) is a generic section. Since ks_1 <ks, ms_1 <mg, and one of
the inequalities is strict,

%dimes < %dim)(g = (n+2-2k—m) + > _ (|Im ¢s|-1) =n+1—k—r <1k Oy — (r—1).
s=1

Thus, we see inductively that each bundle O,  is well-defined and a generic section 7,  of
HOH](’)/FUVS, Oy.s) does not vanish. Let 7, : eng P — O, be the projection map. We define

& € I'(X,; Hom(v, ® B3 75, ©05)), by  {de(T®v) }(w) = 7(w) - meaq(v) € O,.
Lemma 7.10 With notation as above,

|Sl | = <c(L*®ev*TIP’” V1 Z N
olog
Furthermore, for every node o*# oy,
. X X —1 .
N (@) = <c(7Fg* ®OU*)C(7FJ* QFEqs+) Xoe ) — Z N (do).
oko*

Proof: This lemma is obtained by the usual argument from the estimate (3b) of Proposition 3.5
via Propositions 2.18A and 2.18B. If ¢* # o, the proof is the same as the proof of Lemma 3.3
in [Z4]. For the first identity, apply the proof of Lemma 3.3 with aio :D(Tl)i'
Lemma 7.11 For every node o # oy,

<c(7}g®00)c(7}i~g®Ea)_l

X ) = (c(eVETP")e(En) " Vi (/1))

Furthermore, - -
(e1(L;@eviTP"), Vi(p)) = (c(eviTP™)e(E1o) ™" Vio(in))-

Proof: For the first identity, see the proof of Corollary 3.5 in [Z4]. The second equality is clear
from the fact that dimV;(u)=rkevyTP"

Corollary 7.12

n+2—(2k

+m)
Sl= X CoRme 3 (”jl)mom eyt V().
=

(1,0)<(k,m)

Proof: This corollary follows from Lemma 7.10 and Lemma 7.11 via straightforward combinatorics;
see Corollary 3.6 and Lemma 3.7 in [Z4].

Lemma 7.13 For all k>1 and [ >0,

Z (_1)mkm(m_ 1)!<al7~7(),n+2—(2k+m)—lﬂ vk,m(ﬂ» = (k_ 1)!<al77()7n+2_2k_17 f}k (N)>

m>0

Proof: See the proof of Corollary 3.10 in [Z4], which uses (3.2) along with [P].
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8 Low-Degree Numbers

We now give some low-degree enumerative numbers for rational curves in projective spaces. In
all five tables, the top row lists the degree d of the map. In Tables 1 and 2, the constraints are
assumed to be 3d—2 points in general position in P". In Tables 3 and 4, the constraints are p points
and ¢ lines in P3, as specified by the second row. Similarly, in Table 5, the constraints are p points,
q lines, and r two-planes in P?.

The formulas of Theorems 1.2 and 1.3 give zeros in degrees one, two, and three. From classical al-
gebraic geometry, one would expect these low-degree numbers, as well as the first three degree-four
numbers listed in Tables 3 and 4, to vanish. In addition, as expected, the fourth number in Table 3
(Table 4) is the same as the degree-four number of Table 1 (Table 2). Similarly, all degree-one and
-two numbers |S;(p)| and several degree-three and -four numbers, as listed in Table 5, are zero, as
the case should be. Finally, observe that the third number of Table 5 is the same as the long-known
number of plane cubic cuspidal curves that pass through seven general points.

d 1123 4 S 6 7 8
\V{m(u)\ 0]0]0] 60| 56,400 | 49,177,440 | 56,784,765,120 | 91,466,185,097,280

Table 1: One-Component Rational Triple-Pointed Curves in P2

d 11213 4 5 6 7 8
\Sfl)(u)\ 0]0]0] 1,296 | 499,680 | 271,751,040 | 227,509,931,520 | 287,190,836,432,640

Table 2: One-Component Rational Tacnodal Curves in P?

d 4 4 4 4 4 4 5 5 5 6
(pg) [ 6] (3) (45 [ B ] 29 [ @11 [ (81)](73) | (65) | (10,1)
IvP ] o 0 0 | 60 | 1,280 19,640 | 8 | 264 | 4,360 | 4,680

Table 3: One-Component Rational Triple-Pointed Curves in P3

d 1] 4 | 4 4 4 1 5 5 5 6
(p,g) | (61)](53) ] (45) | (37 | (29 | (1.11) | 81) | (7.3) | (65) | (10,1)
15D | o 0 0 | 1,206 | 27,648 | 426,672 | 960 | 9,792 | 111,840 | 112,320

Table 4: One-Component Rational Tacnodal Curves in P3
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d 3 3 3 3 4 4 4 4 5
(ma,r) | (40,0 | (3.1,2) | (3.0,4) | (2,1,5) | (6,0,0) | (5.1,1) | (5,0,3) | (4,1,4) | (7,1,0)
S| 0 0 24 240 0 0 0 1,680 | 120

Table 5: One-Component Rational Cuspidal Curves in P*

Aleksey Zinger, Department of Mathematics, Bldg. 380, Stanford University, Stanford, CA 94305,
azinger@math. stanford.edu
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